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Abstract 

 
The IEEE 802.11 WLAN adopts a random backoff algorithm for its collision avoidance 
mechanism, and it is well known that the contention-based algorithm may suffer from 
performance degradation especially in congested networks. In this paper, we design an 
efficient backoff algorithm that utilizes a reinforcement learning method to determine optimal 
values of backoffs. The mobile nodes share a common contention window (CW) in our scheme, 
and using a Q-learning algorithm, they can avoid collisions by finding and implicitly reserving 
their optimal time slot(s). In addition, we introduce Frame Size Control (FSC) algorithm to 
minimize the possible degradation of aggregate throughput when the number of nodes exceeds 
the CW size. Our simulation shows that the proposed backoff algorithm with FSC method 
outperforms the 802.11 protocol regardless of the traffic conditions, and an analytical 
modeling proves that our mechanism has a unique operating point that is fair and stable.  
 
 
Keywords: 802.11 WLAN, Q-learning, Backoff algorithm, Contention window, Resource 
allocation,  
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1. Introduction 

In this paper, we discuss how to improve the collision avoidance algorithm applied to the 
CSMA/CA method of wireless LAN communication. The performance can be improved by 
applying reinforcement learning to the collision avoidance algorithm of the Binary Exponential 
Back-off (BEB) method, which is a collision avoidance algorithm between terminals used in 
the MAC protocol of Wireless Local Area Networks (W-LANs) [1]. A mobile node (MN) can 
transmit a frame after waiting for a backoff time that is selected randomly in the contention 
window (CW). In case a collision occurs, the size of CW is doubled to reduce the probability 
of collisions.  

There have been many efforts to enhance the performance of the backoff algorithm in the 
WLAN MAC protocol: Serrano et al. [2] proposed an optimal size of contention windows to 
increase the overall network throughput. Also, Kang et al. [3] have suggested that the number 
of active nodes can be estimated by counting the number of idle slots and busy slots in a 
backoff period. Then, using the number of estimated nodes, each MN selects an optimal CW 
size. Ghazvini et al. [4] adaptively adjusted the contention window size by applying the game 
theory, i.e., via maximizing the payoff function of the network, each MN estimates the total 
number of nodes in the system and finds the minimum size of CW. Also, M.-H. Cheng et al. 
[5] discussed the performance of Linear Increase Linear Decrease (LILD) algorithm, in which 
the CW size is increased or reduced by one CWmin. 

Recently, machine learning methods have been adopted to optimize the performance of the 
backoff mechanism in 802.11 MAC protocol. For example, Wydmański  [6] uses a 
reinforcement learning method, in which the collision probability is used as the agent state 
information. Their model is proved to succeed in optimizing the contention window. Also, the 
methods for applying reinforcement learning [7] have been studied, and one of those method 
is applying Q-Learning using a frame with a time slot as a basic unit [8]. By applying this 
method, the data throughput can be maximized, and the delay time can be minimized. Y.-W. 
Chen [9] proposed a reinforcement learning method that is rewarded by throughput and 
optimally control the CW size periodically. Access point (AP) determines the CW size for the 
mobile nodes, and the nodes double the CW size after a collision (Mode 1) or keep the size 
selected by the AP (Mode 2). 

In this paper, we design an efficient backoff algorithm that utilizes a reinforcement learning 
method to determine optimal values of backoffs. The mobile nodes share a common contention 
window (CW) in our scheme, and using a Q-learning algorithm, they can avoid collisions by 
finding and implicitly reserving their optimal time slot(s). In addition, we introduce Frame 
Size Control (FSC) algorithm to minimize the possible degradation of aggregate throughput 
when the number of nodes exceeds the CW size. We also provide an analytical model to show 
that our mechanism has a unique operating point that is fair and stable. 

This paper is organized as follows: Section 2 presents our proposed Q-learning method for 
the multiple access control, and Section 3 describes an analytic model to study and control 
the fair resource allocation. Section 4 provides the results and discussion for the model 
proposed in the previous sections. After simulation results are shown and discussed, our 
analytical model is investigated study the stability and fairness property of the mechanism. 
Finally, Section 5 includes conclusions and suggestions on future works. 
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2. The Proposed Q-learning Method 

2.1 Background 
To avoid collisions, the IEEE 802.11 protocol uses BEB algorithm [1]. A node that has a 
frame to transmit, senses the carrier signal in the channel; if the channel is idle during DCF 
inter-frame space (DIFS) period, it starts the backoff timer before transmitting. The length of 
the timer is set to a randomly selected time slot in the contention window (CW) [0, W], where 
W is the current CW size. The selected backoff time is decreased by one after each time slot 
if the channel is idle, and the node transmits a data frame when the backoff time becomes 0. 
In Fig. 1, after a DIFS period, node 1 and node 2 randomly select 3 and 4, respectively, for their 
backoff timer. After 3 time slots, node 1 begins its transmission, and the backoff timer of node 
2 stops decreasing until the end of next DIFS period, at which the timer starts again. If a 
transmission fails, the node doubles until maxCW  is reached. Also, if a transmission succeeds 

or the maximum retransmission limit is reached, CW is initialized to minCW . 
 

 
Fig. 1.  Random backoff example of the IEEE 802.11 DCF:  

Three nodes randomly select 3, 4, and 6, respectively, for their backoff timers 
 
As CW size is reset to minCW  after a successful transmission, and is doubled after a failure; 
thus, as mentioned earlier, a node that succeeds a transmission is quite likely to gain the 
medium in the following contention. Also, if there are many nodes contending the channel, 
BEB algorithm suffers from a low efficiency and performance degradation. 

Regarding the reinforcement learning, situations are mapped to actions to optimize a 
reward signal, i.e., the agent finds which action would give the maximum reward by trying 
those actions [7]. The agent continually interacts with the environment in order to select 
optimal actions, and the environment  responds to the actions by presenting new states and 
rewards. The methods which estimate the action values and make action selections using the 
estimates, are collectively called action-value methods. The simplest rule to select a best action 
is to choose an action that has the highest estimated value, i.e., selected action is given by 

arg max ( )t ta
A Q a=                                             (1) 

 
where Qt(a) is the action value at time t. Basically, the action value can be estimated by the 
average reward when that action is selected, and depending on system models, various forms 
of action value methods are possible. Also, while greedy selection of actions always exploits 
current knowledge, a balance between exploration and exploitation is always required in 
reinforcement learning. Probably, the most popular action value method in reinforcement 
learning is Q-learning, in which state-action values are learned using a behavior policy for the 
exploration [7]: 
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1 1( , ) ( , ) [ max ( , ) ( , )]t t t t t t t ta

Q S A Q S A R Q S a Q S Aα γ+ += + + −              (2) 

 
where (0,1]α ∈  is a step size parameter and 0 1γ≤ ≤  is a discount rate. 

2.2 A Q-learning method for Collision Avoidance 
In this section, we propose an efficient backoff algorithm that utilizes a reinforcement learning 
method to determine optimal values of backoffs in CW. The mobile nodes share a common 
contention window (CW) in our scheme, and using a Q-learning algorithm, they can avoid 
collisions by finding and implicitly reserving their optimal time slot(s). A  node selects an 
optimal time slot to send its frame, and if the transmission succeeds, then the Q value of the 
slot will be increased and thus the nodes can reserve the time slot implicitly, which may greatly 
reduce the collision probability. All nodes are assumed to be synchronized with the fixed-size 
contention window. 
 

Fig. 2. Example of a frame with 10 time slots 
 
 

Fig. 2 shows an example of a frame that has 10 time slots. Note that the length of a time 
slot is variable according to the atomic transmission sequence of frames. In the figure, if node 
1 selects slot 3, then at the slot, the node starts the transmission sequence of (RTS-CTS)-Data-
Ack frames. After the transmission and a free DIFS period, the time slot 3 ends and slot 4 
begins. In the above example, node 2 selects slot 7 and it starts its transmission at the selected 
slot. 

Algorithm 1 is the backoff algorithm for a single node. After the sequence of transmissions 
in the selected slot, the Q value of the slot is updated depending on whether the transmission 
succeeds or not. Through learning, each node adaptively finds the optimal value of backoff in 
the contention window. In this algorithm, the learning selection criterion uses the Upper 
Confidence Bound (UCB) [7] algorithm. If the number of exploitations for an action is not 
enough, then the upper bound could be larger and the action is quite likely to be selected. 
Using that mechanism, the node can efficiently learn the Q values by balancing exploration 
and exploitation. 
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Algorithm 1: Backoff algorithm with a fixed-size CW 
1: Initially, Q values of all the slots are set to 0 
2: while True do 
3:     Wait for a beginning of a frame 
4:     Select a slot that has a biggest Q value 
5:     Wait for the selected slot 
6:     Begin transmission 
7:         RTS-CTS if needed 
8:         Data-Ack 
9:         Wait for a free DIFS 
10:    Update Q value of the slot 
 

 
Suppose that the total number of MNs in the system is less than the number of slots in a 

frame, and each node selects a single slot for their transmissions. Then some slots will not be 
used, and it may cause a performance degradation of the system. Thus, we also propose Frame 
Size Control (FSC) algorithm in the next section to avoid wasting time slots: If the total 
number of MNs in the system is less than the number of slots, then each node may occupy 
more slots. On the other hand, if the number of nodes is larger than the number of slots, then 
FSC algorithm increases the frame size to prevent a performance degradation due to collisions. 

A Q-table example is given in Fig. 3, where CW size is 10. Using the action value method, 
mobile node 1 selects slot 3 at t1. As the transmission of node 1 succeeds, the Q value of the 
time slot increases at t2, the beginning of the next congestion window: With 0.1α = , the Q 
value becomes 0.19. In the next contention window which begins at t2, node 1 will choose the 
same slot again for its transmission, and the slot is implicitly reserved by the node. 

 
Fig. 3.  Q value update after a transmission 

3. Analytical Modeling and Control 

3.1 Fair Resource Allocation 
When transmitting data between a node and an AP, each node finds its own time slot through 
learning. As the number of slots in CW is fixed, if the number of nodes is less than the number 
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of slots, then each node may want to (implicitly) reserve as many slots as possible to increase 
their transmission throughputs. In this subsection, we propose a decentralized algorithm to 
allocate the slots fairly to the nodes. 

Suppose that a set 𝐾𝐾 = {1,⋯ ,𝑁𝑁} of nodes is given and they have a common 
contention window of size W. Node i K∈  reserves several slots in the window via the 
learning process. We denote node i’s number of (implicitly) reserved time slots by iT , 
and the vector for all nodes in the system by 𝛵𝛵 = (𝑇𝑇1,⋯ ,𝑇𝑇𝑁𝑁). Then, vector Τ  is said to 
be feasible if the following constraints are satisfied: 
 

0 , ;i iT M i K≤ ≤ ∀ ∈  

     i
i

T T W
∈Κ

= ≤∑                                                   (2) 

 
where 0 iM W< ≤ is the maximum requirement of node i . We assume that a node may 
have an upper bound on its own service demand, which is private to node i  and its value may 
not be known to others. At the beginning of a congestion window, each node makes decisions 
on how many time slots it will use for transmission using the following algorithm:  

A node first counts the number of time slots being used by all other nodes and then figures 
its fair share according to Algorithm 2. iα  is a real number set by node i , which determines 
the service quality, i.e., lower-class nodes have a lower value of  α  and a large α guarantees 
more time slots in the contention window. Thus if ,i iα α= ∀ , all nodes in the network will 
have an equal number of slots within the window. 

 
Algorithm 2: Computation of iT  
1: 𝑇𝑇𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒 =  ∑ 𝑇𝑇𝑗𝑗𝑗𝑗≠𝑖𝑖  
2: 𝑇𝑇𝑖𝑖 = 𝛼𝛼𝑖𝑖(𝑊𝑊 − 𝑇𝑇𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒),  0 < 𝛼𝛼𝑖𝑖 < 1 
3: if i iT M> then 

4:         i iT M=  

5: else if 1iT < then 

6:         1iT =  
 
Algorithm 2 is formulated from a distributed optimization problem as follows. We assume 

that each node has its own objective function given by (3) and tries to maximize the function 
value in a non-cooperative fashion. 
 

( ) (( ) )i
i i others iJ T W T TβΤ = ⋅ − −                                          (3) 

where 0 1iβ< ≤  is a weighting factor that is private to node i . As (3) is differentiable 
and concave, it is a special form of the general objective function adopted in the network utility 
maximization (NUM) problem [11]. It can be interpreted as benefit divided by cost, i.e., if a 
node implicitly reserves many time slots, then the node’s performance will be high. On the 
other hand, if too many time slots are used, then the collision probability is increased due to the 
exploration of reinforcement learning process. One can see that the optimal policy iT  of node 
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i  is given by Algorithm 2, where 1
i

ii
β
βα += . 

Also, note that the optimization problem of (2) can be implemented according to the 
gradient ascent algorithm as follows: 

1 ( )t t t
i i iT T J Tλ+ ′= +                                                  (4) 

where λ  is the learning rate. The value of 0
iT  starts with 1 and is repeatedly updated in the 

direction of steepest increase of J . 

3.2 Frame Size Control 
The frame size applied to Q-Learning is generally fixed initially. That is, the frame size is a 
value set by roughly predicting the number of MNs in the system. However, if the number of 
MNs accessing the AP at the same time exceeds the frame size, the AP becomes overloaded, 
and the performance decreases rapidly. To solve this AP saturation problem, we introduce the 
FSC algorithm that adjusts the frame size without interfering with Q-learning learning. 
Algorithm 3 simply shows the operation of FSC. 

When the AP is saturated, the frame size should be increased. Now when the AP is saturated, 
the optimal number of time slots at node i , iT  is exactly 1 due to the characteristics of the 
objective function. it is decided whether to operate the FSC. That is, when the AP becomes 
saturated, iT  is exactly 1, and FSC increase the frame size. In contrast, if it is not saturated, iT  
greater than 1, and it is reduced again. This implementation is simple, but some coordination 
is needed to adjust the Q-value because the learning table of Q-Learning corresponds to a 
frame. 

 
Algorithm 3: Frame Size Control 
1: if i iT M≤ then 
2:       1W W= +  
3: else if 1iT > and initW W> then 
4:         1W W= −  

4. Results and Discussion 

4.1 Simulation results 
We have performed simulations in Python to evaluate the performance of our proposed 
algorithm. The nodes are assumed to have enough data frames to send all the time up to their 
personal demands. In Table 1, CW size is the size of the congestion window in Algorithm 
3, minCW  and maxCW  are parameters for the legacy DCF protocol. 

Fig. 4 shows the simulation result of the backoff scheme proposed in this paper, and those 
of other algorithms for comparison. The performance is compared in terms of throughput 
versus the number of nodes. In our proposed algorithm, the learning rate and step size are both 
set to 0.001 and no upper bound is assumed in the nodes’ service requirements. The overall 
throughput of 802.11 DCF is about 33 Mbps if there are 10 nodes in the network, and the 
throughput is decreased if there are more nodes in the system. The legacy DCF protocol suffers 
from the collisions due to the random backoff algorithm and it becomes severe as the node 
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numbers increases. LILD algorithm [5] shows a better performance from 20 nodes, and both 
modes of CW adjustment algorithm [9] outperform DCF and LILD. Note that our proposed 
scheme maintains a more throughput than CW adjustment algorithm regardless of the number 
of nodes. In the proposed algorithm, the nodes choose their best time slots by the reinforcement 
learning process such that almost all collisions can be avoided by the implicit reservation of 
time slots. 
 

Table 1.  Simulation parameters 

 
 

 
Fig. 4.  Throughput of the backoff schemes: 802.11 DCF [1], LILD [5], CWA [9], and the proposed 

algorithm 
 
Fig. 5 shows the performance improvement when Frame Size Control (FSC) algorithm is 
applied. We proposed FSC algorithm to minimize the possible degradation of aggregate 
throughput when the number of MNs exceeds that of time slots in the CW. One can see that, 
when FSC algorithm is adopted, the throughput is maintained regardless of the number of 
nodes. 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 3, March 2023                                1043 

 
 

Fig. 5.  The effect of FSC algorithm when the number of nodes exceeds the CW size. 
 

4.2 Equilibrium of the Resource Allocation 
As every node in Κ  independently decides the number of time slots according to the objective 
function in (3), their optimization problems can be written as follows 
 

max ( ),
1

i

i i

imize J i
subject to T M

Τ ∀ ∈Κ
≤ ≤

                                           (5) 

where we assume that every node i∈Κ  has a value 0 iM W< ≤ , which is the maximum 

number of time slots which satisfies the service requirement of node i . Note that ( )iJ Τ  is a 

real function that is strictly concave with respect to iT  and has its optimal at 
 

arg ax ( ) ( )
i

i i others
T
m J W TαΤ = −                                        (6) 

 
Each node in the system equation of (5) finds its optimal policy by (6), and slots in the 

contention window are selected via the reinforcement learning. It is a decentralized way of 
optimization, in which the mobile nodes non-cooperatively optimize their utility function. 
Such a model has been studied in many literatures. Note that the decentralized optimization 
model of Eq. (5) belongs to the resource allocation problem investigated in [12]. Using 
Theorem 2 in [12], which studies the Nash equilibrium point in a non-cooperative system, our 
system model of Eq. (5) has an equilibrium point that is unique. In addition, one can easily 
see that the resource allocation is fair, and the mobile nodes are satisfied with the allocation: 
I.e., no node can increase its utility function without decreasing other nodes’ utilities. 

Next, we study the convergence property of Algorithm 3. Let h  be the time index which 
points the end of a time slot that has a successful state change: i.e., a time slot that is reserved 
by a node without a collision, or that is freed to be used. Also let ( )hΤ  be a K-dimensional 
vector such that component i  denotes the number of time slots reserved for node i  at time 
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h . Note that ( )hΤ  and ( 1)hΤ +  is different in only one component of the vectors, A collision 
may occur in a time slot between h  and 1h + , and it causes the time slot is freed or another 
slot time is reserved at 1h + . Then the system of (5) can be represented by the following 
iterations: 
 

( 1) ( ( )), 0,1, ,h F h hΤ + = Τ =                                   (7) 
 
where F is a continuous mapping. As the nodes adaptively adjust their numbers of time slots, 
Τ  needs to converge to the unique fixed point of (7), which is the operating point of the system. 

Gauss-Seidel iteration method [13] is a well-known method for solving a system of linear 
equations: Only one node can update its value at a time and the nodes are assumed to receive 
the latest information on the system. In the iterative equation (7), ( )hΤ  and ( 1)hΤ + can be 

different only in their thi  element, and all the nodes obtains information on ( )hΤ  without any 
delay by carrier sensing. Thus, our implementation of the iterative algorithm corresponds to 
the Gauss-Seidel iteration method. One can implement Gauss-Seidel algorithms either in 
synchronous or asynchronous iterations. Note that, as the nodes in our system assumed to have 
no pre-specified order, they may join or leave the network anytime and even may not always 
active. Thus, the way of nodes’ updates in our system model in (7) is asynchronous, and the 
nodes’ implicit reservations will converge by the convergence property proved in [13]. Now, 
it is easily proved from the previous works for our system that the equilibrium point is unique, 
and the scheme always converges to the point. We provide the following result without proof. 
 
Theorem 1. The operating point of the decentralized resource allocation problem in Eq. (5) 
is unique. In addition, if the asynchronous Gauss-Seidel method is adopted for the updates 
of the nodes’ reservations, then the implicit reservation T(t) surely converges to the 
equilibrium point in a finite time. 

4.3 Fair Share Property at the Equilibrium 

In this section, we investigate the slot time reservation vector *Τ  determined at the Nash 
equilibrium. If we denote the total amount of reservations as T* = ∑i Ti, then node i’s number 
of reserved slot times can be found by Theorem 2. 
 
Theorem 2. For node i∈Κ , its number of implicitly reserved time slots in the contention 
window is converged to the following value: 
 

*

,
1 , 1

,

i i i

i i

i

M if M TS
T if TS

TS otherwise

<
= >



 

 
where iTS  is a fixed point given by 
 

*( )
1

i
i

i

TS W Tα
α

= −
−

                                             (8) 
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Proof. According to Karuch-Kuhn-Tucker (KKT) conditions [14], we have the following 
constraints for any node i  at the Nash equilibrium * * *

1( , , )T ΚΤ = Τ  
 

* *0, 0i iλ µ≥ ≥                                                      (9) 
* * * *( ) 0, (1 ) 0i i i i iT M Tλ µ− = − =                                     (10) 

* * * 0i i i i iW Tα λ µ− + + − =                                          (11) 
 
where *

iλ  and *
iµ  are KKT multipliers, and i othersW W T= − . One can deduce the following 

equalities from (9) and (10): 
 

* * * *0 1i i i iTλ µ µ< ⇒ > ⇒ =  
* * * *0i i i i iT Mλ µ λ> ⇒ > ⇒ =  

 
If we consider the fact that Wi − Ti

∗ = W − T ∗, (11) can be written as 
 

* * * *1( ) ( ) 0
1 1

i
i i i

i i

T W Tα λ µ
α α

− − + − =
− −

                            (12) 

 

Now let *
1 ( )i

iiTS W Tα
α−= − , then Eq. (12) and the above constraints give 

 
* * * *

i i i i i i i iM TS T TS T Mλ µ< ⇒ < ⇒ > ⇒ =  
* * * *1 1i i i i i iTS T TS Tλ µ> ⇒ > ⇒ < ⇒ =  

 
If we remove the nodes in the first two cases and consider the unconstrained case, then the 
other case *

i iT FS=  can be proved easily. 

Given iα , W , and the nodes’ requirements (if any), iTS  can be found as in Theorem 2. It 
is the fair amount of (implicit) reservation for a node and is also the solution of the recursion equation 
(11). Note that, according to the service requirement of a node, the amount of reservation can 
be different for the node. The following is a simple example of the formula in Theorem 2. 
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Example 3. Fig. 6 shows the result of simulation with 100W =  and 0.5( 1)i iα β= =  for 
all i . At time 0 only one node exists in the system, and it uses the half of available time slots 
in CW according to Algorithm 2. As node 2 joins at 2 sec, node 1 decreases its usage and the 
(implicit) reservations of both nodes converge their fair shares as given in Theorem 2; i.e., 

(100 ) 33i i iTS TS= − =  for all i. At 4 sec, node 3 joins, and the node is assumed that its 

service requirement is bounded such that 3 16M = . One can see that 3T  is quickly converges 
to its maximum requirement and other nodes also converge to their fair shares, which is 

(100 ) 28i i iTS TS= − =  for all 3i ≠ . 

Fig. 6.  Each node dynamically adjusts its use of time slots as the nodes join the network. Node 3’s 
service requirement is bounded. 

5. Conclusions 
We proposed a new backoff algorithm that utilizes a reinforcement learning method to 
determine optimal values of backoffs. Also, we suggested Frame Size Control algorithm to 
minimize the possible degradation of aggregate throughput. Simulation results showed that 
our backoff method with the FSC algorithm outperforms the 802.11 protocol regardless of the 
traffic conditions. In addition, we studied the properties of the Nash equilibrium and its 
convergence property. Using the analytical modeling, we can compute the fair share allocation 
at the equilibrium. Several issues should be studied further: We may extend the proposed 
mechanism to a multi-hop network environment. Also, the convergence speed may be 
particularly important for a practical application, especially when many nodes are contending 
in the system. 
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