
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, Nov. 2019                                      5773 
Copyright ⓒ 2019 KSII 

Improved Impossible Differential Attack on 
7-round Reduced ARIA-256 

 
Xuan Shen* and Jun He 

 College of Information and Communication, National University of Defense Technology 
Wuhan 430010, Hubei - P. R. China 

[e-mail: shenxuan_08@163.com] 
*Corresponding author: Xuan Shen 

 
Received April 26, 2019; accepted June 9, 2019;  

published November 30, 2019 
 

 

Abstract 
 

ARIA is an involutory SPN block cipher. Its block size is 128-bit and the master key sizes are 
128/192/256-bit, respectively. Accordingly, they are called ARIA-128/192/256. As we all 
know, ARIA is a Korean Standard block cipher nowadays. This paper focuses on the security 
of ARIA against impossible differential attack. We firstly construct a new 4-round impossible 
differential of ARIA. Furthermore, based on this impossible differential, a new 7-round 
impossible differential attack on ARIA-256 is proposed in our paper. This attack needs 2118 
chosen plaintexts and 2210 7-round encryptions. Comparing with the previous best result, we 
improve both the data complexity and time complexity. To our knowledge, it is the best 
impossible differential attack on ARIA-256 so far. 
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1. Introduction 

ARIA [1] was published by National Security Research Institute of  Korea in 2003. One year 
later, it was selected as a Korean Standard block cipher. ARIA takes involution SPN structure. 
The block size of ARIA is 128-bit , while the master key sizes are 128/192/256-bit, 
respectively. We call them ARIA-128/192/256 accordingly. Moreover, the rounds of these 
three versions are 12/14/16, respectively. After ARIA was published, many cryptographers 
have analyzed ARIA from various security views, including differential cryptanalysis, linear 
cryptanalysis and so on [2]-[6]. 

Among kinds of cryptanalytic methods, impossible differential attack (short for IDA in 
our paper) is a very effective attack against many byte-oriented  block ciphers [7]-[11]. It was 
first proposed to attack DEAL and Skipjack block ciphers by Knudsen [12] and Biham et al. 
[6],respectively. The main idea of this attack is exploiting an impossible differential (short for 
ID in our paper) to remove the wrong keys.  

For ARIA, in 2006, Wu et al. [13] first constructed some nontrivial 4-round ID of ARIA, 
and attacked reduced to 6 rounds of ARIA-128 with 2121 data complexity and 2112 time 
complexity. Later, at ISA 2008, Li et al. [14] found a new ID of ARIA-128, and they improved 
the complexity for 6-round attack. After that, in 2010, Li et al. [15] further improved 5/6-round 
IDA on ARIA-128. At the same year, at CANS 2010, Du et al. [16] first proposed 7-round 
IDA on ARIA-256, the attack needs 2125 data complexity and 2238 time complexity. Then, in 
2012, Su [17] improved 7-round IDA with 2120 data complexity and 2219 time complexity. 
Very recently, Xie et al. [18] constructed a new 4-round ID and further improved 7-round IDA 
with only half of the previous best complexity in 2018. The summary of IDA on ARIA is 
shown in Table 1. 

 
Table 1. Summary of impossible differential attack on ARIA 

Round Data Complexity Time  Complexity Source 
6 2121 2112 [13] 
6 2120 296 [14] 
6 2113 2121.6 [15] 
7 2125 2238 [16] 
7 2120 2219 [17] 
7 2119 2218 [18] 
7 2118 2210 Ours 

 
In our paper, we first construct a new 4-round ID of ARIA. Then, based on this new ID of 

ARIA, a 7-round impossible differential attack is proposed. The data and time complexity of 
our attack is 2118 and 2210, respectively.  Comparing with the known IDAs on ARIA-256, our 
result is the best one.  

Organization. In Section 2, we first give some notations that will be used in our paper, 
then show a description of ARIA and the principle of IDA. After that, we construct a new 
4-round ID of ARIA in Section 3. Moreover, with this ID, a 7-round attack on ARIA-256 is 
shown in Section 4. At the end, we conclude our paper in Section 5. 
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2. Preliminary 

2.1 Notations 
In this section, we define some notations described in Table 2. 

 
Table 2. Some notations that will be used in this paper 

Notations Meanings 
Xr

I The input value of the r-th round  

Xr
S The value after the substitution layer  

of the r-th round 
Xr

O The output value of the r-th round 
∆Xr

* The difference of Xr
*,where *∈{I,S,O} 

Kr The r-th round key 
Kr,s The s-th byte of Kr 
Rr The r-th round 

 

2.2 Description of ARIA 
The encryption process of ARIA block cipher is given in Fig. 1. Its 128-bit state is viewed as a 
4×4 byte matrix described in Fig. 2. The iterative round function of ARIA is made up of three 
components: 

Plaintexts

0K

1SL⊕ DL

1K

⊕ DL

2K

⊕  DL

1rK −

⊕

rK

⊕
Ciphertexts

2SL 1SL 2SL

 
Fig. 1.  Encryption process of ARIA 
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14
 

Fig. 2. 128-bit state of ARIA 
 

 SL: ARIA takes two kinds of Sboxes: S1 and S2. S1
-1 and S2

-1 denote the inverse of S1 and 
S2, respectively. Note that all of the sboxes in ARIA are 8-bit. In ARIA, SL1 /SL2 are taken 
in the odd/ even rounds, respectively. They are given in Fig. 3. 
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Fig. 3.  Two types of substitution layers in ARIA 

 
 DL: After working by SL, a state is updated by a 16×16 involutory binary matrix. For a 

128-bit state X=(x0, x1, x2, , x13, x14, x15), where xi(i=0,1,2,  ,13,14,15) is a byte, DL is 
presented by Y=AX, and A is a matrix given in Fig. 4. 
 

1

0
 

Fig. 4.  Matrix of DL in ARIA 
 

 RKA: It is updated by XORing the round key with the middle states, where the round key 
is obtained by the key schedule of ARIA. 
More details of ARIA that are not necessary for this paper can be referred to [1], we do 

not present them in our paper.  

2.3 Principle of impossible differential attack 
Impossible differential attack can be divided into two steps. Firstly, one needs to construct an 
impossible differential. In this step, the most popular method to find impossible differentials is 
using the miss-in-the-middle technique. With this technique, the contradictions are obtained in 
the middle matching parts from the encryption and decryption directions. The other step is 
exploiting the constructed impossible differential to remove the wrong keys.  
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As shown in Fig. 5, for a cipher E, the whole encryption could be divided into three parts: 
2 1 0E E E E=   , where E1 is the encryption of the impossible differential, E0 and E2 are some 

rounds encryption added to E1 at the beginning and at the end, respectively. Firstly, we 
construct an impossible differential ∆α→∆β in E1. Then, if the round keys that need to be 
guessed in  E0 and E2 are independent, we respectively guess the round keys to reduce the 
complexity. For example, choose a pair of plaintexts (P,P*) and the corresponding pair of 
ciphertexts (C,C*). We first guess the involved round keys 0κ in E0 for (P,P*) and calculate the 
output difference of E0. If it is equal to ∆α, we put the keys 0κ into table A. With the same way, 
we guess the involved round keys 2κ in E2 for (C,C*) and calculate the output difference of E2. 
If it is equal to ∆β, we put the keys 2κ into table B. Finally, we only need to remove the 
candidate keys ( 0κ , 2κ ) in table A×B because the differential ∆α→∆β is impossible. 

1E

0E

2E

α∆

β∆

*( , )P P

*( , )C C

0κ

2κ

 
Fig. 5. Whole frame of impossible differential attack 

 
We denote l0, l2 by the bit number of guessed keys in E0 and E2,respectively. Moreover, if 

the probability that the random key can be remained through a pair of plaintexts (P,P*) is  
1-2-c, where c denotes the total bit number of the matched conditions, the probability that the 
random key can be remained through N pairs of plaintexts is  

/2(1 2 )
cc N NPr e− −= − ≈ . 

Then, choose different probability Pr, the complexity of the attack can be different. For 
example, if all wrong keys are requested to remove, N needs to satisfy the following 
inequation: 

0 2( )
0 2(1 2 ) 2 ( ) ln 2 2 .l lc N cPr N l l− +−= − ≤ ⇒ ≥ + × ×  

If N needs to satisfy -1(1 2 ) 2c NPr −= − ≤ , which means only half of all wrong keys are  
requested to remove at least,  N only needs to satisfy ln 2 2 .cN ≥ ×   

Note that all wrong keys are requested to remove in the previous best result [18]. 
However, we will take much appropriate Pr in this paper such that the complexity can be 
improved comparing with the previous one.  
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3. The 4-round impossible differential of ARIA 
We mainly construct a 4-round impossible differential of ARIA in this section. 

Proposition 1. For ARIA, the following 4-round differential is impossible: 
(a0,0,0,0,0, a5,0,0,0,0,0,0,0,0,0,0)→(f,f,0,0,0,0,f,0,0,0,0,0,0,0,f,0) 

where all of a0, a5 and f  denote non-zero byte. 

RKA,SL1
0a

DL

RKA,SL2 DL

DL-1

DL-1

Contradiction
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0b
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11 14 3 4 9 14d d c c c c= = ⊕ ⊕ ⊕
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ff
f

f f
f f

6e 10e
11e 15e
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15d ∗
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7d ∗
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13d ∗
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* *11

* 1 11 14
14 11

0
( )

d d dd SL e−
= ⇒ ≠= ∆ 

Zero

Nonzero or unknown

RKA-1, SL1-1

RKA-1, SL2-1

3 :R

4 :R

5 :R

6 :R

 
Fig. 6. The 4-round impossible differential of ARIA 

 
Proof. It should be pointed out that the difference does not change through the RKA and 

RKA-1. As shown in Fig. 6, we first give the 2-round differential from the encryption direction 
as follows: 

Since ∆X3
I = (a0,0,0,0,0, a5,0,0,0,0,0,0,0,0,0,0), after RKA and SL1 of R3, the difference is 

∆X3
S = (b0,0,0,0,0,b5,0,0,0,0,0,0,0,0,0,0), where both b0 and b5 are unknown non-zero bytes. 

Then, after DL of R3,RKA and SL2 of R4, ∆X4
S  become (0,c1,0, c3, c4, 0, c6,0, c8, c9, c10,0,0, c13, 

c14, c15). Moreover, after DL of R4, the difference is ∆X4
O  =(d0,d1, d2, ,d14,d15), where 

d11= d14= c3⊕  c4⊕  c5⊕  c14. 
Thus, the difference ∆X3

I  evolves into ∆X4
O with probability 1,  and the 11-th byte and 14-th 

byte values of ∆X4
O are the same. 

From the decryption direction, we show the 2-round differential propagation (R5 and R6). 
Given that ∆X6

O=( f,f,0,0,0,0,f,0,0,0,0,0,0,0,f,0), we get that ∆X5
S =(0,0,0,0,0,0,f,0,0,0,f, 

f,0,0,0,f) through DL-1of R6. Moreover, after SL2
-1 and RKA-1of R6, the difference is ∆X6

I = 
(0,0,0,0,0,0,e6,0,0,0,e10,e11,0,0,0,e15), where all of e6,e10,e11,e15 are unknown non-zero bytes. 
Moreover, after DL-1,SL1-

1,RKA-1 of R5, the difference is ∆X5
I=(d0

*, d1
*, d2

*, , d14
*, d15

*) 
where  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019                            5779 

d11
*=0, d14

*=∆SL-1(e11). 
Given that e11=∆SL-1(f)≠0, d14

*=∆SL-1(e11)≠0, thus, we have d11
*≠d14

*, which contradicts d11= 
d14 in the former 2-round differential. So, this 4-round impossible differential is constructed.                                                                                                                            
□                                                                                                                

4. The 7-round impossible differential attack on ARIA-256 

In this section, with the above impossible differential, we propose the 7-round impossible 
differential attack on ARIA-256  whose data/time complexity is 2118/2210. Comparing with the 
previous known results, the better threshold value of Pr will be taken and our attack can get 
better results.  

The 7-round impossible differential attack on ARIA-256 is described in Fig. 7. Before 
giving the procedure of this attack, we first present the following proposition which will be 
used to calculate the complexity. 

Proposition 2. In Fig. 7, when the following four equations hold, 

1 4

3 6

9 12

2 7 8 10 13 15

;
;
;

0,

c c
c c
c c
c c c c c c

=
 =
 =
 ⊕ ⊕ ⊕ ⊕ ⊕ =

 

the probability that making ∆X1
S  become ∆X1

O  whose 10 byte differences (0,2,3,4,5,7,9, 
11,12,14) are zero is 2-32.  
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Fig. 7. The 7-round impossible differential attack on ARIA-256 
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Proof . We define a state structure that the (0,2,3,4,5,7,9,11,12,14)-byte differences are 
zero, the other 8 byte differences are nonzero. Then, one structure has 248 states. In Fig. 7, after 
DL-1 of R1, we can get that c1=b8⊕ b15,c4=b8⊕ b15. So, c1=c4 with the probability 1 no matter 
what b8 and b15 are. With the same method, we have 

3 6 10 13

9 12 1 6

;
.

c c b b
c c b b
= = ⊕

 = = ⊕
 

Since 

2 1 6 10 15

7 1 6 8 13

8 1 10 13 15

10 6 8 13 15

13 6 8 10 13

15 1 8 10 15

;
;
;
;
;
,

c b b b b
c b b b b
c b b b b
c b b b b
c b b b b
c b b b b

= ⊕ ⊕ ⊕
 = ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕
 = ⊕ ⊕ ⊕
 = ⊕ ⊕ ⊕


= ⊕ ⊕ ⊕

 

we have c2 ⊕  c7 ⊕  c8 ⊕  c10 ⊕  c13 ⊕  c15=0. Thus, all of the four equations hold with 
probability 1. However, one of them holds with the probability 2-8 randomly. Therefore, the 
number of ∆X1

S  is 2112×(2-8)4=280. Given that DL is the linear transformation and the number 
of ∆X1

O is 248, the probability that making ∆X1
S  become ∆X1

O in Fig. 7 is 248/280=2-32.                                                                                                                           
□ 

Note that the probability that ∆X1
O  satisfies 10 byte differences (0,2,3,4,5,7,9,11,12, 

14) are zero randomly is (2-8)10=2-80<2-32.  
Our key recovery procedure for 7-round ARIA-256 is given below. 
Step 1: Choose structures of 2112 plaintexts that they are different at the 14 bytes 

(0,1,2,3,4,5,6,7,8,9,10,12,13,15), and taking all values in the above 14 bytes. Thus, every 
structure can proposes 2112×2112×1/2 = 2223 pairs of plaintexts. 

Step 2: Take 2n structures (2n+112 plaintexts and 2n+223 pairs of plaintexts). We only retain 
the pairs that the corresponding ciphertext pairs are zero difference at the 12 bytes 
(2,3,4,5,7,8,9,10,11,12,13,15). So, about 2n+223 ×2-8×12=2n+127 pairs can be remained. 

Since the guessed round keys in the encryption and decryption can be viewed 
independently, we will get the candidate round keys that belong to table A and table B, 
respectively.  

Step 3: Guess the 112-bit value of K1. 
Step 3.1: For every remaining plaintext pair (P,P*), guess the candidates of (K1,1,K1,4), 

calculate SL1(P⊕K1) ⊕  SL1(P*⊕K1), and check if the values of two bytes (1,4)  are same. If 
yes, remain the plaintext pair. Consider that the probability is 2-8, 2n+127×2-8 = 2n+119 pairs can 
be remained. 

Step 3.2: Similarly, for every remaining pair (P,P*), guess the candidates of (K1,3,K1,6), 
calculate SL1(P⊕K1) ⊕  SL1(P*⊕K1), and check if the values of two bytes (3,6)  are same. If 
yes, remain the plaintext pair. Consider that the probability is 2-8, 2n+119×2-8 = 2n+111 pairs can 
be remained. 
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Step 3.3: Guess the candidates of (K1,9,K1,12), calculate SL1(P⊕K1) ⊕  SL1(P*⊕K1), and 
check if the values of two bytes (9,12)  are same. If yes, remain the plaintext pair. Consider 
that the probability is 2-8, 2n+111×2-8 = 2n+103 pairs can be remained.  

Step 3.4: Guess the candidates of (K1,2,K1,7,K1,8,K1,10,K1,13,K1,15), calculate SL1(P⊕K1) 
⊕  SL1(P*⊕K1), and check if the XOR sum of the six bytes (2,7,8,10,13,15) is zero. If yes, 
remain the plaintext pair. Consider that the probability is 2-8, 2n+103×2-8 = 2n+95 pairs can be 
remained.  

Step 3.5: Guess the candidates of (K1,0,K1,5), calculate the two bytes (0,5) of SL1(P⊕K1) 
⊕  SL1(P*⊕K1). 

Step 3.6: For the remaining pairs, calculate ∆X1
O and check if all of the 10 bytes 

(0,2,3,4,5,7,9,11,12,14) are zero. If yes, remain the pairs. According to proposition 2, the 
probability is 2-32, 2n+95×2-32 = 2n+63 pairs can be remained.  

Step 4: For every remaining pair (P,P*), guess the candidates of (K2,1,K2,6,K2,8,K2,10, 
K2,13,K2,15), calculate SL2(P ⊕ K2) ⊕  SL2(P* ⊕ K2), and check if the values of six bytes 
(1,6,8,10,13,15)  are same. If yes, remain the plaintext pair. Consider that the probability is 
2-8×5, 2n+63×2-8×5=2n+23 pairs can be remained. 

Step 5: In the decryption direction, for every remaining pair (C,C*) after step 2, guess the 
candidates of (K8,0,K8,1,K8,6,K8,14), calculate SL1(C⊕K8) ⊕  SL1(C*⊕ K8), and check if the 
values of four bytes (0,1,6,14)  are same. If yes, remain the plaintext pair. Consider that the 
probability is 2-8×3, 2n+127×2-8×3=2n+103 pairs can be remained. 
 

Complexity analysis:  The data complexity is 2n+112 chosen plaintexts. We mainly 
calculate the time complexity presented in Table 3. Note that one round encryption of ARIA is 
made up of SL, DL, and RKA (DL is omitted in the last round), every encryption of SL, DL, and 
RKA is equal to 1/3 one round encryption.  
 Step 3.1 needs guess 216 candidate keys and only 2 sboxes (total 16 sboxes in SL) are 

involved. Then, its time complexity is 2n+127×216×2×2/16×2/3=1/3×2n+142one round 
encryption. 

 Step 3.2 needs guess 216 candidate keys and only 2 sboxes are involved. Then, its time 
complexity is 216×2n+119×216×2×2/16×2/3=1/3×2n+150 one round encryption. 

 Step 3.3 needs guess 216 candidate keys and only 2 sboxes are involved. Then, its time 
complexity is 232×2n+111×216×2×2/16×2/3 =1/3×2n+158one round encryption. 

 Step 3.4 needs guess 248 candidate keys and only 6 sboxes are involved. Then, its time 
complexity is 248×2n+103×248×2×6/16×2/3 =2n+198one round encryption. 

 Step 3.5 needs guess 216 candidate keys and only 6 sboxes are involved. Then, its time 
complexity is 296×2n+95×216×2×2/16×2/3=1/3×2n+206 one round encryption. 

 Step 3.6 does not need guess any candidate keys and calculate DL encryption of R1. Then, 
its time complexity is 2112×2n+95×2×1/3= 1/3×2n+208one round encryption. 

 Step 4 needs guess 248 candidate keys. Note that the early-abort technique [19] is applied 
in this step. It can be used to reduce the time complexity. Firstly, check whether the two 
bytes (1,6) of ∆X2

S are the same, If yes, go on checking the two bytes (6,8) of ∆X2
S ,and so 

on. Then, its time complexity is  
2112×(2n+63×216+2n+55×224+2n+47×232+2n+39×240+2n+31×248)×2×6/16×2/3 =5×2n+190 

one round encryption. 
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 Step 5 needs guess 232 candidate keys. The early-abort technique is also applied in this 
step. Then, its time complexity is 

(2n+127×216+2n+119×224+2n+111×232) ×2×4/16=3×2n+142 
one round encryption. 
 

Table 3.  Complexity analysis of 7-round impossible differential attack 

Step Guessed round key 
Ngk 
(bit) 

Nmc 
(bit) 

Remaining pairs 
(pair) 

TC 
(one round encryption) 

3.1 K1,1,K1,4 16 8 2n+127-8=2n+119 1/3×2n+142 
3.2 K1,3,K1,6 16 8 2n+119-8=2n+111 1/3×2n+150 
3.3 K1,9,K1,12 16 8 2n+111-8=2n+103 1/3×2n+158 

3.4 
K1,2,K1,7,  
K1,8,K1,10, 
K1,13, K1,15 

48 8 2n+103-8=2n+95 2n+198 

3.5 K1,0,K1,5 16 0 2n+95-0=2n+95 1/3×2n+206 
3.6   32 2n+95-32=2n+63 1/3×2n+208 

4 
K2,1,K2,6, 

 K2,8,K2,10, 
K2,13, K2,15 

48 40 2n+63-40=2n+23 5×2n+190 

5 
K8,0, K8,1, 
 K8,6, K8,14 

32 24 2n+127-24=2n+103 3×2n+142 

Ngk: Number of guessed round key;   
Nmc: Number of the matched condition; 

TC: Time Complexity. 
Combining with the above steps, the time complexity of our attack is  

1/3×2n+142+1/3×2n+150+1/3×2n+158+2n+198+1/3×2n+206+1/3×2n+208+5×2n+190+3×2n+142 ≈  
5/12×2n+208 (one round encryption). 

It is about 1/7×5/12×2n+208≈2n+201.61 7-round encryption of ARIA-256. 
Note that the total number of the matched condition is (8+8+8+8+32+40+24)=128 bits, it 

means that the probability which the random key can be remained through a pair of plaintexts 
(P,P*) is 1-2-128. For the whole 256-bit master key, there exist 192-bit key in our attack. 
Moreover, for the 192-bit key, we can reduce it from 2192 candidates to  

127 1 1192 128 2 192 2 192 1.44 2(2 1) (1 2 ) 2 2 .
n n n

e
+ − −− − − ×− × − ≈ × ≈  

Considering  the candidate keys which are remained after our attack and 256-192=64 bit keys 
which are not involved in our attack, the time complexity for recovering the whole 256-bit 
master key is 

1 1201.61 192 1.44 2 64 201.61 256 1.44 22 2 2 2 2
n nn n− −+ − × + − ×+ × = + (7-round encryption). 

Note that the best result of ARIA-256 known so far is given in [18] which the time  
complexity is 2218 7-round encryptions, thus we need 

1201.61 256 1.44 2 2182 2 2 .
nn −+ − ×+ <  

When we take n=6, the total time complexity for recovering the 256-bit master key is  
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6 16 201.61 256 1.44 2 207.61 210 2102 2 2 +2 2
−+ − ×+ ≈ ≈ (7-round encryption). 

Meanwhile, for the data complexity, 2n+112=26+112=2118 chosen plaintexts are needed for our 
attack, it is only half of the data complexity presented in [18].  

4. Conclusion 
With the new 4-round impossible differential constructed in this paper, we gave the 7-round 
impossible differential attack on ARIA-256. Different from the previous impossible 
differential attacks on ARIA-256, we carefully chose the threshold value of the probability 
that the random key can be remained through some pairs of plaintexts. By this method, the 
complexity of our attack can be improved than the previous known results. Specifically, the 
data complexity is 2118 which is only half of the known best one, while the time complexity is 
2210 which is reduced by 28 times compared with the known best one. 
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