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  Abstract 
 

LBlock-s is the core block cipher of authentication encryption algorithm LAC, which uses 
the same structure of LBlock and an improved key schedule algorithm with better diffusion 
property. Using the differential properties of the key schedule algorithm and the 
cryptanalytic technique which combines impossible boomerang attacks with related-key 
attacks, a 15-round related-key impossible boomerang distinguisher is constructed for the 
first time. Based on the distinguisher, an attack on 22-round LBlock-s is proposed by adding 
4 rounds on the top and 3 rounds at the bottom. The time complexity is about only 268.76 
22-round encryptions and the data complexity is about  258 chosen plaintexts. Compared 
with published cryptanalysis results on LBlock-s, there has been a sharp decrease in time 
complexity and an ideal data complexity.  
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1. Introduction 

With the rapid development of electronic information technology and the widespread 

application of technologies such as RFID (Radio Frequency Identification), traditional block 
ciphers are not suitable for resource constrained environments. Therefore, lightweight block 
ciphers which are designed with a trade-off between the security and hardware performance 
for resource constrained environments have become a hot topic. 
As the kernel block cipher of LAC submitted to CAESAR competition [1], LBlock-s is an 
improved version of LBlock [2] which is proposed by Wu et al. in ACNS 2011. Similar to 
LBlock, it uses a variant of Feistel structure and consists of 32 rounds. The block length and 
the key length are 64-bit and 80-bit, respectively. What LBlock-s differs from LBlock is that 
LBlock-s employs an improved key schedule algorithm with a faster diffusion speed and 
replaces 10 different S-boxes in LBlock with 10 identical S-boxes to reduce hardware and 
software costs. In terms of security, Shan et al. [3] showed that there were at least 32 active 
boxes in the 32-round related-key differential characteristic, that is, the probability must not 
be higher than 2−64, and they gave a 10-round and an 11-round related-key differential 
characteristics. Xiao [4] used differential cryptanalysis to give a 16-round differential path. 
Li et al. [5] mounted a 23-round attack on LBlock-s with improved multidimensional 
zero-correlation linear cryptanalysis. Using the 14-round impossible differential 
characteristic of LBlock which was given by the designers of LBlock, Jia [6] carried out a 
21-round attack on LBlock-s. They gave the results on 22-round and 23-round attacks 
without the detailed analysis. And the results showed that the time complexity of 22-round 
attack was 278.86 22-round encryptions, which is close to the one in exhaustive search and 
much higher than the corresponding attack result in this paper. 
Related-key cryptanalysis was independently introduced by Knudsen [7] and Biham [8] 
respectively. The basic idea of the technique is that the attackers find weaknesses of the key 
schedule algorithm to choose appropriate relation between keys and then predict the 
encryptions under these keys. Impossible differential cryptanalysis was proposed by 
Knudsen [9] and further by Biham against Skipjack [10], in which the attackers try to find a 
differential characteristic with a probability of 0 to eliminate the wrong keys and then to 
recover the correct key. Related-key cryptanalysis and impossible differential cryptanalysis 
are both very powerful techniques for analyzing the security of a wide variety of block 
ciphers, and there are many satisfactory attack results on a lot of block ciphers such as 
Hummingbird-2, TEA, LBlock , MIBS and so on [11-17]. Boomerang cryptanalysis was 
presented by Wagner in 1999 [18], which is a variant of differential cryptanalysis. The basic 
idea of boomerang cryptanalysis is to use short differential characteristics with relatively 
large probabilities to form long differential characteristics with high probability. Related-key 
impossible boomerang cryptanalysis [19] is obtained by using these three attacks in 
combination. Until now, many satisfying analysis results are obtained on AES and LBlock by 
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using this cryptanalytic technique [19-20]. 
In this paper, we study the security of LBlock-s from the aspect of related-key impossible 
boomerang cryptanalysis for the first time. Through analyzing the property of round function 
and key schedule function of LBlock-s, a 15-round related-key impossible boomerang 
distinguisher is carried out, and we get a 22-round related-key impossible boomerang 
characteristic to recover 68-bit key with time complexity of 268.76  and 258  chosen 
plaintexts. Up to now, this is the best attack result on 22-round LBlock-s. 
Outline. In Section 2, a description of LBlock-s and some notations used in this paper are 
given. In Section 3, we study the related-key impossible boomerang cryptanalysis. In Section 
4, a 15-round related-key impossible boomerang distinguisher and attack on 22-round 
LBlock-s are described, followed by conclusion in Section 5. 

2. Description of LBlock-s 

2.1 Notations 

The following notations are used in this paper. 
P, C: the 64-bit plaintext and the 64-bit ciphertext; 
𝐾𝐾,  ∆𝐾𝐾: the 80-bit master key and the difference of K; 
𝐾𝐾𝑖𝑖, ∆𝐾𝐾𝑖𝑖: the i-th round subkey and the difference of 𝐾𝐾𝑖𝑖; 

𝐾𝐾𝑖𝑖
𝑗𝑗, ∆𝐾𝐾𝑖𝑖

𝑗𝑗: the j-th nibble of 𝐾𝐾𝑖𝑖 and the j-th nibble of ∆𝐾𝐾𝑖𝑖; 

𝑋𝑋𝑖𝑖, ∆X𝑖𝑖: the left half of the i-th round input and the difference of 𝑋𝑋𝑖𝑖; 
𝑋𝑋0: the right half of the first round input; 

𝑋𝑋𝑖𝑖
𝑗𝑗, ∆𝑋𝑋𝑖𝑖

𝑗𝑗: the j-th nibble of 𝑋𝑋𝑖𝑖 and the j-th nibble of ∆X𝑖𝑖; 

𝑋𝑋𝑖𝑖||𝑋𝑋𝑗𝑗: the concatenation of 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑗𝑗; 
X<<< i: a left rotation of X by i bits; 
X>>> i: a right rotation of X by i bits; 
[𝑖𝑖]2: the binary form of an integer i. 

2.2 Overview of LBlock-s 

LBlock-s is an improved version of LBlock with a variant of Feistel structure. It consists of 
32-round iterative, with the block length 64-bit and the master key length 80-bit. The 
encryption procedure is as follows, and the general structure is illustrated in Fig. 1. 

1. Input P = 𝑋𝑋1||𝑋𝑋0; 
2. For 𝑖𝑖 = 2,3,⋯33, do the following calculation: 

𝑋𝑋𝑖𝑖 = 𝐹𝐹(𝑋𝑋𝑖𝑖−1,𝐾𝐾𝑖𝑖−1) ⊕ (𝑋𝑋𝑖𝑖−2 <<< 8); 
3. Output C = 𝑋𝑋33||𝑋𝑋32; 
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Fig. 1. Structure of LBlock-s 
 
The round function F is defined as 𝐹𝐹(𝑋𝑋𝑖𝑖 ,𝐾𝐾𝑖𝑖) = 𝑃𝑃(𝑆𝑆(𝑋𝑋𝑖𝑖⨁𝐾𝐾𝑖𝑖)) (see Fig. 2), which includes 
three basic functions: key-addition layer, nonlinear transformation and linear diffusion 
function. The confusion function S includes 8 identical 4-bit S-boxes in parallel which is the 
first S-box used in LBlock (see Table 1, in hexadecimal notation), and the function P is a 
4-bit word-wise permutation illustrated in Fig. 2 in detail. 

⊕

S S S S S S S S

iK

X

 
Fig. 2. Round function F 

 
Table 1. Contents of the S-box 

i 0 1 2 3 4 5 6 7 8 9 A B C D E F 
S(i) E 9 F 0 D 4 A B 1 2 8 3 7 6 C 5 

 
The decryption algorithm of LBlock-s is the inverse of the encryption algorithm. Thus, here 
is only a brief description: Let C = 𝑋𝑋32||𝑋𝑋33 denote the ciphertext. For 𝑖𝑖 = 31,30,⋯1,0, 
do the calculation: 𝑋𝑋𝑖𝑖 = 𝐹𝐹(𝑋𝑋𝑖𝑖+1,𝐾𝐾𝑖𝑖+1) ⊕ (𝑋𝑋𝑖𝑖+2 >>> 8). Finally, output P = 𝑋𝑋1||𝑋𝑋0  as 
the plaintext. 

2.3 Key Schedule Algorithm 

LBlock-s uses an improved key schedule algorithm with better diffusion property against 
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biclique cryptanalysis. The key schedule of LBlock-s updates 16 bits each time, and these 
updated bits are affected by 32 bits of the key register. In contrast, the original key schedule 
only updates 13 bits based on 13 bits of the key register. The master key 
𝐾𝐾 = (𝑘𝑘79𝑘𝑘78 ⋯𝑘𝑘1𝑘𝑘0) is stored in the key register. Output the leftmost 32 bits as the subkey 
𝐾𝐾1. For 𝑖𝑖 = 1,2,⋯ ,31, update the key register as follows: 
1. 𝐾𝐾 <<< 24； 
2. [𝑘𝑘55𝑘𝑘54𝑘𝑘53𝑘𝑘52] = 𝑆𝑆[𝑘𝑘79𝑘𝑘78𝑘𝑘77𝑘𝑘76] ⊕ [𝑘𝑘55𝑘𝑘54𝑘𝑘53𝑘𝑘52]， 

[𝑘𝑘31𝑘𝑘30𝑘𝑘29𝑘𝑘28] =  𝑆𝑆[𝑘𝑘75𝑘𝑘74𝑘𝑘73𝑘𝑘72]⊕ [𝑘𝑘31𝑘𝑘30𝑘𝑘29𝑘𝑘28]， 
[𝑘𝑘67𝑘𝑘66𝑘𝑘65𝑘𝑘64] = [𝑘𝑘71𝑘𝑘70𝑘𝑘69𝑘𝑘68] ⊕ [𝑘𝑘67𝑘𝑘66𝑘𝑘65𝑘𝑘64]， 
[𝑘𝑘51𝑘𝑘50𝑘𝑘49𝑘𝑘48] = [𝑘𝑘11𝑘𝑘10𝑘𝑘9𝑘𝑘8]⊕ [𝑘𝑘51𝑘𝑘50𝑘𝑘49𝑘𝑘48]； 

3. [𝑘𝑘54𝑘𝑘53𝑘𝑘52𝑘𝑘51𝑘𝑘50] = [𝑘𝑘54𝑘𝑘53𝑘𝑘52𝑘𝑘51𝑘𝑘50]⊕ [𝑖𝑖]2； 
4. Output the leftmost 32-bit of the register K as round subkey 𝐾𝐾𝑖𝑖+1. 
Where the S-box is the same as the S-box used in encryption algorithm.  

3. The Related-key Impossible Boomerang Cryptanalysis 

Related-key impossible boomerang cryptanalysis involves related-key cryptanalysis, 
impossible differential cryptanalysis and boomerang cryptanalysis. As depicted in Fig. 3, this 
technique treats a cipher E as two sub-ciphers 𝐸𝐸0 and 𝐸𝐸1, namely 𝐸𝐸 = 𝐸𝐸0 ∘ 𝐸𝐸1. Typically, 
each sub-cipher consists of two related-key differential characteristics with probability 1. 
They are shown as following: 

 ∆𝛼𝛼 → ∆𝛽𝛽 is the first related-key differential characteristic for 𝐸𝐸0; 
 ∆𝛼𝛼′ → ∆𝛽𝛽′ is the second related-key differential characteristic for 𝐸𝐸0; 
 ∆𝛿𝛿 → ∆𝛾𝛾  is the first related-key differential characteristic for 𝐸𝐸1−1; 
 ∆𝛿𝛿′ → ∆𝛾𝛾′ is the second related-key differential characteristic for 𝐸𝐸1−1, 

where 𝛼𝛼,𝛼𝛼′,𝛽𝛽,𝛽𝛽′,𝛿𝛿, 𝛿𝛿′,𝛾𝛾 and 𝛾𝛾′ are n-bit blocks. The corresponding keys used in the four 
characteristics are 𝐾𝐾𝐴𝐴,𝐾𝐾𝐵𝐵,𝐾𝐾𝐶𝐶  and 𝐾𝐾𝐷𝐷 . When 𝛽𝛽,𝛽𝛽′,𝛾𝛾  and 𝛾𝛾′  meet the condition 
𝛽𝛽⨁𝛽𝛽′⨁𝛾𝛾⨁𝛾𝛾′ ≠ 0, a related-key impossible boomerang distinguisher is constructed. Then 
an attack could be mounted by adding rounds at the top and at the bottom. Using the 
extended parts to guess the keys, we can eliminate the keys which satisfy the whole 
characteristics until only the correct key is left. 
Related-key impossible boomerang cryptanalysis takes full advantage of the three 
cryptanalysis methods. In this attack, instead of using a single key differential characteristic 
with a large probability for E, attackers need to find four key differential characteristics and 
the master key differences are 𝐾𝐾𝐴𝐴 ⊕𝐾𝐾𝐵𝐵 = ∆𝐾𝐾𝛼𝛼, 𝐾𝐾𝐶𝐶 ⊕𝐾𝐾𝐷𝐷 = ∆𝐾𝐾𝛼𝛼′ and 𝐾𝐾𝐴𝐴 ⊕𝐾𝐾𝐶𝐶 = ∆𝐾𝐾𝛽𝛽, 
𝐾𝐾𝐵𝐵 ⊕𝐾𝐾𝐷𝐷 = ∆𝐾𝐾𝛽𝛽′ for 𝐸𝐸0 and 𝐸𝐸1 respectively, which are not necessarily related. In other 
words, for any possible key difference selected for 𝐸𝐸0, the various key differences for 𝐸𝐸1 
can be chosen. Thus related-key impossible boomerang cryptanalysis is more conducive to 
find related-key differential characteristics for ciphers with key schedule algorithm with 
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better diffusion property, compared with the related-key impossible differential 
cryptanalysis.  
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Fig. 3. Related-key impossible boomerang distinguisher 

4. Related-key Impossible Boomerang Cryptanalysis on LBlock-s 

This section describes the related-key impossible boomerang attack on LBlock-s in detail. In 
the rest of the paper, “*” is used to denote a non-zero 4-bit nibble whereas “?” is used to 
denote a 4-bit nibble that can assume any value. By analyzing the structure and round 
function of LBlock-s, we take a 15-round related-key impossible boomerang distinguisher: 
((00000000,00000000),(00000000,00000000))↛((00000*00,00000000),(*0000000,0000000
0)) with the key differences ∆𝐾𝐾𝛼𝛼 = ∆𝐾𝐾𝛼𝛼′ = (11000000000000000000) and ∆𝐾𝐾𝛽𝛽 =  ∆𝐾𝐾𝛽𝛽′ =
 (00000000000000000000). By extending 4 rounds at the top and 3 rounds at the bottom of 
this distinguisher, an attack on 22-round LBlock-s is achieved. 

4.1 15-round related-key impossible boomerang distinguisher  

Through an in-depth study on the key schedule algorithm of LBlock-s, we found that if there 
is no non-zero difference passing through S-boxes, two zero key differences followed one 
non-zero key difference will appear for some master key differences. To decrease the number 
of active S-boxes, we select the key differences ∆𝐾𝐾𝛼𝛼 = ∆𝐾𝐾𝛼𝛼′ = (110000000000 00000000) 
to construct low-weight key differential characteristics. Subkey differences for round 1 to 13 
generated by ∆𝐾𝐾𝛼𝛼 are shown in Table 2. Since the key schedule algorithm has a faster 
diffusion, we choose the other key differences ∆𝐾𝐾𝛽𝛽 = ∆𝐾𝐾𝛽𝛽′ = (000000000000 00000000) to 
increase the number of rounds for the attack. That is, we construct a related-key impossible 
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boomerang distinguisher such that 𝐾𝐾𝐴𝐴 = 𝐾𝐾𝐶𝐶  and 𝐾𝐾𝐵𝐵 = 𝐾𝐾𝐷𝐷 , which means that the 
distinguisher involves two keys. 
 

Table 2. Subkey differences for round 1 to 13  

∆𝐾𝐾𝛼𝛼  11000000000000000000 

∆𝐾𝐾1 11000000 
∆𝐾𝐾2 00000000 
∆𝐾𝐾3 00000000 
∆𝐾𝐾4 00100000 
∆𝐾𝐾5 00000000 
∆𝐾𝐾6 00000000 
∆𝐾𝐾7 00001000 
∆𝐾𝐾8 00000000 
∆𝐾𝐾9 00000000 
∆𝐾𝐾10 00000010 
∆𝐾𝐾11 100000*0 
∆𝐾𝐾12 *00000*0 
∆𝐾𝐾13 *00000*0 

 
Combined with the selected key differences, we carefully choose the input differences and 
output differences. Let the input differences of ∆𝛼𝛼 → ∆𝛽𝛽 and ∆𝛼𝛼′ → ∆𝛽𝛽′ for 𝐸𝐸0 be both 
(00000000,00000000), then non-zero difference diffusion will not happen in the fifth and 
sixth round. While letting the first output difference for 𝐸𝐸1 be (00000*00,00000000), and 
the second output difference for 𝐸𝐸1 be (*0000000,00000000), then the positions of some 
non-zero nibbles for the related-key differential characteristic ∆𝛿𝛿 → ∆𝛾𝛾 will be the same as 
that for the other related-key differential characteristics ∆𝛿𝛿′ → ∆𝛾𝛾′ in the same round, 
which makes more quartets be filtered in each step for subkey-recovery. 
In this attack, E denotes the 15-round related-key impossible boomerang distinguisher of 
LBlock-s, 𝐸𝐸0 denotes round 5 to 13, and 𝐸𝐸1 denotes round 14 to 19.  
Theorem 1. Let the two related-key differential characteristics ∆𝛼𝛼 → ∆𝛽𝛽 and ∆𝛼𝛼′ → ∆𝛽𝛽′ 
for 𝐸𝐸0  be both (00000000,00000000)→ (????????,0*????*?) with the key differences 
∆𝐾𝐾𝛼𝛼 = ∆𝐾𝐾𝛼𝛼′ = (11000000000000000000), the first related-key differential characteristic 
∆𝛿𝛿 → ∆𝛾𝛾 for 𝐸𝐸1−1 be (00000*00,00000000)→(0***0*0*,0**?****) with the key difference 
∆𝐾𝐾𝛽𝛽 = (00000000000000000000), and the second related-key differential characteristic 
∆𝛿𝛿′ → ∆𝛾𝛾′  for 𝐸𝐸1−1  be (*0000000,00000000) → (*0*0*0**,*?****0*0) with the key 
difference ∆𝐾𝐾𝛽𝛽′ = (00000000000000000000). Then the four differential characteristics 
constitute a 15-round related-key impossible boomerang distinguisher for LBlock-s. 
The detailed related-key differential characteristics for 𝐸𝐸0 and 𝐸𝐸1−1 are shown in Table 3 
and Table 4 respectively. 
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Proof. From the direction of encryption, ∆𝑋𝑋137  in ∆𝛼𝛼 → ∆𝛽𝛽 and ∆𝛼𝛼′ → ∆𝛽𝛽′ are both 0. As 
for the direction of decryption, ∆𝑋𝑋137  in the first related-key differential ∆𝛿𝛿 → ∆𝛾𝛾 is 0, but 
in the second related-key differential ∆𝛿𝛿′ → ∆𝛾𝛾′is *. Obviously, 0⨁0⨁0⨁*=*, which is 
not equal to 0. Thus, there is a conflict when these four related-key differential 
characteristics meet in the middle, which satisfy the principle of related-key impossible 
boomerang cryptanalysis.  

 
Table 3. Related-key differential characteristic for 𝐸𝐸0 

Round ∆𝑿𝑿𝒊𝒊 ∆𝑿𝑿𝒊𝒊−𝟏𝟏 ∆𝑲𝑲𝒊𝒊 

5 00000000 00000000 00000000 
6 00000000 00000000 00000000 
7 00000000 00000000 00001000 
8 000000*0 00000000 00000000 
9 0000000* 000000*0 00000000 
10 0000**00 0000000* 00000010 
11 0000**** 0000**00 100000*0 
12 00?****? 0000**** *00000*0 
13 0*????*? 00?****? *00000*0 
14 ???????? 0*????*? 00000000 

 
Table 4. Related-key differential characteristic for 𝐸𝐸1−1 when ∆𝑋𝑋202 = * and ∆𝑋𝑋207 = * 

Round 
∆𝑿𝑿𝟐𝟐𝟐𝟐𝟐𝟐 = *  ∆𝑿𝑿𝟐𝟐𝟐𝟐𝟕𝟕 = *  

∆𝑿𝑿𝒊𝒊 ∆𝑿𝑿𝒊𝒊−𝟏𝟏 ∆𝑲𝑲𝒊𝒊−𝟏𝟏 ∆𝑿𝑿𝒊𝒊 ∆𝑿𝑿𝒊𝒊−𝟏𝟏 ∆𝑲𝑲𝒊𝒊−𝟏𝟏 

20 00000*00 00000000 00000000 *0000000 00000000 00000000 

19 00000000 0000000* 00000000 00000000 00*00000 00000000 

18 0000000* 0000000* 00000000 00*00000 00000*00 00000000 

17 0000000* 0*00000* 00000000 00000*00 0000*0*0 00000000 

16 0*00000* 0**0000* 00000000 0000*0*0 **00000* 00000000 

15 0**0000* 0***0*0* 00000000 **00000* *0*0*0** 00000000 

14 0***0*0* 0**?**** *00000*0 *0*0*0** *?****0* *00000*0 

 
Therefore, the four related-key differential characteristics described above constitute an 
15-round related-key impossible boomerang distinguisher for LBlock-s: ((00000000,0000 
0000),(00000000,00000000))↛((00000*00,00000000),(*0000000,00000000)) with the key 
differences ∆𝐾𝐾𝛼𝛼 = ∆𝐾𝐾𝛼𝛼′ = (11000000000000000000) and ∆𝐾𝐾𝛽𝛽 = ∆𝐾𝐾𝛽𝛽′ = (00000 
000000000000000). 
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4.2 Related-key impossible boomerang attacks on 22-round LBlock-s 

An attack on 22-round LBlock-s is achieved by adding 4 rounds at the top and 3 rounds at 
the bottom of the distinguisher described above. The extended differential characteristics are 
shown in Fig. 4 and Fig. 5. Since the two related-key differential characteristics for 𝐸𝐸0 are 
chosen to be the same, the input differences of the two characteristics are both given as 
(∆𝑋𝑋1,∆𝑋𝑋0) = (0*00000*,*0?0*00*). The attack procedure can be elaborated as follows. 

F

<<<8

⊕

F

<<< 8

F

<<<8

F

8

000000*0 

00000*00

00000000

*0?0*00*

<<<

0*00000*

00000000

11000000

00100000

00000000

⊕

⊕

⊕

00000000

D
ec

ry
pt

io
n

1XD = 0XD =
1KD =

2KD = 0*00000*1XD =2XD =

000000*0 2XD =3XD =

00000*003XD =
4XD =

5XD = 000000004XD =

3KD =

4KD =

 
Fig. 4. 4 rounds added at the top of the distinguisher
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Fig. 5. 3 rounds added at the bottom of the distinguisher  
 

Step 1. Select a set of 224 plaintexts to produce a structure, where the nibbles 𝑋𝑋00, 𝑋𝑋03, 𝑋𝑋05, 
𝑋𝑋07, 𝑋𝑋10 and  𝑋𝑋16 take all possible values of 𝔽𝔽24 and the other nibbles take constants. Thus 
each structure contains 224 × 224 × 1 2⁄ = 247  plaintext pairs. Choose 2𝑛𝑛  structures 
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described above, there will be 2𝑛𝑛 × 247 = 2𝑛𝑛+46.1  plaintext pairs denoted as ( P, P∗). 
Similarly, choose 2𝑛𝑛  more structures which contain 2𝑛𝑛+47  plaintext pairs denoted as 
( P′, P′∗) . Then 22𝑛𝑛+94  plaintext quartets ((P, P∗) , (P′, P′∗)) are constructed. We take 
2𝑛𝑛+1 structures, so there are 22𝑛𝑛+94 plaintext quartets in total. 
Step 2. Encrypt these plaintext quartets for 22 rounds with keys 𝐾𝐾𝐴𝐴，𝐾𝐾𝐵𝐵，𝐾𝐾𝐶𝐶 and 𝐾𝐾𝐷𝐷 to 
obtain the corresponding ciphertext quartets denoted as ((C, C∗ ), (C′, C′∗)). Then filter the 
ciphertext quartets by checking if the differences of ciphertext quartets are ((0**0 
000*,000*00*0), (**00000*,000*00*0)). 
Then, the number of remaining ciphertext quartets is 22𝑛𝑛+94 × 2−4×22 = 22𝑛𝑛+6. 
Step 3. Guess the subkey 𝐾𝐾221  and 𝐾𝐾224 .  
(a) Partially decrypt C and C′  of the remaining quartets for one round and filter the 

quartets by the equation 
𝑆𝑆(𝑋𝑋221 ⨁𝐾𝐾221 )⨁𝑆𝑆(𝑋𝑋221 ⨁𝐾𝐾221 ⊕ ∆𝑋𝑋221 ) = ∆𝑋𝑋230 . 

Do the same operation on C∗ and C′∗ with the subkey 𝐾𝐾221 ⨁∆𝐾𝐾221 . 
(b) For the remaining ciphertext quartets, then partially decrypt C and C′ for one round and 

filter the quartets by the equation 
𝑆𝑆(𝑋𝑋224 ⨁𝐾𝐾224 )⨁𝑆𝑆(𝑋𝑋224 ⨁𝐾𝐾224 ⨁∆𝑋𝑋224 ) = ∆𝑋𝑋236 . 

Do the same operation on C∗ and C′∗ with the subkey 𝐾𝐾224 ⨁∆𝐾𝐾224 . 
Thus there remain about 22𝑛𝑛+6 × 2−4×4 = 22𝑛𝑛−10 quartets, and the time complexity is 
(22𝑛𝑛+6 × 24 + 22𝑛𝑛−2 × 28) × 1 8⁄ × 1 22⁄ ≈ 22𝑛𝑛+2.63  
Step 4. Guess the subkey 𝐾𝐾10, 𝐾𝐾16 and 𝐾𝐾17. 
(a) Partially encrypt P and P∗ of the remaining quartets for one round and filter the 

quartets by the equation  
𝑆𝑆(𝑋𝑋10⨁𝐾𝐾10)⨁𝑆𝑆(𝑋𝑋10⨁𝐾𝐾10⨁∆𝑋𝑋10⨁∆𝐾𝐾10) = ∆𝑋𝑋00. 

Do the same operation on P′ and P′∗ with the same subkey. 
(b) For the remaining quartets, partially encrypt P and P∗ for one round and filter the 

quartets by the equation  
𝑆𝑆(𝑋𝑋16⨁𝐾𝐾16)⨁𝑆𝑆(𝑋𝑋16⨁𝐾𝐾16⨁∆𝑋𝑋16⨁∆𝐾𝐾16) = ∆𝑋𝑋05. 

Do the same operation on P′ and P′∗ with the same subkey. 
(c) Then partially encrypt P and P∗ of the remaining plaintext quartets for one round and 

filter the quartets by the equation 
𝑆𝑆(𝑋𝑋17⨁𝐾𝐾17)⨁𝑆𝑆(𝑋𝑋17⨁𝐾𝐾17⨁∆𝑋𝑋17⨁∆𝐾𝐾17) = ∆𝑋𝑋03. 

Do the same operation on P′ and P′∗ with the same subkey. 
Thus, there remain about 22𝑛𝑛−10 × 2−4×6 = 22𝑛𝑛−34 quartets, and the time complexity is 
(22𝑛𝑛−10 × 212 + 22𝑛𝑛−18 × 216 + 22𝑛𝑛−26 × 220) × 1 8⁄ × 1 22⁄ ≈ 22𝑛𝑛−5.37. 
Step 5. Guess the subkey 𝐾𝐾21 and 𝐾𝐾13.  
Partially encrypt P and P∗ of remaining plaintext quartets for two rounds and filter the 
quartets by the equation 

𝑆𝑆(𝑋𝑋21⨁𝐾𝐾21)⨁𝑆𝑆(𝑋𝑋21⨁𝐾𝐾21⨁∆𝑋𝑋21⨁∆𝐾𝐾21) = ∆𝑋𝑋16, 
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where 𝑋𝑋21 = 𝑆𝑆(𝐾𝐾13 ⊕ 𝑋𝑋13) ⊕𝑋𝑋07. 
Do the same operation on P′ and P′∗ with the same subkey.  
Thus there are about 22𝑛𝑛−34 × 2−4×2 = 22𝑛𝑛−42  remaining quartets, and the time 
complexity is 22𝑛𝑛−34 × 228 × 2 8⁄ × 1 22⁄ ≈ 22𝑛𝑛−12.46. 
Step 6. Guess the subkey 𝐾𝐾32, 𝐾𝐾20 and 𝐾𝐾11. 
Partially encrypt P and P∗ of the remaining plaintext quartets for three rounds and filter 
the quartets by the equation 

𝑆𝑆(𝑋𝑋32⨁𝐾𝐾32)⨁𝑆𝑆(𝑋𝑋32⨁𝐾𝐾32⨁∆𝑋𝑋32⨁∆𝐾𝐾32) = ∆𝑋𝑋21, 
where 𝑋𝑋32 =  𝑆𝑆(𝐾𝐾20⨁  𝑋𝑋20)⨁𝑋𝑋10 and 𝑋𝑋20 = 𝑆𝑆(𝐾𝐾11⨁𝑋𝑋11)⨁𝑋𝑋06. 
Do the same operation on P′ and P′∗ with the same subkey.  
Thus, there are about 22𝑛𝑛−42 × 2−4×2 = 22𝑛𝑛−50  remaining quartets, and the time 
complexity is 22𝑛𝑛−42 × 240 × 3 8⁄ × 1 22⁄ ≈ 22𝑛𝑛−7.88. 
Step 7. Guess the subkey 𝐾𝐾213 , 𝐾𝐾227 , 𝐾𝐾215  and 𝐾𝐾226 . 
(a) Partially decrypt C and C′ of the remaining quartets for two rounds and filter the 

quartets by the equation 
𝑆𝑆(𝑋𝑋213 ⨁𝐾𝐾213 )⨁𝑆𝑆(𝑋𝑋213 ⨁𝐾𝐾213 ⨁∆𝑋𝑋213 ) = ∆𝑋𝑋221 ,  

where 𝑋𝑋213 = 𝑆𝑆(𝐾𝐾227 ⨁𝑋𝑋227 )⨁𝑋𝑋235 . 
(b) Then partially decrypt C∗ and C′∗ of the remaining quartets for two rounds and filter 

the quartets by the equation 
𝑆𝑆�𝑋𝑋215 ⨁𝐾𝐾215 ⨁∆𝐾𝐾215 �⨁𝑆𝑆�𝑋𝑋215 ⨁𝐾𝐾215 ⨁∆𝐾𝐾215 ⨁∆𝑋𝑋215 � = ∆𝑋𝑋224 , 

where 𝑋𝑋215 = 𝑆𝑆(𝐾𝐾226 ⨁∆𝐾𝐾226 ⨁𝑋𝑋226 )⨁𝑋𝑋237 . 
Thus there are about 22𝑛𝑛−50 × 2−4×2 = 22𝑛𝑛−58  remaining quartets, and the time 
complexity is (22𝑛𝑛−50 × 248 + 22𝑛𝑛−54 × 256) × 2 8⁄ × 1 22⁄ ≈ 22𝑛𝑛−4.37. 
Step 8. Guess the subkey 𝐾𝐾202 , 𝐾𝐾215 , 𝐾𝐾226 , 𝐾𝐾207 、𝐾𝐾213  and 𝐾𝐾227 . Since the subkey 𝐾𝐾215 , 𝐾𝐾226 , 
𝐾𝐾213  and 𝐾𝐾227  have been guessed, thus just need guess the remaining 8-bit key. 
(a) Partially decrypt C and C′ of the remaining quartets for three rounds and filter the 

quartets by the equation 
𝑆𝑆(𝑋𝑋202 ⨁𝐾𝐾202 )⨁𝑆𝑆(𝑋𝑋202 ⨁𝐾𝐾202 ⨁∆𝑋𝑋202 ) = ∆𝑋𝑋213 , 

where 𝑋𝑋202 = 𝑆𝑆(𝐾𝐾215 ⨁𝑋𝑋215 )⨁𝑋𝑋224  and 𝑋𝑋215 = 𝑆𝑆(𝐾𝐾226 ⨁𝑋𝑋226 )⨁𝑋𝑋237 . 
(b) Then partially decrypt C∗ and C′∗ of the remaining quartets for three rounds and filter 

the quartets by the equation 
𝑆𝑆(𝑋𝑋207 ⨁𝐾𝐾207 ⨁∆𝐾𝐾207 )⨁𝑆𝑆(𝑋𝑋207 ⨁𝐾𝐾207 ⨁∆𝐾𝐾207 ⨁∆𝑋𝑋207 ) = ∆𝑋𝑋215 , 

where 𝑋𝑋207 = 𝑆𝑆(𝐾𝐾213 ⨁∆𝐾𝐾213 ⨁𝑋𝑋213 )⨁𝑋𝑋221  and 𝑋𝑋213 = 𝑆𝑆(𝐾𝐾227 ⨁∆𝐾𝐾227 ⨁𝑋𝑋227 )⨁𝑋𝑋235 . 
Thus there are about 22𝑛𝑛−58 × 2−4×2 = 22𝑛𝑛−66  remaining quartets, and the time 
complexity is (22𝑛𝑛−58 × 260 + 22𝑛𝑛−62 × 264) × 3 8⁄ × 1 22⁄ ≈ 22𝑛𝑛−2.88 . 
Step 9. Guess the nibble 𝑋𝑋45 to determine the subkey 𝐾𝐾45. Since there are 24 possible 
values for 𝑋𝑋45  in 𝔽𝔽24 , there are 24 × 24 = 28  possible values for 𝑋𝑋45  in this attack. 
Partially encrypt the remaining quartets for four rounds, and keep only the quartets that 
satisfy the condition 𝐹𝐹�∆𝑋𝑋45⨁∆𝐾𝐾45�⨁∆𝑋𝑋32 = 0. According to the difference distribution 
table of the S-boxes, the equation above holds with probability of 1 6⁄ , so 22𝑛𝑛−66 × 28 ×
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1 6⁄ ≈ 22𝑛𝑛−60.58 quartets will be remained. The time complexity is 22𝑛𝑛−66 × 28 × 264 ×
1 8⁄ × 1 22⁄ ≈ 22𝑛𝑛−1.46.  
If there still quartets left after filtering, it shows that these subkeys being guessed satisfy the 
related-key impossible boomerang distinguisher, so these subkeys need to be removed and  
other candidate subkeys should be tried. 
If we choose 234 structures, that is, n = 33, the time complexity of this attack is about 
22𝑛𝑛+2.63 + 22𝑛𝑛−5.37 + 22𝑛𝑛−12.46 + 22𝑛𝑛−7.88 + 22𝑛𝑛−4.37 + 22𝑛𝑛−2.88 + 22𝑛𝑛−1.46 = 22𝑛𝑛+2.76  
= 268.76 22-round encryptions and the data complexity is 2𝑛𝑛+1+24 = 258 chosen plaintexts. 
Table 5 shows summary of the number of bits guessed in steps 3-9. 
 

Table 5. The number of bits guessed in steps 3-9 

Step Subkey 
The number of 

guessed bits 
The remaining 

pairs 
The time 

complexity 

3 𝐾𝐾221 ,𝐾𝐾224  8 256 268.63 

4 𝐾𝐾10,𝐾𝐾16,𝐾𝐾17 12 232 260.63 

5 𝐾𝐾21,𝐾𝐾13 8 224 253.54 

6 𝐾𝐾32,𝐾𝐾20,𝐾𝐾11 12 216 258.12 

7 𝐾𝐾213 ,𝐾𝐾227 ,𝐾𝐾215 ,𝐾𝐾226  16 28 261.63 

8 𝐾𝐾202 ,𝐾𝐾215 ,𝐾𝐾226 ,𝐾𝐾207 ,𝐾𝐾213 ,𝐾𝐾227  8 20 263.12 

9 𝐾𝐾45 4 25.42 264.54 

5. Conclusions 

Table 6. Summary of attacks on LBlock-s 
Attack Type Rounds Time Data Reference 

multidimensional zero-correlation linear 23 273.75 262.3 [5] 

impossible differential 21 267.71 263 [6] 

impossible differential 22 278.86 258 [6] 

related-key impossible boomerang 22 268.76 258 this paper 

 
This paper presents a 15-round related-key impossible boomerang distinguisher for the first 
time, based on which we attack on 22-round LBlock-s by combining the advantages of the 
related-key impossible boomerang attack with the weaknesses of the structure of encryption 
and key schedule algorithm. Analysis results indicate this attack only needs 268.76 
encryptions and 258 chosen plaintexts. And there are 68 key bits recovered in this attack. 
Table 6 shows summary of attack results on LBlock-s. Compared with the impossible 
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differential attack on 22-round LBlock-s in [6], the complexity of the attack on 22-round 
LBlock-s proposed in this paper presents a substantial reduction. And this is the first time to 
apply related-key impossible boomerang attack on LBlock-s. Thus, our research on LBlock-s 
could provide some suggestions for the design of lightweight block ciphers and the 
improvement of key schedule algorithms. For the future work, we will improve the 
characteristics search algorithm to achieve higher rounds attacks on LBlock-s and other 
block ciphers, and evaluate the security of the LAC. 
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