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Abstract 
 

This paper proposes a novel method for locating objects in real space from a single remote 
image and measuring actual distances between them by automatic detection and perspective 
transformation. The dimensions of the real space are known in advance. First, the corner 
points of the interested region are detected from an image using deep learning. Then, based on 
the corner points, the region of interest (ROI) is extracted and made proportional to real space 
by applying warp-perspective transformation. Finally, the objects are detected and mapped to 
the real-world location. Removing distortion from the image using camera calibration 
improves the accuracy in most of the cases. The deep learning framework Darknet is used for 
detection, and necessary modifications are made to integrate perspective transformation, 
camera calibration, un-distortion, etc. Experiments are performed with two types of cameras, 
one with barrel and the other with pincushion distortions. The results show that the difference 
between calculated distances and measured on real space with measurement tapes are very 
small; approximately 1 cm on an average. Furthermore, automatic corner detection allows the 
system to be used with any type of camera that has a fixed pose or in motion; using more points 
significantly enhances the accuracy of real-world mapping even without camera calibration. 
Perspective transformation also increases the object detection efficiency by making unified 
sizes of all objects. 
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1. Introduction 

Since the last few years we have been witnessed the huge development in the computer vision 
field and currently powered by deep learning it has been accelerating even more. The 
high-level target of Computer vision is to gain human-level understanding from digital images 
or videos. Because it involves understanding, computer vision makes use of machine-learning 
technologies hugely along with the primitive image and video processing tasks. Especially, 
these days deep learning becomes the most dominant technology for computer vision [1].  
Deep Neural Networks are also a good candidate for image processing jobs [2].  Darknet [3] 
provides a faster deep learning framework implemented in C language. Natively, the popular 
real-time object detection system YOLO [4] uses the Darknet. YOLO is very fast as compared 
to the previous object detection techniques because it takes the detection task as a single 
regression problem and uses a single network for the whole detection [5], [6]. The active 
development of YOLO results in continuous improvement [5], [7] and it is extending to 3D [8]. 
Moreover, Several other popular Convolution Neural Network (CNN) architectures such as 
DenseNet [9] and ResNet [10] can also be used and combined with YOLO[6], [11], [12].  This 
article uses YOLOv2 [7]. 

In many situations, only detection of an object within an image or video is not enough 
rather location of the object in real space is needed, for example, it enables us to measure the 
distance between objects which can further be utilized in alarm, robot vision and many other 
services. However, pixel position representing an object on an image greatly varies depending 
on the camera position, angle, as well as quality of the camera thus we need to consider these 
things to get real locations of objects from an image. Camera calibration [13] can find out the 
intrinsic and extrinsic camera parameters along with the distortion vectors such as Radial and 
Tangential. Using this information we can remove some of the distortions from the images 
taken by that camera. Calibration also helps us locating an object in real world but in such case 
either we need to keep both camera and the interested region fixed, or placing a check-board 
like object in the  Field of View (FoV) [14] which is not always easy. Additionally, if our 
interested region surrounds many unwanted things within the FoV then the chance for 
misdetection increases. To overcome the problem, before detection we need to find our region 
of interest (ROI). 

Optical distance measurement techniques primarily are of two kinds, contact or 
non-contact. Most of the early classical methods are based on laser or ultrasonic sensors even 
with a physical ruler attached in special arrangements [13]–[15]. On the contrary, vision-based 
methods rely only on images captured by cameras which is very convenient and flexible. 
Several works described about measuring real-world distance from images and most of them 
use stereo camera or dual camera placed on a known distance [18], [19] as well as with single 
motionless camera [13], [20]. Also, several methods are based on special types of cameras 
such as CCD or depth [15], [21]. Other approaches [18], [20]–[22] to measure distance 
between camera and an object use one or more reference objects in the FoV,  Chan et al.'s [25] 
car to car distance measuring system is actually a variation of this category. In contrast, our 
method deals with locating and measuring distances between objects within ROI. Raza et al. 
[26] proposed an image based framework for estimating distance and dimensions of 
pedestrians which exhibits very good results. Their method used a fixed arrangement with a 
motionless camera where the boundary marks are predefined. Mobile Robot Localization 
Systems discussed in [27], [28] use simple background subtraction methods for object 
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detection and parallel distance measurement and morphological processing respectively for 
measuring distances. However, It is possible to get better results using YOLO object detection 
along with perspective transformation. 

In this work, we use a single image frame from a single camera and through automatic 
corner detection, this approach can work well even if the camera position changes. Although 
in this work change of ROI orientation is not considered, it can be solved by using varying 
color corner points. After the corner detection phase, the orientation can be adjusted as desired. 
This method also does not depend on the type of camera used to capture the image. The 
proposed system can determine an object's location in real space from which distance and 
motion measurement, tracking etc. can be done. The region of interest (ROI) is determined 
with some predefined marks and any existing objects within the FoV can be trained as marks 
using deep learning. The relative positions of the marks are known prior to their detection. 
After corner detection, the image is cropped to the ROI and applied warp perspective 
transformation to make a new image with the same aspect ratio of the real space. Then, object 
detection is run on this normalized image and we can easily determine the real locations of the 
objects. However, the performance greatly depends on the number of marks for defining the 
boundary (also referred to as corner points in this paper ) as well as the accuracy of their 
detection. Removing the distortion before detection decreases the error and if we take more 
boundary marks for defining the ROI, the accuracy improves even without the camera 
calibration. From the experiments, we see that perspective transformation also improves the 
detection performance apart from the real-world mapping. 

 
Fig. 1.  Example application scenario using the proposed approach 

 
Fig. 1 shows a simple application scenario employing the proposed approach. After 

capturing the scene, the camera sends an image to the server; the server performs 
transformation, detection and other processing then shares measurement information with all 
of the connected devices. If the camera unit is equipped with enough capacity, then the 
processing can be done immediately and send measurement information to the server. 

We can summarize the contributions and importance of this work as below: 
i.) The proposed approach detects objects using ‘corner detection - perspective 

transformation - object detection’ pipeline which normalizes the size of the 
objects inside ROI and improves the performance of detection. In our experiments, 
we found that the objects which remain undetected in their original size can be 
detected after the transformation. 
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ii.) We propose a novel integrated distance measurement method from a single 
camera image combining perspective transformation and object detection. Using 
YOLO architecture makes the detection faster and suitable for real-time 
application. 

iii.) We modified the Darknet framework by integrating camera calibration, 
perspective transformation, un-distortion; and other necessary adjustments are 
also made. 

iv.) We demonstrate the effect of the number of boundary points on distance 
measurement accuracy. Experiments show that using 9 corner points with the 
original image gives a similar result as we get using camera calibration and 
undistorted image. Also, for any fixed camera arrangement, the corner points need 
to be detected only once, if camera position changes then another detection will be 
needed and so on.     

The rest of the paper is organized as follows. Section 2 describes some underlying theories 
and related techniques. Sections 3 and 4 discuss the experimental arrangements and scenarios 
whereas the results are shown in Section 5. Finally, we conclude our paper in section 6. 

2. Background 
In this section, we briefly review all underlying theories that the content of this paper relies on: 
Camera Calibration, Perspective Transformation and Object detection with Darknet YOLO. 

2.1 Camera Calibration 
Camera calibration is the process of estimating the parameters of a lens and image sensor of an 
image or video camera. The Intrinsic parameters are inherent to specific camera hardware and 
include focal length, the optical center, and the skew coefficients. It is usually expressed as a 
3 × 3 camera matrix (1). The parameters of equation (1) are described in Table 1. The 
extrinsic parameters correspond to rotation and translation vectors �𝑅𝑡 �. 

There are two additional distortion parameters: Radial distortion causes straight lines to 
be appeared curved. It occurs when light rays bend more near the edges than at its optical 
center (Fig. 2). The smaller the lens, the greater the distortion is. The distortion can be positive 
(barrel) or negative (pincushion), with 2 coefficients it is represented as in equation (2). 
Tangential distortion occurs if the image taking lens is not parallel to the image plane and 
represented as in equation (3). The distortion coefficients of (2) and (3) are represented as a 
single vector (4). 
 

𝐶𝑀 = �
𝑓𝑥 0 𝑐𝑥
𝑆 𝑓𝑦 𝑐𝑦
0 0 1

�       (1) 
 

 
Table 1. Intrinsic parameters of a camera 

Parameter Description  
(cx, cy ) Optical center in pixels  
F Focal length in world units 
[px, py ] Size of the pixel in world units. 
(fx, fy ) Focal length in pixels, fx = F/px, fy = F/py 
S Skew coefficient, S = fy tan α 
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𝑥𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑥(1 + 𝑘1𝑟2 + 𝑘2𝑟4)
𝑦𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑦(1 + 𝑘1𝑟2 + 𝑘2𝑟4)

     (2) 

𝑥𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑥 + [2𝑝1𝑥𝑦 + 𝑝2(𝑟2 + 2𝑥2)]
𝑦𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑦 + [𝑝1(𝑟2 + 2𝑦2) + 2𝑝2𝑥𝑦]

    (3) 

where, 𝑟2 = 𝑥2 + 𝑦2; 𝑥 and 𝑦 are the undistortrd pixel locations in normalized image coordinates. 

𝐷𝑉 = [𝑘1,𝑘2 ,𝑝1,𝑝2]       (4) 

   
No distortion Barrel Pincushion 

Fig. 2.  Barrel and Pincushion distortions 

2.2 Perspective Transformation 
For perspective transformation of the ROI, we use the 𝑊𝑎𝑟𝑝𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 function built in the 
OpenCV C library and declared as in equation (5). The function transforms the source image 
using a specified 3 × 3 matrix 𝑀 (6), the parameters of the function is described in Table 2. 
The 3 × 3  transformation matrix 𝑀 can be estimated using another built-in function 
𝑔𝑒𝑡𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚  declared as in equation (7), where 𝑠𝑟𝑐  and 𝑑𝑠𝑡  are four 
corresponding points in the source and destination images respectively. We modified Darknet 
to integrate 𝑊𝑎𝑟𝑝𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 along with the 𝑔𝑒𝑡𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 function. 
 

𝑤𝑎𝑟𝑝𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒(𝑠𝑟𝑐,𝑑𝑠𝑡,𝑀,𝑓𝑙𝑎𝑔𝑠,𝑓𝑖𝑙𝑙𝑣𝑎𝑙)    (5) 

𝑑𝑠𝑡(𝑥,𝑦) = 𝑠𝑟𝑐(𝑀11𝑥+𝑀12𝑦+𝑀13
𝑀31𝑥+𝑀32𝑦+𝑀33

,𝑀21𝑥+𝑀22𝑦+𝑀23
𝑀31𝑥+𝑀32𝑦+𝑀33

)   (6) 

𝑔𝑒𝑡𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑠𝑟𝑐,𝑑𝑠𝑡,𝑀)    (7) 

Table 2. Parameters of a warpPerspective function 
src - Input Image 
dst - Output Image 
M - 3 × 3 transformation matrix 

dsize - Size of the output image 
flags - combination of interpolation methods 
fillval - pixel extraoplation method 

2.3 Object detection with Darknet YOLO 
As mentioned in the introduction, YOLO is a powerful tool for real-time object detection. In 
the training process of YOLO, the objects are marked as bounding boxes and stored in an 
XML file for each image where every objects are described with four spacial parameters {Xmin, 
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Ymin, Xmax, Ymax}specifying object’s location inside the image. There are various marking tools 
and in this work we used LabelImg [29]. However, Darknet takes a .txt file for each image 
with a line for each ground truth object in the image as {<object-class> <x> <y> <width> 
<height>}. We used a python script to generate those text files from the xml files. 

Detections are also performed as bounding boxes. Every object's position in the image is 
specified by a four element vector [𝐿𝑒𝑓𝑡,𝑅𝑖𝑔ℎ𝑡,𝑇𝑜𝑝,𝐵𝑜𝑡𝑡𝑜𝑚] where 𝐿𝑒𝑓𝑡, 𝑅𝑖𝑔ℎ𝑡 are X-values 
and 𝑇𝑜𝑝, 𝐵𝑜𝑡𝑡𝑜𝑚 are Y-values. We modified Darknet to store these position vectors in a file 
and we determine the middle position of an object by the tuple {𝐿𝑒𝑓𝑡+𝑅𝑖𝑔ℎ𝑡

2
, 𝑇𝑜𝑝+𝐵𝑜𝑡𝑡𝑜𝑚

2
} which is 

used as the one point determiner for the object position, however, for corners, we calculate 
differently. 
 

Table 3. X, Y values for boundary marks 

Corners (X,Y) 
Point on  

Real-Space Size 
= 2070 × 1710 (mm) 

Point onTrans. 
Image Size 

= 1024 × 846 (px) 
Top-Left (𝐿,𝑇 ) (0,0) (0,0) 

Top-Middle (
𝐿 + 𝑅

2
, 𝑇) (1035,0) (512,0) 

Top-Right (R, T ) (2070,0) (1024,0) 
Middle-Left (𝐿,

𝑇 + 𝐵
2

) (0,855) (0,423) 

Middle (
𝐿 + 𝑅

2
,
𝑇 + 𝐵

2
) (1035,855) (512,423) 

Middle-Right (𝑅,
𝑇 + 𝐵

2
) (2070,855) (1024,423) 

Bottom-Left (Left, B) (0,1710) (0,846) 
Bottom-Middle 

 (
𝐿 + 𝑅

2
,𝐵) (1035,1710) (512,846) 

Bottom-Right (R, B) (2070,1710) (1024,846) 
L=Left R=Right T=Top B=Bottom 

 
Table 3 describes corner points, the corresponding (𝑋,𝑌) values for 9 boundary marks, the 
real-space points and the transformed image points used in our experiments. The calculated 
(𝑋,𝑌) values are used as the source points for perspective transformation. Details of YOLO 
can be found on the Darknet website [3]. 

In darknet, training process takes a configuration file describing the neural network 
architecture and we used a slightly modified version of the default YOLOv2 configuration as 
depicted in Fig. 3. There are 23 convolutional layers, the initial image is resized to 512 × 512 
and the final feature image size before classification is made to 16 × 16 with a combination of  
3 × 3 , 1 × 1 filters, maxpool, reorg and route layers. Some related topics on the training and 
CNN artitecture  are discussed below: 

Grid cell: YOLO divides an image into 𝑆 × 𝑆 grid cells and each cell predicts a fixed 
number of bounding boxes. In our case, we use 16 × 16 grid cells whereas every grid predicts 
bounding boxes with different aspect ratios based on the number of anchors, in our network we 
use 10 anchors. We keep 20 object classes as in PASCAL-VOC, although only three labels 
(Cart1, Cart2, and Robot) are provided during object detection trainng and one label (Corner) 
during corner detection training. The bounding box prediction has 5 components: (x, y, w, h, 
confidence). The (𝑥, 𝑦) represents the center of the box, relative to the grid cell location. These 
coordinates are normalized to fall between 0 and 1. The (w, h) box dimensions are also 
normalized to [0, 1], relative to the image size.  A bounding box is removed if it has no object 
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or confidence score is less than a threshold. On the other hand, if a bounding box contains an 
object with sufficient confidence then redundancy of identifying the same object is removed 
using Non Max Suppression and Intersection over Union (IOU). 

Batch Normalization: Batch normalization (BN) normalizes the value distribution before 
going into the next layer. From YOLOv2 batch normalization (BN) han been introduced 
which improves the convergence without other regularizations such as dropout. 

Convolution with anchor boxes: Original YOLO predicts the bounding box coordinates 
with the fully connected layers, however, inspired with the Faster R-CNN [30] YOLOv2 
introduced anchor boxes. It simplifies the learning process because now only offset 
predictions are enough instead of predicting coordinates. YOLOv2 shrink the input image 
from 448 images to 416 × 416 to make the output feature size 13 × 13 so that there be a single 
center cell. They argued that larger objects tend to reside in the center and single-center feature 
grid makes the detection faster. However, in our case Robots, Carts and Corners are not too 
large with respect to the ROI and we found that 512 × 512 input images with output feature 
size 16 × 16  give a better prediction. Moreover, YOLOv2 has Multi-Scale Training which 
enables it to work on a range of dimensions from 320 to 608 in a multiple of 32. As a result, 
our initial choice of 512 × 512 does not create any inconsistency. 

  Fine-Grained Features: Objects in our experiments are relatively smaller and the 
high-resolution feature size 16 × 16 helps in this regard. The feature map is further improved 
by adding a passthrough layer (route layer) to bring features from an earlier layer at 32 × 32 
resolution. 

Loss Function: The loss function is a multipart function and for a grid, cell pair (i,j), it can 
be defined as in equations (8), (9). The first part indicates bounding box parameter loss, the 
second is the class prediction loss whereas the third indicates the confidence score loss. 

 

   (8) 
 
The predicted values 𝑝𝑟𝑒𝑑𝑖𝑗 = (𝑥�𝑖𝑗,𝑦�𝑖𝑗,𝑤�𝑖𝑗 ,ℎ�𝑖𝑗) and the ground truth values  𝑡𝑟𝑢𝑡ℎ𝑖𝑗 =

(𝑥𝑖𝑗,𝑦𝑖𝑗,𝑤𝑖𝑗 ,ℎ𝑖𝑗);  𝜆𝑐𝑜𝑜𝑟𝑑 , 𝜆𝑐𝑙𝑎𝑠𝑠,   𝜆𝑜𝑏𝑗,   and 𝜆𝑛𝑜𝑜𝑏𝑗  are scalar weights.  𝐿𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

  
 and  𝐿𝑖𝑗

𝑜𝑏𝑗
  
are 

0/1 indicator such that: 



3988                                           Layek et al.: Remote Distance Measuring by Automatic Detection and Perspective Correction  

  (9) 
 
  Dataset and training: Our training dataset have 1000 images captured from different 

directions while running the carts and robots, then the corners and objects are annotated using 
LabelImg. We converted the 𝐷𝑎𝑟𝑘𝑛𝑒𝑡19 448 × 448 pre-trained weight file to use as initial 
convolutional weights. Although not fully converged, after 70,000 iterations there was no 
noticeable improvement, as a result, the weight file after 80,000 iterations was used. Training 
for boundary marks (Corners) and the objects (Robots and Carts) are performed separately and 
we get two separate weight files (Fig. 5 and 6).  

 

 
Fig. 3. The deep learning pipeline used in this article    

3. Experiment Setup 
In our experiment, the ROI is a board and the objects inside are ten Hamster Robots and two 
AlphaBot2s as shown in Fig. 4, the left image (4a) is taken by one camera and the right one 
(4b) with another. We covered the Hamsters with blue papers; one of the Alpha Bots with 
white paper (Cart1) and the other with orange paper (Cart2) as shown in Fig. 5. 
 
 

  
a. Arrangement1 (Camera1) b. Arrangement2 (Camera2) 

Fig. 4. Experimental Arrangements with two different cameras 
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(a) Hamster (b) AlphaBot2 (c) Cart2 

   
(d) Robot (e) Cart1 (f) Boundary Mark 

Fig. 5. Objects and marks used in the experiments 
 

 
Fig. 6. Flow diagram for the experimental system 

 
Fig. 6 shows the steps of our proposed system. Images are captured with two kinds of 

cameras, a 2-megapixel webcam (model- ELP-USBFHD05MT-DL36) and a Galaxy Note 
Edge mobile camera.   As discussed in section 2, as an optional step we can undistort the image 
taken by a specific camera if we know the camera matrix preferably with the distortion vectors. 
To get these parameters we take checkboard images captured by the same camera (Fig. 7) and 
apply the calibration process discussed in section 2.1. The calibration process on the 
checkboard images yields camera matrix along with the distortion coefficients. Fig.s 4a and 
4b are taken with two different cameras and as such both have different internal parameters 
and distortions. The camera matrices of equations (10) and (12) corresponds to equation (1) 
and the four coefficient distortion vectors of equations (11) and (13) corresponds to (4) and are 
based on the discussion of section 2.1. From the images, it can be observed that camera1 have 
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barrel and camera2 have small pincushion distortions. After removing the distortion we get the 
undistorted versions as shown in Fig. 8. 

 

  
Camera1 Camera2 

Fig. 7. Checkboard Images taken for calibration 
 

𝐶𝑀1 = �
1490.30 0.0 880.53
−149.76 1638.6 366.59

0 0 1.0
�    (10) 

𝐷𝑉1 = [−0.68 0.49 0.066 0.039]    (11) 

𝐶𝑀2 = �
1100.10 0.0 1002.10

3.86 1065.81 892.23
0 0 1.0

�   (12) 

𝐷𝑉2 = [0.048 0.016 0.020 0.00035]   (13) 
 

  
Camera1 Camera2 

Fig. 8. Undistorted Version of the Arrangements 
 

Corner detection is then applied using the weight file trained with corner labeled images 
and the corner points are obtained using Table 3. Then, as per the techniques discussed in 
section 2.2, we apply the warpPerspective transformation to crop through the corner points 
and transform to a new image with same aspect ratio as in the real space. When 9 points are 
used, the whole image is divided into 4 blocks and transformation is applied on each block 
separately, details are discussed in section 4. 

  On this transformed image, another step of detection is applied to detect the objects using 
the other weight file trained with object labeled images. Finally, we get the object positions 
which are in the same aspect ratio with real-space and we can estimate the real distances 
easily. 
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 Along with the exact sequence of steps we considered in Fig. 6, some other combinations 
are taken in the experiments to understand the effects of each process and section 4 describes 
the cases of these scenarios. 

4. Description of Experiment Scenarios 
For each arrangement, we consider the following cases for comparison: 

• Manual object detection using manually selected corner points with original 
and undistorted images. 

• Object detection by the system for both original and undistorted images. 
o Using manual corner points 
o Using detected corner points 

In arrangement2 (Camera2), we set nine boundary marks where we use both four and nine 
corners and taking all these we perform object detection on 18 different combinations for both 
arrangements. 

4.1 Case1: Manual detections 

  
(a) Camera1 Original (b) Camera2 Original 

  
(c) Camera1 Undistorted (d) Camera2 Undistorted 

Fig. 9. Perspective transformed image using four manually selected corner points 
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In this case, we actually want to see the performance solely for the perspective transformation. 
The corner points are selected from the image manually then perspective transformations are 
made and finally the object positions in the image are also selected manually so that there will 
be a minimum possible error due to detections, Fig.s 9, 10 show the transformed outputs. 
 

  

 

Block01 Block02 

  
Block03 Block04 (a) Merged Parts From Original 

  

 

Block01 Block02 

  

Block03 Block04 (b) Merged Parts From Undistorted 

Fig. 10. Perspective transformed image using four manually selected corner points 
 

In Fig. 9, we present the transformed output using 4 corner points for both arrangements.  
When we use the original images as input, the transformed versions also contain the 
distortions, Fig.s 9a, 9b also show the manual labels for the robots and carts. Fig. 4a is taken 
by camera1 and has barrel distortion, as a result, the transformed version of Fig. 9a clips out 
the surrounding distorted parts. So, the relative positions of objects inside the image vary 
accordingly than the real space. Similarly, Fig. 4b contains small pincushion distortion which 
causes little bend at the top edge of the transformed image as in Fig. 9c.   

However, using the images after removing the distortion results transformed version 
nicely aligned (9b, 9d). All full-size images are 1920 × 1080  pixels. The real board 
coordinates are calculated in millimeters whose size is 2070 × 1710(𝑚𝑚) and the transformed 
image size is 1024 × 846 pixels. The correspondence of corner points is shown in Table 3. 
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Using all of the 9 boundary points in arrangement2 as described in Table 3, the ROI is 
actually divided into four blocks. As a result, warpPerspective is applied to each block 
individually and then merged into one as shown in Fig. 10.  For the original image, the 
distortion is minimized when we use 9 corners, but the improvement for undistorted version is 
not clearly noticeable. 

4.2 Case2: Object detection by the system 

  

(a) Manual Corner Original (b) Manual Corner Undistorted 

 
 

c) Corner Detection Original Image (d) Transformed from Original 

 
 

(e) Corner Detection Undistorted Image (f) Transformed from Undistorted 

Fig. 11. Object detections on Arrangement1 (Camera1) 
 
Here, object points are taken only from the detection; not by manual selection. At first, for 
arrangement1 we perform detection in four scenarios as shown in Fig. 11. For original and 
undistorted input images, objects are detected using manual corner points as well as detected 
by the system. It can be clearly observed again that using original camera image with 
distortion, loses some ROI part around the boundary walls, actually clips off because camera1 
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has barrel distortion (Fig. 11). Also, if we use detected corner points then the detection 
bounding boxes are not always perfectly aligned with the corner edges leaving some detection 
error in the transformed images. 

As discussed earlier, arrangement2 have nine corner points and we can use either four or 
all nine corners (four blocks). The following two sub-cases consider both 9 and 4 corner points 
for perspective transformation. 

4.2.1 Case2.1 
Fig. 12 shows the scenarios using manual corner points. We see that object detection bounding 
boxes are similar in fashion but as pointed out earlier, four corners with original image retain 
the distortion and we expect more performance gain from undistorted images for four corners 
(Fig.s 12a, 12b than with nine corners (Fig.s 12c, 12d). 
 

  
(a) Four Manual Corner Original (b) Four Manual Corner Undistorted 

  
(c) Nine Manual Corner Original (d) Nine Manual Corner Undistorted 

Fig. 12. Object Detections With Manually selected Corner Points on Arrangement2 (Camera2) 

4.2.2 Case2.2- Using detected corner points 
Here, both corners and objects are detected, not selecting anything manually. Fig. 13 shows 
corner and object detections using input images (original and undistorted) considering both 
four and nine corner points. In original images, four corner keeps the small pincushion 
distortion of camera2 but nine corner removes that in original images (Fig.s 13c, 13e). 
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(a) Corner Detection Original Image (b) Corner Detection Undistorted Image 

  
(c) Four Detected Corner Original (d) Four Detected Corner Undistorted 

  
(e) Nine Detected Corner Original (f) Nine Detected Corner Undistorted 

Fig. 13. Object Detections With Detected Corner Points on Arrangement2 (Camera2) 

5. Results and Analysis 
As already mentioned, object detection results in the bounding boxes for every object inside 
the ROI. The middle points are determined and the image points are converted into real space 
points using equation (14) where image and real dimensions are 1024(𝑝𝑥) × 846(𝑝𝑥) and 
2070(𝑚𝑚) × 1710(𝑚𝑚) respectively, as specified in Table 3. There are 12 objects; 10 robots 
(R1,R2, .... ,R10) and 2 Carts (Cart1, Cart2). We calculate the Euclidean distances between all 
66 pairs ( 12𝐶2 ) of objects {(R1, R2), (R1, R3) ... (R2, R3)........(R10, Cart1), (R10, 
Cart2),(Cart1, Cart2)}. The distances in real space were recorded earlier using measurement 
tapes. Finally, we find out the errors in distances between real and calculated for every pair. 
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Tables 4 and 5 show the errors of few distance IDs for all 18 scenarios and the Fig.s through 
14-18 present the plots for all distance IDs with their corresponding errors. 
 

𝑋𝑟𝑒𝑎𝑙(𝑚𝑚) =
𝑋𝑖𝑚𝑎𝑔𝑒(𝑝𝑥)×𝑅𝑒𝑎𝑙𝑊𝑖𝑑𝑡ℎ(𝑚𝑚)

𝐼𝑚𝑎𝑔𝑒𝑊𝑖𝑑𝑡ℎ(𝑝𝑥)

𝑌𝑟𝑒𝑎𝑙(𝑚𝑚) =
𝑌𝑖𝑚𝑎𝑔𝑒(𝑝𝑥)×𝑅𝑒𝑎𝑙𝐻𝑒𝑖𝑔ℎ𝑡(𝑚𝑚)

𝐼𝑚𝑎𝑔𝑒𝐻𝑒𝑖𝑔ℎ𝑡(𝑝𝑥)

     (14) 

 

Table 4. Absolute errors i.e differences between real and calculated from system for arrangement1 
(Camera1). Camera1 has barrel distortion and here we only used four corner points. Orig = Original 
Image, Und = Undistorted Image 

Distance 
 IDs 

Real  
Distance (cm) 

Manual 
Detection 

Detection by System 

Manual Corner Detected 
Corner 

Orig Und Orig Und Orig Und 
1(R1-R2) 81.05 0.06 0.60 2.34 0.81 0.61 2.41 
4(R1-R5) 108.32 1.13 0.31 2.78 0.34 1.12 4.16 
12(R2-R3) 52.00 0.32 0.95 1.70 0.35 0.54 0.55 
14(R2-R5) 52.91 0.16 0.80 0.91 0.01 0.43 0.38 
22(R3-R4) 88.78 3.00 1.33 3.56 0.04 3.67 0.67 
23(R3R5) 51.60 1.32 1.05 0.82 0.44 2.01 0.80 
31(R4-R5) 51.34 1.33 0.60 2.90 0.44 2.04 0.52 
39(R5-R6) 48.41 1.69 0.49 1.57 0.26 1.86 0.66 
40(R5-R7) 89.46 3.15 1.35 5.68 1.11 3.85 1.52 
41(R5-R8) 65.06 3.34 0.37 3.88 0.23 3.34 0.16 
42(R5-R9) 97.94 3.33 1.31 6.28 0.46 5.09 0.55 
43(R5-R10) 122.80 2.77 0.39 2.99 0.82 1.88 0.09 
44(R5-Cart1) 92.93 5.22 0.32 5.49 1.34 3.77 0.94 
45(R5-Cart2) 49.72 4.01 0.56 3.09 0.94 1.44 0.72 
46(R6-R7) 107.60 3.58 1.56 6.23 0.73 4.85 1.42 
52(R7-R8) 74.70 1.44 1.00 3.84 0.80 1.41 1.92 
57(R8-R9) 48.31 0.10 1.82 3.52 0.21 1.93 0.20 
61(R9-R10) 59.82 0.74 1.35 1.14 0.01 0.56 0.49 
64(R10-Cart1) 89.18 0.61 0.04 0.08 1.45 1.90 2.25 
66(Cart1-Cart2) 60.54 2.19 0.00 3.93 0.51 1.92 0.41 

Average   1.97 0.81 3.14 0.57 2.21 1.04 
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The bar-charts on the right-sides of the Fig.s  14 - 18 present another interpretation for the 

corresponding plots on the lefts. We could use the average errors for each scenario to plot the 
bar charts but it does not always provide the proper interpretation in this regard. If most of the 
detection bounding boxes are nicely aligned except a single which have big displacement then 
the average can be affected. As a result, for every figure, we calculate normalized scores and 
the average of those are plotted in the bar charts. 

 5.1 Average Normalized Error Calculation 
 Let, in a figure there are four comparing scenarios(𝑆1,𝑆2, 𝑆3,𝑆4), for a specific distance ID 

𝑋1  the corresponding errors are (𝐸1𝑋1,𝐸2𝑋1,𝐸3𝑋1,𝐸4𝑋1) then the corresponding normalized 
errors will be assigned from a sequence of four equally spaced constant values 
(𝐶1,𝐶2,𝐶3,𝐶4) where 𝐶1 > 𝐶2 > 𝐶3 > 𝐶4 . If (𝐸1𝑋1 > 𝐸3𝑋1 > 𝐸2𝑋1 > 𝐸4𝑋1)  then we get the 
normalized errors; (𝑁1𝑋1 = 𝐶1,𝑁2𝑋1 = 𝐶3,𝑁3𝑋1 = 𝐶2,𝑁4𝑋1 = 𝐶4) . Similarly, for another 
distance ID 𝑋2 , if (𝐸3𝑋2 > 𝐸1𝑋2 > 𝐸4𝑋2 > 𝐸2𝑋2)  then (𝑁1𝑋2 = 𝐶2,𝑁2𝑋2 = 𝐶4,𝑁3𝑋2 =
𝐶1,𝑁4𝑋2 = 𝐶3), and so on. Finally, the average normalized errors 
 

Table 5. Absolute errors i.e differences between real and calculated from the system for arrangement2 
(Camera2). Camera2 has pincushion distortion. Orig = Original Image, Und = Undistorted Image 

Distance IDs Real Distance (cm) 

Manual Detection 
Detection by System 

Manual Corner Detected Corner 
 4 Corner 9 Corner  4 Corner 9 Corner  4 Corner 9 Corner 

Orig Und Orig Und Orig Und Orig Und Orig Und Orig Und 

1(R1-R2) 77.65 0.65 0.56 0.25 0.04 1.04 0.66 0.71 0.46 1.81 0.04 0.92 0.61 

4(R1-R5) 82.37 0.64 1.38 0.06 0.47 0.23 1.02 0.76 1.13 0.54 1.47 0.71 1.15 
12(R2-R3) 41.91 0.25 0.20 0.20 0.39 0.64 0.31 0.38 0.47 1.25 0.19 0.00 0.46 
14(R2-R5) 50.25 0.76 0.42 0.07 0.03 0.74 0.60 0.22 1.03 0.27 0.92 0.00 0.09 
22(R3-R4) 136.77 2.15 0.28 0.98 0.66 2.56 1.21 2.08 1.79 3.16 1.38 2.34 1.60 
23(R3R5) 58.58 1.02 0.37 0.16 0.32 0.52 1.03 0.71 0.25 1.87 0.69 0.97 0.61 
31(R4-R5) 85.15 1.33 0.30 0.75 0.32 1.07 0.54 0.65 0.37 1.35 0.04 0.94 0.62 
39(R5-R6) 59.05 0.56 0.58 0.19 0.39 1.22 0.70 1.11 1.13 1.81 1.02 1.23 1.03 
40(R5-R7) 105.44 0.28 0.45 0.99 0.17 1.39 0.58 1.40 0.73 2.85 1.08 1.59 1.23 
41(R5-R8) 59.46 0.22 0.34 0.03 0.37 2.15 0.89 0.19 0.44 2.45 0.20 0.03 0.65 
42(R5-R9) 54.09 0.39 0.18 0.25 0.54 3.13 0.57 2.64 2.78 1.64 0.57 1.35 1.50 
43(R5-R10) 96.99 0.20 0.49 0.30 0.12 2.46 0.21 2.14 2.38 1.90 1.03 1.33 1.40 
44(R5-Cart1) 57.56 1.66 0.47 0.03 0.64 2.16 2.15 2.45 3.08 3.26 1.36 1.91 1.62 
45(R5-Cart2) 63.96 0.05 0.96 0.60 0.61 1.91 3.77 2.23 2.60 2.09 2.54 2.02 2.58 
46(R6-R7) 152.95 0.90 1.07 0.80 0.20 1.52 0.42 1.66 0.62 3.92 1.34 1.82 1.33 
52(R7-R8) 59.55 0.23 0.34 0.84 0.34 0.85 0.19 1.65 0.86 0.17 0.50 1.53 1.43 
57(R8-R9) 60.58 0.87 0.44 0.36 0.14 0.10 0.50 0.11 0.56 2.46 0.32 0.43 0.06 
61(R9-R10) 43.41 0.59 0.66 0.04 0.48 0.98 0.91 0.62 0.63 0.21 0.40 0.24 0.27 

64(R10-Cart1) 127.21 1.35 1.06 0.90 0.56 3.57 0.57 3.59 3.58 3.36 1.60 2.63 1.97 

66(Cart1-Cart2) 116.98 1.01 0.69 0.89 0.03 0.30 2.54 0.41 0.31 0.85 1.69 0.51 1.55 
Average   0.76 0.56 0.43 0.34 1.43 0.97 1.29 1.26 1.86 0.92 1.13 1.09 
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𝐴𝑉𝐺(𝑁1𝑋1,𝑁1𝑋2. . . . . . .𝑁1𝑋𝑛), 

𝐴𝑉𝐺(𝑁2𝑋1,𝑁2𝑋2. . . . . . .𝑁2𝑋𝑛), 

𝐴𝑉𝐺(𝑁3𝑋1,𝑁3𝑋2. . . . . . .𝑁3𝑋𝑛) and 

𝐴𝑉𝐺(𝑁4𝑋1,𝑁4𝑋2. . . . . . .𝑁4𝑋𝑛) are plot as bar chart. In our experiments, we use 𝐶1 = 20,𝐶2 =
15,𝐶3 = 10,𝐶4 = 5 and accordingly the average normalized errors (ANE) lies between 5 and 
20. 

 
Fig. 14. Manual Object Detections using Manually Selected Corner Points with Original and 

Undistorted Images of Camera1 
 

 
Fig. 15. Manual Object Detections using four and nine Manually Selected Corner Points with 

Original and Undistorted Images of Camera2 
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Fig. 14 shows the results for manual detection of arrangement1. Because camera1 has big 

barrel distortion, the errors for original input image significantly bigger than the undistorted 
version, the average normalized errors (ANE) are 19 and 11 respectively.  

Fig. 15 shows the result of arrangement2 where there is a small pincushion distortion. 
Here the undistorted version shows smaller errors as well; 10 and 13 average normalized 
errors for nine and four corners respectively. However, the original image with nine corners 
reveals similar (bar chart shows better) result as the undistorted image with four corners (ANE 
= 12 and 13).  
 

 
Fig. 16. Detections using Detected and Manually Selected Corner Points with Original and Undistorted 

Images of Camera1 
 

We can define the total error as in equation 13. All errors are independent of each other but 
how one kind of error affects the other is uncertain. 

  

  𝑡𝑜𝑡𝑎𝑙𝐸𝑟𝑟𝑜𝑟 = ∑(𝑐𝑜𝑟𝑛𝑒𝑟𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝐸𝑟𝑟𝑜𝑟,
𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟,𝑜𝑏𝑗𝑒𝑐𝑡𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟)    (15) 

 

Now let's see the results for detection by the system, Fig. 16 shows the result for 
arrangement1; here only four corners are used. We see that using an undistorted image with 
manual corner provides the best result (ANE=8). Surprisingly, original image with manual 
corner generates the worst result (ANE=18) than detected corners (ANE=14). This is because 
camera1 has big barrel distortion and manual corner keeps them all whereas error from 
detected corners actually decreases the total error in this case. In case of object detection using 
manual corners on arrangement2 where no corner detection error, we see the improvement 
using nine corner points for the original image; average normalized errors 13 and 15 with nine 
and four corners respectively (Fig. 17). However, four corners again provide very good 
accuracy (ANE=10) for undistorted version. When both corners and objects are detected, 
using nine corners we find similar accuracy for both original and undistorted images (ANE=12) 
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(Fig. 18). It happens due to the uncertain combination of different detection errors. Either 
manual corner or detected, four corners with original and undistorted images have the highest 
and lowest errors respectively (ANE= 15,10 and ANE=16,10). Nine corners always improve 
the accuracy and seem more reliable with an original image. 

 
Fig. 17. Detections using four and nine Manually Selected Corner Points with Original and Undistorted 

Images of Camera2 

 
Fig. 18. Detections using four and nine Detected Corner Points with Original and Undistorted Images of 

Camera2 
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From all of the results discussed above, we can conclude that perspective transformation 
gives very good accuracy in locating objects from images. If we can undistort the image then 
only four corner points improve the accuracy significantly. Dividing the ROI into more blocks 
achieves some sort of auto-calibration and un-distortion becomes less important. Although 
manual corner selection on undistorted image performs even better, it is not practical. Both 
removing the distortion with calibration or using more boundary points in order to achieve 
auto-calibration gains accuracy improvement with the cost of some complexity increase. 
However, using more control points seems to have more advantages than camera calibration 
and undistortion because it does not depend on a specific camera and thus can help us to 
develop a general system using multiple cameras with motion. 

 
Table 6. Comparison of errors between our method and Mobile Robot Self-Localization System [27] 

Method of [27] Our Method 
Camera Error (cm)  

(undistorted image) 
Camera Error (cm) 

undistorted 
image 

original image 

Camera1 6.86 Camera1 1.08 1.05 
Camera2 12.11 Camera2 1.53 2.18 
Camera3 9.01    

Average 9.33 Average 1.30 1.62 
 
The closest method which we can compare with our work is the Mobile Robot 

Self-Localization System [27] where they experiment with three webcams. They measured the 
displacements of specific positions whereas we measured the distances between objects. To 
compare with them, we calculated our results in a similar way and the results are shown in 
Table 6. The reference method measures the displacements on the calibrated images only 
whereas we consider several cases along with both calibrated and original images. Above table 
shows the average error of that method is 9.33 cm but our method has 1.30cm and 1.62cm for 
calibrated and original images respectively. Moreover, our proposed method can be trained to 
detect any kind of objects which gives it a wider range of applicability. 

6. Conclusion 
In this paper, we proposed a system to detect objects from a single remote image frame and 
then locate and measure the distance between them in real space. The detection is done by 
deep learning and performed in two steps, the boundary marks, and object detection. 
Perspective transformation is used to crop the ROI from image and make it proportional to the 
real space. Experiments are done using original images, after removing their distortions by 
camera parameters, with four and nine corners. Results prove that combining perspective 
transformation and object detection provides a simple solution for locating objects in real 
space and using more corner points improves the accuracy significantly for original images. 
However, if we remove the distortion from images prior to the transformation then four corner 
points are enough to provide very good accuracy. 
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