
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, Feb. 2019 668
Copyright ⓒ 2019 KSII

Bidirectional Chain Replication for Higher
Throughput Provision

Almetwally M. Mostafa1,2, Ahmed E. Youssef1,3 and Yazeed Ali Aljarbua1

1 College of Computer and Information Sciences, King Saud University
Riyadh, Saudi Arabia

[e-mail: almetwaly@ksu.edu.sa, ahyoussef@ksu.edu.sa, yaljarboa@ksu.edu.sa]
2 Faculty of Engineering, Alazhar University

 Cairo, Egypt
3 Faculty of Engineering at Helwan, Helwan University

 Cairo, Egypt
*Corresponding author : Ahmed E. Youssef

Received February 16, 2018; revised May 15, 2018; accepted June 10, 2018;

published February 28, 2019

Abstract

Provision of higher throughput without sacrificing consistency guarantees in replication
systems is a critical problem. In this paper, we propose a novel approach called Bidirectional
Chain Replication (BCR) to improve throughput in traditional Chain Replication (CR) through
better utilization of computing and communication resources of the chain. Unlike CR where
the whole replicated data store is treated as a single unit, in BCR the replicated shared data at
each server in the chain is split into two disjoint Logical Partitions (LP1, LP2). This forms two
chains running concurrently on the same hardware in two opposite directions; the first chain
(CR1) exclusively manipulates data objects in LP1, while the second chain (CR2) exclusively
manipulates data objects in LP2, therefore, conflict is avoided and concurrency is guaranteed.
The simultaneous employment of these two chains results in better utilization of hardware in
the sense that the two chains can evenly share the workload, hence, throughput can be
improved without sacrificing consistency. Experimental results showed an improvement of
approximately 85% in throughput of BCR over CR.

Keywords: Chain Replication, Consistency, Throughput, Data Partitioning, Distributed
Systems.

This work is supported by the Research Center of College of Computer and Information Sciences
(CRC) at King Saud University. The authors are grateful for this support.

http://doi.org/10.3837/tiis.2019.02.011 ISSN : 1976-7277

mailto:almetwaly@ksu.edu.sa
mailto:ahyoussef@ksu.edu.sa

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 669

1. Introduction

The fact that databases are increasingly deployed by various distributed systems over the
recent years, has caused a dramatic growth in the importance of data replication. Replication is
the process of copying data in one server to other (n-1) servers (i.e., replicas) to provide high
availability and fault tolerance. In replication systems, as many as (n-1) servers can fail
without compromising data availability. In addition, client request processing proceeds in case
of server failure. However, maintaining data consistency represents a critical challenge in
these systems. Consistency guarantees assert that operations to query and update individual
objects are executed in some sequential order and the effects of update operations are
necessarily reflected in results returned by subsequent query operations [31 and 32]. In order
to ensure that all data ends up on all replicas, every write (update) request to the data needs to
be processed by every replica in its local data store, otherwise the replicas would no longer
contain the same data.

Strong consistency guarantees are often thought to be in conflict with high throughput and
availability [23, 32 and 34]. Hence, many replication systems sacrifice throughput or
availability to support strong consistency guarantees. For example, Paxos [15-18 and 26] and
Primary Backup Replication (PBR) [11] employ a single server (i.e., leader) to ensure that
consistency and serialization are applied all the time. Accordingly, during efficient, failure
free operations, all clients communicate with the single leader at all times. This limitation has
an important consequence since it reduces throughput by placing a disproportionality high
load on the leader, which must process more messages than the other replicas [28 and 30].
Moreover, in case of leader failure, throughput drops to zero until a new leader is elected.
Hence, the throughput of the replication cell is limited by the performance of the leader. In
other words, the employment of single leader technique to maintain consistency causes a
problem of inefficient utilization of the available servers in the replication cell and imbalanced
load distribution among these servers. This problem, in turns, results in performance
degradation.

Chain replication (CR) [32-36] was first proposed by Renesse et. al. [32] to improve
throughput in replication systems while maintaining consistency. They showed that in a
large-scale storage system, maintaining strong consistency is not in conflict with achieving
high throughput and availability. The chain consists of four linearly ordered servers, the first
server is called “the head” and the last server is called “the tail”. The main idea is to classify
client requests into two different classes, the write-requests and the read-requests. The head is
assigned to exclusively process the write (update) requests over the entire replicated data,
while the tail exclusively performs the read (query) requests over the whole replicated data
store. In CR, workload (update and query processes) is divided between the head and the tail,
resulting in better resource utilization and an improved throughput. To maintain consistency,
CR employs a single writer (head) and a single reader (tail), consistency is guaranteed since
read requests are processed only by the tail. Although CR simultaneously supports strong
consistency and high throughput, it suffers from some limitations. Firstly, communication and
computing resources of the chain are not fully utilized since the data are transferred and
processed in only one direction (i.e., from the head to the tail). Secondly, the replicated data
are still treated as a single unit with coarse-grained.

670 Mostafa et al.: Bidirectional Chain Replication for Higher Throughput Provision

The objective of this research is to improve throughput in CR without sacrificing
consistency through better utilization of computing and communication resources. To achieve
this goal, we propose a novel approach called Bidirectional Chain Replication (BCR). Like
CR, BCR consists of four linearly ordered servers connected to form a chain, thus, CR and
BCR have the same hardware. In contrast to CR where the replicated data store on each server
are treated as a single unit, in BCR the replicated data on each server in the chain are split into
two disjoint Logical Partition (LP1, LP2). BCR forms two chains; the first chain (CR1)
exclusively manipulates data objects in LP1 and the second chain (CR2) exclusively
manipulates data objects in LP2, therefore, conflict is avoided and the two chains can work
concurrently on the same hardware in two opposite directions. The simultaneous deployment
of these two chains results in better utilization of hardware in the sense that the two chains can
evenly share the workload, therefore, throughput can be improved.

Experimental performance evaluation of BCR showed an improvement of approximately
85% in throughput over traditional CR. Practically, we can merge every two physical
partitions used by CR into a single physical partition in BCR which reduces the number of the
needed physical partitions using the same set of servers in a datacenter. The main contribution
of this work is to provide a method for attaining higher throughput in replication systems
through better utilization of computing resources without sacrificing consistency.

The rest of this paper is organized as follows: in Section 2, we briefly review essential
concepts related to chain replication. In Section 3, we review related work. In Section 4, we
describe our proposed BCR approach in detail. In Section 5, emprical evaluation for BCR is
described and the results are analyzed and interpreted. Finally, in Section 6, we give our
conclusions and suggestions for future work.

2. Chain Replication
Renesse et. al. [32] proposed Chain Replication, CR, an approach that simultaneously supports
high throughput, availability, and strong consistency in large-scale storage service. In this
approach, the servers replicating data are linearly ordered to form a chain, as shown in Fig. 1,
the first server in the chain is called “the head” and the last server is called “the tail”. Request
execution is implemented by the servers roughly as follows: each update-request is directed to
the head and executed at its local store, then the state changes are forwarded along a reliable
FIFO link to the next server of the chain which updates its local data store and forwards the
changes to the next server and so on until the changes reach the tail. At this point, the tail sends
a reply (write-notification) to the client and the write finishes. An update acknowledgement is
generated at the tail and is sent along the chain until it reaches the head. Query requests are
directed to the tail and processed there automatically. The reply for every query request is
generated by the tail and sent to the client. Since all the values stored in the tail are guaranteed
to have been propagated to all replicas, reads are always consistent [36].

Unlike Paxos and Primary Backup Replication (PBR) where all decisions for update and
query requests and their replies are made by a single server (i.e., the leader), CR deploys a
better resource utilization procedure to improve throughput. The workload is distributed
among the head and the tail by splitting client requests into updates (writes) which are
processed by the head and queries (reads) which are processed by the tail, the two servers
(head and tail) work concurrently. However, communication and computing resources are not
fully utilized since the data are transferred and processed in only one way (i.e., from the head
to the tail).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 671

3. .

3. Related work
A wide variety of replication techniques has been introduced in literature [1-4]. Generally
speaking, replication techniques can be classified into active replication and passive
replication. In active replication [5-7], all replicas execute all client requests in the same order,
assuming that the process hosted by the replicas are deterministic. Deterministic means that,
given the same initial state and a request sequence, all processes will produce the same
response sequence and end up in the same final state. The Chubby lock service for loosely
coupled distributed systems [20], the Spanner, as Google’s globally distributed database [21],
and PaxStore [19] are examples of services that utilize active replication. The disadvantage of
active replication is that in practice most of the real world servers are nondeterministic. In
passive replication [8-14], there is one replica, the primary, which executes the client requests
and propagates the new states to all other replicas (backup servers). Then, the backups apply
updates in the same order sent by the primary. If the primary server fails, one of the backup
servers takes its place. Passive replication may be used even for nondeterministic processes.
One of the service that sometimes utilizes passive replication is Zookeeper [22]. However, the
disadvantage of passive replication compared to active replication is that in case of failure the
response is delayed.

Paxos [15-18 and 26] is a widely used active replication technique. It is a consensus
protocol that results in an agreement on an order of inputs among a group of replicas, even
when the replicas in the group crash and restart or when a minority of them permanently fail.
Paxos classifies the processes by their roles in the protocol: Client, Proposer, Acceptor,
Learner, and Leader. A single processor may play one or more roles at the same time without
affecting the correctness of the protocol. The Client issues a request to the proposer, and waits
for a response. The proposer promotes the client request, attempting to convince the acceptors
to agree on it. Learners act as the replication factor for the protocol. Once a client request has
been agreed on by the majority of the acceptors, the learner may execute the request and send
a response to the client. The leader is a distinguished proposer that acts as a coordinator to
move the protocol forward when conflicts occur.

update

Fig. 1. Chain Replication

Write

Write-Notification

Read

client

Reply

client

Head (S1) S2 S3 Tail (S4)
ACK.

672 Mostafa et al.: Bidirectional Chain Replication for Higher Throughput Provision

The Primary-Backup Replication (PBR) protocol [11] is massively used in passive
replication. In this approach, one server, the primary, perform the following jobs [32]: 1)
imposes a sequencing on client requests to ensure that strong consistency holds, 2) executes
locally the client requests, 3) distributes to other servers (backups) the client requests resulting
updates, 4) awaits for acknowledgement from all non-faulty backups, and 5) send a reply to
the client after receiving those acknowledgements. If the primary fails, one of the backups is
elected to that role.

Both Paxos and PBR employ a single server (leader/primary) to manage consistency and
serialization. Accordingly, during efficient, failure free operations, all clients communicate
with the single leader at all times. This limitation has an important consequence since it
impairs throughput and scalability by placing a disproportionality high load on the leader,
which must process more messages than the other replicas [28 and 30]. Moreover, in case of
leader failure, throughput drops to zero until a new leader is elected. Several approaches have
been proposed to resolve the issue of a single leader bottleneck. Their main objective is to
improve replication cell performance by distributing consistency management responsibilities
among servers. These approaches include different variants of Paxos such as Multi-Paxos [16
and 17], Fast Paxos [27], Mencius [28], generalized Paxos [29], EPaxos [30], Object
Ownership Distribution (OOD) [13], and chain replication [32-36].

Chain replication (CR) is intended for supporting large-scale storage services that exhibit
high throughput and availability without sacrificing strong consistency guarantees. In chain
replication, the primary’s role in sequencing requests is partitioned between two servers. The
head sequences update requests; the tail extends that sequence by handling query requests.
This sharing of responsibility enables lower-latency and lower-overhead processing for query
requests, because only the tail is involved in processing a query and that processing is never
delayed by activity elsewhere in the chain. This is contrast to the primary backup approach,
where the primary must await acknowledgements from backups for prior updates before
responding to a query. In both approaches, update requests must be distributed to all servers
replicating an object otherwise the replicas will deviate. Chain replication does this
broadcasting serially, resulting in higher latency than the primary/backup approach where
updates are disseminated to backups in parallel. With parallel dissemination, the time needed
to generate a reply is proportional to the maximum latency of any non-faulty backup; with
serial dissemination, it is proportional to the sum of those latencies [32]. Chain replication
exhibits a higher latency than multicast-based replication solutions but, on the other hand, it is
extremely resource efficient and, therefore, it has been adopted in several practical systems.
FAWN-KV [39] and Hyperdex [40] are two data stores that offer strong consistency using
chain-replication as the main replication technique. BCR extends CR to achieve better
utilization of computing and communication resources and to gain higher throughput.

The work in [34] proposed a novel datastore design, named ChainReaction. The proposed
solution relies on a novel variant of chain-replication that offers the causal+ consistency
criteria [37and 38] and is able to leverage the existence of multiple replicas to distribute the
load of read requests. As a result, ChainReaction avoids the bottlenecks of linearizability
while providing competitive performance when compared with systems merely offering
eventual consistency. ChainReaction can be deployed either on a single datacenter or on Geo-
replicated scenarios, over multiple datacenters. Additionally, ChainReaction provides a
transactional construct that allows a client to read the value of multiple objects in a causal+
consistent way.

The work in [35] presents the design, implementation, and evaluation of CRAQ (Chain
Replication with Apportioned Queries), an object storage system that, while maintaining the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 673

strong consistency properties of chain replication, provides lower latency and higher
throughput for read operations by supporting apportioned queries: that is, dividing read
operations over all nodes in a chain, as opposed to requiring that they all be handled by a single
primary node. CRAQ enables any chain node to handle read operations while preserving
strong consistency, thus supporting load balancing across all nodes storing an object.
Furthermore, when workloads are read mostly, an assumption used in other systems such as
the Google File System [24] and Memcached [25], the performance of CRAQ rivals systems
offering only eventual consistency. In addition to strong consistency, CRAQ’s design
naturally supports eventual-consistency among read operations for lower-latency reads during
write contention and degradation to read-only behavior during transient partitions. CRAQ
allows applications to specify the maximum staleness acceptable for read operations. CRAQ
techniques can be directly supported in BCR.

4. The Proposed BCR

4.1 BCR Intuitions and Contributions
The main objective of BCR is to improve throughput in CR without sacrificing consistency
through better utilization of computing and communication resources of the chain. As shown
in Fig. 2, BCR is composed of four uniquely identified servers (S1, S2, S3, and S4) which are
linearly connected to form a chain. To maintain availability, data is replicated on each server,
the replicated data is divided into two logical partitions (LP1, LP2). In order to maintain data
availability in BCR, data is replicated on each server, the replicated data is divided into two logical
partitions (LP1, LP2). Thus, data redundancy is achieved by this replication. If LP1 or LP2 is
corrupted on one server, data can be recovered from another server. It is worthy to mention
here, that fault tolerance techniques used in traditional CR are valid in BCR, hence, it is out of
scope of this work. On server level, the first server in BCR, S1, (formerly the head in CR) has
the exclusive right to concurrently write to the LP1 and read from the LP2. Conversely, the last
server in BCR, S4, (formerly the tail in CR) has the exclusive right to concurrently write to the
LP2 and read from LP1. Thus, S1 employs two processes: H1 to exclusively write to LP1 and T2
to exclusively read from LP2. Conversely, S4, employs two processes: H2 to exclusively write
to LP2 and T1 to exclusively read from LP1. The inverse assignment of the read and write
operations on S1 and S4 with respect to the logical partitions is motivated by attaining
concurrent operation of S1 and S4 without conflict. Server, S2, writes on LP1 when triggered by
H1 and writes to LP2 when triggered by S3. On the contrary, server, S3, writes on LP1 when
triggered by S2 and writes to LP2 when triggered by H2. On chain level, BCR forms two chains
running concurrently in two opposite directions (bidirectional chain). The first chain (CR1)
runs from left to right (from S1 to S4) and manipulates data objects belonging to LP1. The
second chain (CR2) runs from right to left (from S4 to S1) and manipulates data objects
belonging to LP2. The processes H1 and T1 forms respectively the head and the tail of CR1,
while the process H2 and T2 forms respectively the head and the tail of CR2.

From the client point of view, BCR has two servers (S1, S4), each one of them can execute
both write and read requests, but on two different data slices. This is contrary to traditional CR
where S1 can only write and S4 can only read. In BCR, a client request manipulating a data
object needs to be directed to the partition to which this object belongs (either LP1 or LP2).
This is illustrated in Table 1 shown below. From this table, we notice that BCR is able to
perform four requests concurrently without affecting consistency. CR1 is able to write
(through H1) to LP1 and read (through T1) from LP1. Conversely, CR2 is able to write (through

674 Mostafa et al.: Bidirectional Chain Replication for Higher Throughput Provision

H2) to LP2 and read (through T2) from LP2. This represents twice the number of requests that
traditional CR can perform concurrently since it can only write through the head and read
through the tail. Servers S1 and S4 shares write and read workload since S1 writes to LP1 and
reads from LP2 while S2 writes to LP2 and reads from LP1. The intermediate servers (S2, S3) are
able to write to both LP1 and LP2. Hence, BCR distributes the workload (write and read
requests) on both chains without conflict between the two chains since data on each server is
partitioned into two disjoint sets. The concurrent deployment of the two chains provides better
utilization of the chain hardware which results in an improved throughput compared to
traditional CR.

Table 1. BCR form the client view

client request corresponding partition sever process chain
Write to LP1 S1 H1 CR1 Read from LP1 S4 T1
Write to LP2 S4 H2 CR2 Read from LP2 S1 T2

4.2 BCR Protocols
The design of BCR is shown in Figs. 3 and 4. The first chain (CR1:H1→S2→S3→T1), shown
in Fig. 3, consists of a head (H1 at S1), two servers (S2, S3), and a tail (T1 at S4). Client requests
targeting data in LP1 are implemented as follows: each write-request is directed to the head
(H1) and is executed at its local store (LP1), then the state changes are forwarded along the
chain link to the next server (S2) which updates its local data store (LP1) and so on until the
changes reach the tail (T1). T1 updates its local store (LP1) and sends a write-notification to the
client and an update-acknowledgement to S3. The last acknowledgement is propagated down
the chain until it reaches H1. Each query-request is directed to T1 which replies directly to the
client.

ACK.

Write

Read

Read

ACK.

update

S4 S1

Fig. 2. BCR architecture

--
T1

S2 S3
T2 H2

 H1

LP1 LP1 LP1 LP1

LP2 LP2 LP2 LP2

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 675

Fig. 3. The First Chain (CR1)

Similarly, the second chain (CR2:T2←S2←S3←H2), shown in Fig. 4, consists of a head (H2
at S4), two servers (S3, S2), and a tail (T2 at S1). Client requests targeting data in LP2 are
implemented as follows: each write-request is directed to the head (H2) and executed at it local
store (LP2), then the state changes are forwarded to the next server (S3) which updates its local
data store (LP2), and so on until the changes reach the tail (T2). T2 updates its local data store
(LP2) and sends a write-notification to the client and an update-acknowledgement to S2. The
last acknowledgement is propagated down the chain until it reaches H2. Each query-request is
directed to T2 which replies directly to the client.

Fig. 4. The Second Chain (CR2)

The protocol of the client side of BCR is shown in Fig. 5. Upon write request, the client has
to determine the partition (LP1 or LP2) to which the target object belongs. If the object belongs

ACK
 ACK

ACK

update
update

update

Reply Read Write

S1 S4 H1 T1
S2 S3

Client read
from LP1 Client writes to LP1 and

waits for notification

wirte-notifcation

LP1 LP1
LP1 LP1

update
update

ACK.
ACK.

ACK.

update S4 S1

Read Reply
Write

T2 H2
S2 S3

Client read
from LP2 Client writes to LP2 and

waits for notification
wirte-notifcation

LP2 LP2
LP2 LP2

676 Mostafa et al.: Bidirectional Chain Replication for Higher Throughput Provision

to LP1, the request is directed to S1, otherwise, it is directed to S4. Similarly, upon read request,
the client determines the partition to which the target object belongs. If the object belongs to
LP1, the request is directed to S4, otherwise, it is directed to S1. The code implementing the
server side is similar the code of traditional CR with minor modifications. We enabled the read
process at S1 and the write process at S4 to allow both servers to read and write. In addition, we
modified the code on all servers to allow update notifications and acknowledgements to
transfer in both directions (i.e., from S1 to S4 and vice versa).

Fig. 5. Client side read and write protocols in BCR

Finally, it is worth noticing that the mechanisms employed by BCR to recover from failure
of a node are similar to those in the original chain replication. There are three types of failures
and corresponding repairs [32]:1) Head Failure: when the head (S1 for CR1 or S4 for CR2) node
fails, its successor (S2 for CR1 or S3 for CR2) takes over as the new head, as it contains most of
the previous state of the head. All updates that were in head but were not propagated to it
successor are retransmitted by the client proxy when the failure is detected. 2) Tail Failure:
when tail node (S4 for CR1 or S3 for CR2) fails, it is easily recovered by replacing it with its
predecessor, (S3 for CR1 or S2 for CR2). Because of the properties of the chain, the predecessor
is guaranteed to have newer or equal state to the failing tail. 3) Failure of a middle node (S2 or
S3): when a middle node (S2) fails, the chain is repaired by connecting S1 to S3 without any
state transfer, however, the two nodes (S1, S3) may have to exchange some pending PUT
operations that were sent to S2, but did not arrive to any of them. Similarly, when a middle
node (S3) fails, the chain is repaired by connecting S4 to S2 without any state transfer, however,
the two nodes (S4, S2) may have to exchange some pending PUT operations that were sent to
S3, but did not arrive to any of them.

5. Experiments
In order to evaluate the throughput of BCR vs. the throughput of CR, we have conducted a set
of experiments. The experiments were conducted on six Virtual Machines (VM) outsourced
from the private cloud of King Saud University. Each VM is an eight-core machine with eight
GB memory. Four VMs are dedicated for servers S1, S2, S3, S4, one VM is used as a master,
and the last VM is used to generate client requests. Since we have up to 500 clients, we cannot
provide a separate VM for each client program; hence, we created a thread for each client
program on the same VM. The object store is replicated at each sever and contains 4000

Upon write k do
Get LP where k belongs
If k belongs to LP1 then send write request to S1
Else send write request to S4

End

Upon write k do

Get LP where k belongs
If k belongs to LP1 then send write request to S4
Else send write request to S1

End

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 677

objects which are evenly divided into two partitions, LP1 and LP2, each partition contains 2000
objects.

5.1 Experiments Setup
We have conducted four experiments as shown in Table 2. The number of clients in each
experiment is 200, 300, 400, and 500 respectively where each client sends 10 requests. The
total number of requests sent by the clients in each experiment is 2000, 3000, 4000, and 5000
respectively. Client requests are generated at a rate of 10% writes and 90% reads since this rate
is very common in most large-scale applications such as Facebook and Twitter. Another
reason for choosing this rate is that the original CR is more suitable for applications with high
read rate. However, we have conducted experiments with different rates (i.e., 20% writes-80%
reads, 30% writes-70% reads, and 40% writes-60% reads) and have obtained similar results. In
all experiments, we measured throughput and execution time for both BCR and CR. The
execution time is measured empirically by registering the VM local time at the instant of
issuing the first request from a client till the execution of the last request and take the
difference between them.

Table 2. Experiment Setup
Exp.
ID

No. of
clients

No. of
requests

No. of write
requests

No. of read
requests

Exp. 1 200 2000 200 1800
Exp. 2 300 3000 300 2700
Exp. 3 400 4000 400 3600
Exp. 4 500 5000 500 4500

5.2 Experimental Results
Tables 3, 4, 5 and 6 and Figs 6, 7, 8, and 9 show the load distribution in BCR and CR in
Exp1,2,3, and 4 respectively. From these tables, we can see that in CR, S1 (the head) executes
write requests only which represent 10% of all requests, while S4 (the tail) executes read
requests only which represent 90% of all requests. On the other hand, in BCR, both servers S1
and S4 can executes write and read requests and they approximately share these requests
evenly. The tables also show that in BCR, the two chains approximately execute the same
number of requests.

Table 3. Load Distribution (no. of requests) in CR and BCR (Exp.1)
CR BCR

S1 S4 S1 S4
R W R W R W R W
0 200 1800 0 904 98 896 102

200 1800 1002 998
CR1 CR2 (NA) CR1 CR2
2000 0 994 1006

678 Mostafa et al.: Bidirectional Chain Replication for Higher Throughput Provision

Fig. 6. Load Distribution (no. of requests) in CR and BCR (Exp.1)

Table 4. Load Distribution (no. of requests) in CR and BCR (Exp.2)
CR BCR

S1 S4 S1 S4
R W R W R W R W
0 300 2700 0 1377 156 1323 144

300 2700 1533 1467
CR1 CR2 (NA) CR1 CR2
3000 0 1479 1521

Fig. 7. Load Distribution (no. of requests) in CR and BCR (Exp.2)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 679

Table 5. Load Distribution (no. of requests) in CR and BCR (Exp.3)
CR BCR

S1 S4 S1 S4
R W R W R W R W
0 400 3600 0 1768 203 1832 197

400 3600 1971 2029
CR1 CR2 (NA) CR1 CR2
4000 0 2035 1965

Fig. 8. Load Distribution (no. of requests) in CR and BCR (Exp.3)

Table 6. Load Distribution (no. of requests) in CR and BCR (Exp.4)
CR BCR

S1 S4 S1 S4
R W R W R W R W
0 500 4500 0 2312 244 2188 256

500 4500 2556 2444
CR1 CR2 (NA) CR1 CR2
5000 0 2432 2568

680 Mostafa et al.: Bidirectional Chain Replication for Higher Throughput Provision

Fig. 9. Load Distribution (no. of requests) in CR and BCR (Exp.4)

Fig. 10 compares the load distribution in BCR and CR, the results depict that while in CR

there is a significant difference between the loads on S1 and S4, in BCR, these servers have
approximately the same load. Moreover, Fig. 11 shows that in BCR, the load on CR1 and CR2
are approximately the same.

Fig. 10. Load distribution on S1 and S4 in BCR and CR

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 681

Fig. 11. Load distribution on CR1 and CR4 in BCR

Fig. 12 compares throughput in BCR and CR, a quick inspection to this figure releases that

BCR outperforms CR in terms of read, write, and total throughput by approximately 85%. The
reason for this result is that BCR utilizes two chains in parallel to execute all requests. This
result is also shown in Fig. 13, which depicts that in all experiments, BCR execution time is
less than CR execution time by a factor of approximately two.

Fig. 12. Throughput (request/sec) in BCR and CR

682 Mostafa et al.: Bidirectional Chain Replication for Higher Throughput Provision

Fig. 13. Execution time in BCR and CR

6. Conclusions and Future Work
In this paper, we proposed a novel approach called Bidirectional Chain Replication (BCR) to
improve throughput in traditional Chain Replication (CR) through better utilization of
computing and communication resources of the chain. Unlike CR where the whole replicated
data store is treated as a single unit, in BCR the replicated data at each server in the chain are
split into two disjoint Logical Partitions (LP1, LP2). This forms two chains that can work
concurrently on the same hardware in two opposite directions and share the workload without
conflict since the first chain (CR1) exclusively manipulates data objects in LP1 and the second
chain (CR2) exclusively manipulates data objects in LP2. Experimental performance
evaluation of BCR showed an improvement of approximately 85% in throughput over
traditional CR. One limitation on BCR is that its performance depends on how requests are
distributed on the logical partitions. In the ideal case, both types of requests are evenly
distributed over the two partitions. Practically, some data objects belonging to a single
partition are requested more frequently than others belonging to the other partition which
results in unfair distribution of the requests on the partitions. The challenge is how to
dynamically redistribute the popular data objects between the two logical partitions such that
requests are uniformly distributed over partitions. This challenge is left for future work.
Another future research direction is how to expand BCR to duplicate the performance of
existence practical systems such as ChainReaction [34] and CRAQ [35].

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 683

References
[1] Charron-Bost, B., Pedone, F. & Schiper, A., “Replication: Theory and Practice,” Springer, 2010.

Article (CrossRef Link)
[2] Furat F. and Almetwally M., “Callenges and New Avenues in Existing Replication Techniques,” in

Proc. of proceeding of the 6th International Conference on Cloud Computing and Service Science
(CLOSER2016), vol. 1, pp. 147-154, Rome, Italy, April 2016.

[3] Safa Albasam and Almetwally M., “Dynamic Health-based Object Ownership Distributed
Protocol,” in Proc. of proceeding of 6th International Conference on Digital Information
Processing and Communications (ICDIPC), Beirut, Lebanon, April 2016.

[4] F.P. Junqueira and M. Serafini, “On barriers and the gap between active and passive replication,” in
Proc. of Proceeding of the 27th International Symposium on Distributed Computing (DISC2013),
Springer, vol. 8205, pp. 299-313, October 14-18, Jerusalem, Israel, 2013. Article (CrossRef Link)

[5] Schneider, F. B. & Zhou, L., “Implementing Trustworthy Services Using Replicated State
Machines,” in Proc. of IEEE Symposium on Security & Privacy, vol. 3, pp. 34-43, Oakland,
California, USA, 2005. Article(CrossRefLink)

[6] Sousa, J. & Bessani, A. “From Byzantine Consensus to BFT State Machine Replication: A
Latency-Optimal Transformation,” in Proc. of proceeding of the 9th IEEE European Dependable
Computing Conference (EDCC2012), pp. 37-48, Sibiu, Romania, 2012. Article(CrossRefLink)

[7] Dettoni, F., Lung, L. C., Correia, M. & Luiz, A. F. “Byzantine Fault-Tolerant State Machine
Replication with Twin Virtual Machines,” in Proc. of IEEE Symposium On Computers and
Communications (ISCC2013), Split, Croatia, July 2013. Article(CrossRefLink)

[8] Cecchet, E., Candea, G. & Ailamaki, A. “Middleware Based Database Replication: The Gaps
Between Theory and Practice,” in Proc. of Proceedings of the 2008 ACM Sigmod International
Conference On Management of Data, pp. 739-752, 2008. Article(CrossRefLink)

[9] Lang, W., Patel, J. M. & Naughton, J. F. “On Energy Management, Load Balancing and
Replication,” ACM SIGMOD Record, vol. 38, pp. 35-42, 2010. Article(CrossRefLink)

[10] Effatparvar, M., Yazdani, N., Effatparvar, M., Dadlani, A. & Khonsari, A. “Improved Algorithms
for Leader Election in Distributed Systems,” in Proc. of proceeding of the 2nd IEEE International
Conference on Computer Engineering and Technology (ICCET2010), V2-6-V2-10, 2010.

[11] Budhiraja, N., Marzullo, K., Schneider, F. B. & Toueg, S. “The Primary-Backup Approach,”
Distributed Systems, vol. 2, pp. 199-216, 1993.

[12] Mostafa, A. M. & Youssef, A. E. A, “Primary Shift Protocol for Improving Availability in
Replication Systems,” International Journal of Computer Applications, vol. 72, pp. 37-44, 2013.

[13] Mostafa, A. M. & Youssef, A. E. “Improving Resource Utilization, Scalability, and Availability in
Replication Systems Using Object Ownership Distribution,” Arabian Journal for Science and
Engineering, vol. 39, no. 12, pp. 8731-8741, 2014. Article(CrossRefLink)

[14] Mostafa, A. M. & Youssef, A. E. “PRP: A Primary Replacement Protocol Based On Early
Discovery of Battery Power Failure in MANETS,” Multimedia Tools and Applications, vol. 74, no.
16, pp. 6243-6254, 2015. Article(CrossRefLink)

[15] Bolosky, W. J., Bradshaw, D., Haagens, R. B., Kusters, N. P. & Li, P. “Paxos Replicated State
Machines as The Basis of a High-Performance Data Store,” in Proc. of Proceeding of 8th USENIX
Symposium on Networked Systems Design and Implementation (NSDI2011), pp.141-154, Boston,
MA, April 2011.

[16] Lamport, L. “The Part-Time Parliament”, ACM Transactions On Computer Systems (ToCS), vol.
16, pp. 133- 169, 1998. Article(CrossRefLink)

[17] Lamport, L. “Paxos Made Simple,” ACM SIGACT News, vol. 32, pp. 18-25, 2001.
[18] Lampson, B. “The ABCD's of Paxos,”, Proceedings of the twentieth annual ACM symposium on

Principles of Distributed Computing (PODC2001), pp. 13, Newport, Rhode Island, USA, 2001.
Article(CrossRefLink)

https://doi.org/10.1007/978-3-642-11294-2
https://doi.org/10.1007/978-3-642-41527-2_21
https://doi.org/10.1007/978-3-642-11294-2_8
https://doi.org/10.1109/EDCC.2012.32
https://doi.org/10.1109/ISCC.2013.6754979
https://doi.org/10.1145/1376616.1376691
https://doi.org/10.1145/1815948.1815956
https://doi.org/10.1007/s13369-014-1375-1
https://doi.org/10.1007/s11042-014-2091-2
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/383962.383969

684 Mostafa et al.: Bidirectional Chain Replication for Higher Throughput Provision

[19] Tan, Z., Dang, Y., Sun, J., Zhou, W. & Feng, D. “Paxstore: A Distributed Key Value Storage
System,” in Proc. of Proceeding of International Conference on Network and Parallel Computing
(NPC2014), Springer, Lecture Notes in Computer Science, LNCS-8707, pp. 471-484, Ilan, Taiwan,
2014. Article(CrossRefLink)

[20] Burrows, M. “The Chubby Lock Service for Loosely Coupled Distributed System,” in Proc. of
Proceedings of the 7th USENIX Symposium On Operating Systems Design and Implementation
(OSDI2006), pp. 335-350, Seattle, WA, Nov, 2006.

[21] Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J. J., Ghemawat, S., Gubarev, A.,
Heiser, C. & Hochschild, P. “Spanner: Google’s Globally Distributed Databas,” ACM Transactions
On Computer Systems (ToCS), vol. 31, no. 8, 2013. Article(CrossRefLink)

[22] Hunt, P., Konar, M., Junqueira, F. P. & Reed, B. “Zookeeper: Wait-Free Coordination for
Internet-Scale Systems,” in Proc. of USENIX Annual Technical Conference, 2010.

[23] Shapiro, Marc, et al. "Conflict-free replicated data types,” in Proc. of Symposium on
Self-Stabilizing Systems, Springer Berlin Heidelberg. 2011. Article(CrossRefLink)

[24] S. Ghemawat, H. Gobioff, and S.-T. Leung. “The google file system,” in Proc. of Symposium on
Operating Systems Principles (SOSP), Oct. 2003. Article(CrossRefLink)

[25] B. Fitzpatrick. “Memcached: a distributed memory object caching syste,” 2009.
Article(CrossRefLink)

[26] T. D. Chandra, R. Griesemer, and J. Redstone. “Paxos made live: an engineering perspective,” in
Proc. of 26th ACM SOSP, PODC ’07, pages 398–407, New York, NY, USA, 2007.
Article(CrossRefLink)

[27] L. Lamport. Fast Paxos, 2006. Available: Article(CrossRefLink)
[28] Y. Mao, F. P. Junqueira, and K. Marzullo. “Mencius: building efficient replicated state machines

for WANs,” in Proc. of 8th USENIX OSDI, pages 369–384, San Diego, CA, Dec. 2008.
[29] L. Lamport. “Generalized consensus and Paxos,” 2005. Article(CrossRefLink)
[30] Iulian Moraru, David G. Andersen, Michael Kaminsky. “There Is More Consensus in Egalitarian

Parliaments,” in Proc. of Proceedings of the 24th ACM Symposium on Operating Systems
Principles (SOSP '13), pp. 358-372, Farminton, Pennsylvania — November 03 - 06, 2013.
Article(CrossRefLink)

[31] Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wyatt Lloyd†, and Kaushik Veeraraghavan.
“Challenges to adopting stronger consistency at scale,” in Proc. of 15th Workshop on Hot Topics in
Operating Systems, 2015.

[32] Van Renesse, Robbert, and Fred B. Schneider. “Chain Replication for Supporting High Throughput
and Availability,” USENIX Symposium On Operating Systems Design and Implementation
(OSDI04), vol. 4, pp:91-104, 2004.

[33] Van Renesse, Robbert, Chi Ho, and Nicolas Schiper. “Byzantine chain replication,” in Proc. of
International Conference On Principles of Distributed Systems, Springer Berlin Heidelberg, 2012.
Article(CrossRefLink)

[34] Almeida, Sérgio, João Leitão, and Luís Rodrigues. “ChainReaction: a causal+ consistent datastore
based on chain replication,” in Proc. of Proceedings of the 8th ACM European Conference on
Computer Systems, ACM, 2013. Article(CrossRefLink)

[35] Terrace, Jeff, and Michael J. Freedman. “Object Storage on CRAQ: High-Throughput Chain
Replication for Read-Mostly Workloads,” in Proc. of USENIX Annual Technical Conference.
2009.

[36] Fritchie, Scott Lystig. “Chain replication in theory and in practice,” in Proc. of Proceedings of the
9th ACM SIGPLAN workshop on Erlang, 2010. Article(CrossRefLink)

[37] W. Lloyd, M. Freedman, M. Kaminsky, and D. Andersen. “Don’t settle for eventual: scalable
causal consistency for wide- area storage with cops,” in Proc. of ACM SOSP, pages 401–416, 2011.

[38] P. Mahajan, L. Alvisi, and M. Dahlin. “Consistency, availability, and convergence,” Technical
Report TR-11-22, Univ. Texas at Austin, 2011.

[39] D. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and V. Vasudevan. “FAWN: a
fast array of wimpy nodes,” Comm. ACM, vol. 54, no. 7, pp:101–109, 2011. Article(CrossRefLink)

https://link.springer.com/conference/npc
https://doi.org/10.1007/978-3-662-44917-2_39
https://doi.org/10.1145/2518037.2491245
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1145/945445.945450
http://www.danga.com/memcached/
https://doi.org/10.1145/1281100.1281103
http://research.microsoft.com/apps/pubs/default.aspx?id=64624
http://research.microsoft.com/apps/pubs/default.aspx?id=64631
http://sigops.org/sosp/sosp13/index.html
https://doi.org/10.1145/2517349.2517350
https://doi.org/10.1007/978-3-642-35476-2_24
https://doi.org/10.1145/2465351.2465361
https://doi.org/10.1145/1863509.1863515
https://doi.org/10.1145/1965724.1965747

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 685

[40] R. Escriva, B. Wong, and E. G. Sirer. “HyperDex: A distributed, searchable key-value store for
cloud computing,” Technical report, CSD, Cornell University, 2011.

Dr. Almetwally Mostafa is currently an assistant professor at KSU. He received his
M.Sc. from Al-Azhar University, and received his Ph.D. in computers and systems from a
channel program between Université catholique de Louvain Belgium and Al-Azhar
University. He also obtained his B.Sc. degree in Computers and systems Engineering from
Al-Azhar University, Egypt. His research interest includes cloud computing, distributed
systems protocols, mobile and pervasive Computing, fault- tolerance, and Security of
Information systems. Before he joined KSU, he has worked for two years at CETIC Centre
d’Excellence en Technologies de l’Information et de la Communication.

Dr. Ahmed Youssef is currently an associate professor at KSU. He received his Ph.D. and
M.Sc. degrees in Computer Science & Engineering from University of Connecticut
(UConn), CT, USA. He also obtained his M.Sc. and B.Sc. degrees in Electronics & Electrical
Communications Engineering from Helwan University,Egypt. His research interest includes
Cloud Computing, Mobile and Pervasive Computing, Big Data, and Information Security.
Before he joined KSU, he worked in several universities including Helwan University (HU),
British University in Egypt (BUE), Misr International University (MIU), Misr University for
Science &Technology (MUST), Canadian International College (CIC), October 6th
University, and 6th Oct. University for Modern Sciences and Arts (MSA).

Yazeed Ali Aljarbua is a teaching assistant at the department of information systems,
College of Computer and Information Sciences, King Saud University (KSU). He obtained
his bacholer degree in information systems from KSU and he is currently pursuing for his
Master degree.

