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Abstract 
 

Provision of higher throughput without sacrificing consistency guarantees in replication 
systems is a critical problem. In this paper, we propose a novel approach called Bidirectional 
Chain Replication (BCR) to improve throughput in traditional Chain Replication (CR) through 
better utilization of computing and communication resources of the chain. Unlike CR where 
the whole replicated data store is treated as a single unit, in BCR the replicated shared data at 
each server in the chain is split into two disjoint Logical Partitions (LP1, LP2). This forms two 
chains running concurrently on the same hardware in two opposite directions; the first chain 
(CR1) exclusively manipulates data objects in LP1, while the second chain (CR2) exclusively 
manipulates data objects in LP2, therefore, conflict is avoided and concurrency is guaranteed. 
The simultaneous employment of these two chains results in better utilization of hardware in 
the sense that the two chains can evenly share the workload, hence, throughput can be 
improved without sacrificing consistency. Experimental results showed an improvement of 
approximately 85% in throughput of BCR over CR.   
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1. Introduction 

The fact that databases are increasingly deployed by various distributed systems over the 
recent years, has caused a dramatic growth in the importance of data replication. Replication is 
the process of copying data in one server to other (n-1) servers (i.e., replicas) to provide high 
availability and fault tolerance. In replication systems, as many as (n-1) servers can fail 
without compromising data availability. In addition, client request processing proceeds in case 
of server failure. However, maintaining data consistency represents a critical challenge in 
these systems. Consistency guarantees assert that operations to query and update individual 
objects are executed in some sequential order and the effects of update operations are 
necessarily reflected in results returned by subsequent query operations [31 and 32]. In order 
to ensure that all data ends up on all replicas, every write (update) request to the data needs to 
be processed by every replica in its local data store, otherwise the replicas would no longer 
contain the same data.  

Strong consistency guarantees are often thought to be in conflict with high throughput and 
availability [23, 32 and 34]. Hence, many replication systems sacrifice throughput or 
availability to support strong consistency guarantees. For example, Paxos [15-18 and 26] and 
Primary Backup Replication (PBR) [11] employ a single server (i.e., leader) to ensure that 
consistency and serialization are applied all the time. Accordingly, during efficient, failure 
free operations, all clients communicate with the single leader at all times. This limitation has 
an important consequence since it reduces throughput by placing a disproportionality high 
load on the leader, which must process more messages than the other replicas [28 and 30].  
Moreover, in case of leader failure, throughput drops to zero until a new leader is elected. 
Hence, the throughput of the replication cell is limited by the performance of the leader. In 
other words, the employment of single leader technique to maintain consistency causes a 
problem of inefficient utilization of the available servers in the replication cell and imbalanced 
load distribution among these servers. This problem, in turns, results in performance 
degradation. 

Chain replication (CR) [32-36] was first proposed by Renesse et. al. [32] to improve 
throughput in replication systems while maintaining consistency. They showed that in a 
large-scale storage system, maintaining strong consistency is not in conflict with achieving 
high throughput and availability. The chain consists of four linearly ordered servers, the first 
server is called “the head” and the last server is called “the tail”. The main idea is to classify 
client requests into two different classes, the write-requests and the read-requests. The head is 
assigned to exclusively process the write (update) requests over the entire replicated data, 
while the tail exclusively performs the read (query) requests over the whole replicated data 
store. In CR, workload (update and query processes) is divided between the head and the tail, 
resulting in better resource utilization and an improved throughput. To maintain consistency, 
CR employs a single writer (head) and a single reader (tail), consistency is guaranteed since 
read requests are processed only by the tail. Although CR simultaneously supports strong 
consistency and high throughput, it suffers from some limitations. Firstly, communication and 
computing resources of the chain are not fully utilized since the data are transferred and 
processed in only one direction (i.e., from the head to the tail). Secondly, the replicated data 
are still treated as a single unit with coarse-grained. 
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The objective of this research is to improve throughput in CR without sacrificing 
consistency through better utilization of computing and communication resources. To achieve 
this goal, we propose a novel approach called Bidirectional Chain Replication (BCR). Like 
CR, BCR consists of four linearly ordered servers connected to form a chain, thus, CR and 
BCR have the same hardware. In contrast to CR where the replicated data store on each server 
are treated as a single unit, in BCR the replicated data on each server in the chain are split into 
two disjoint Logical Partition (LP1, LP2). BCR forms two chains; the first chain (CR1) 
exclusively manipulates data objects in LP1 and the second chain (CR2) exclusively 
manipulates data objects in LP2, therefore, conflict is avoided and the two chains can work 
concurrently on the same hardware in two opposite directions. The simultaneous deployment 
of these two chains results in better utilization of hardware in the sense that the two chains can 
evenly share the workload, therefore, throughput can be improved. 

Experimental performance evaluation of BCR showed an improvement of approximately 
85% in throughput over traditional CR. Practically, we can merge every two physical 
partitions used by CR into a single physical partition in BCR which reduces the number of the 
needed physical partitions using the same set of servers in a datacenter. The main contribution 
of this work is to provide a method for attaining higher throughput in replication systems 
through better utilization of computing resources without sacrificing consistency. 

The rest of this paper is organized as follows: in Section 2, we briefly review essential 
concepts related to chain replication. In Section 3, we review related work. In Section 4, we 
describe our proposed BCR approach in detail. In Section 5, emprical evaluation for BCR is 
described and the results are analyzed and interpreted. Finally, in Section 6, we give our 
conclusions and suggestions for future work. 

2. Chain Replication 
Renesse et. al. [32] proposed Chain Replication, CR, an approach that simultaneously supports 
high throughput, availability, and strong consistency in large-scale storage service. In this 
approach, the servers replicating data are linearly ordered to form a chain, as shown in Fig. 1, 
the first server in the chain is called “the head” and the last server is called “the tail”. Request 
execution is implemented by the servers roughly as follows: each update-request is directed to 
the head and executed at its local store, then the state changes are forwarded along a reliable 
FIFO link to the next server of the chain which updates its local data store and forwards the 
changes to the next server and so on until the changes reach the tail. At this point, the tail sends 
a reply (write-notification) to the client and the write finishes. An update acknowledgement is 
generated at the tail and is sent along the chain until it reaches the head. Query requests are 
directed to the tail and processed there automatically.  The reply for every query request is 
generated by the tail and sent to the client. Since all the values stored in the tail are guaranteed 
to have been propagated to all replicas, reads are always consistent [36]. 

Unlike Paxos and Primary Backup Replication (PBR) where all decisions for update and 
query requests and their replies are made by a single server (i.e., the leader), CR deploys a 
better resource utilization procedure to improve throughput. The workload is distributed 
among the head and the tail by splitting client requests into updates (writes) which are 
processed by the head and queries (reads) which are processed by the tail, the two servers 
(head and tail) work concurrently. However, communication and computing resources are not 
fully utilized since the data are transferred and processed in only one way (i.e., from the head 
to the tail). 
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3. Related work 
A wide variety of replication techniques has been introduced in literature [1-4]. Generally 
speaking, replication techniques can be classified into active replication and passive 
replication. In active replication [5-7], all replicas execute all client requests in the same order, 
assuming that the process hosted by the replicas are deterministic.  Deterministic means that, 
given the same initial state and a request sequence, all processes will produce the same 
response sequence and end up in the same final state. The Chubby lock service for loosely 
coupled distributed systems [20], the Spanner, as Google’s globally distributed database [21], 
and PaxStore [19] are examples of services that utilize active replication. The disadvantage of 
active replication is that in practice most of the real world servers are nondeterministic. In 
passive replication [8-14], there is one replica, the primary, which executes the client requests 
and propagates the new states to all other replicas (backup servers). Then, the backups apply 
updates in the same order sent by the primary.  If the primary server fails, one of the backup 
servers takes its place. Passive replication may be used even for nondeterministic processes. 
One of the service that sometimes utilizes passive replication is Zookeeper [22]. However, the 
disadvantage of passive replication compared to active replication is that in case of failure the 
response is delayed. 

Paxos [15-18 and 26] is a widely used active replication technique. It is a consensus 
protocol that results in an agreement on an order of inputs among a group of replicas, even 
when the replicas in the group crash and restart or when a minority of them permanently fail. 
Paxos classifies the processes by their roles in the protocol: Client, Proposer, Acceptor, 
Learner, and Leader. A single processor may play one or more roles at the same time without 
affecting the correctness of the protocol. The Client issues a request to the proposer, and waits 
for a response. The proposer promotes the client request, attempting to convince the acceptors 
to agree on it. Learners act as the replication factor for the protocol. Once a client request has 
been agreed on by the majority of the acceptors, the learner may execute the request and send 
a response to the client. The leader is a distinguished proposer that acts as a coordinator to 
move the protocol forward when conflicts occur. 

update 

Fig. 1. Chain Replication 
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The Primary-Backup Replication (PBR) protocol [11] is massively used in passive 
replication. In this approach, one server, the primary, perform the following jobs [32]: 1) 
imposes a sequencing on client requests to ensure that strong consistency holds, 2) executes 
locally the client requests, 3) distributes to other servers (backups) the client requests resulting 
updates, 4) awaits for acknowledgement from all non-faulty backups, and 5) send a reply to 
the client after receiving those acknowledgements. If the primary fails, one of the backups is 
elected to that role. 

Both Paxos and PBR employ a single server (leader/primary) to manage consistency and 
serialization. Accordingly, during efficient, failure free operations, all clients communicate 
with the single leader at all times. This limitation has an important consequence since it 
impairs throughput and scalability by placing a disproportionality high load on the leader, 
which must process more messages than the other replicas [28 and 30].  Moreover, in case of 
leader failure, throughput drops to zero until a new leader is elected. Several approaches have 
been proposed to resolve the issue of a single leader bottleneck. Their main objective is to 
improve replication cell performance by distributing consistency management responsibilities 
among servers. These approaches include different variants of Paxos such as Multi-Paxos [16 
and 17], Fast Paxos [27], Mencius [28], generalized Paxos [29], EPaxos [30], Object 
Ownership Distribution (OOD) [13], and chain replication [32-36]. 

Chain replication (CR) is intended for supporting large-scale storage services that exhibit 
high throughput and availability without sacrificing strong consistency guarantees. In chain 
replication, the primary’s role in sequencing requests is partitioned between two servers. The 
head sequences update requests; the tail extends that sequence by handling query requests. 
This sharing of responsibility enables lower-latency and lower-overhead processing for query 
requests, because only the tail is involved in processing a query and that processing is never 
delayed by activity elsewhere in the chain. This is contrast to the primary backup approach, 
where the primary must await acknowledgements from backups for prior updates before 
responding to a query. In both approaches, update requests must be distributed to all servers 
replicating an object otherwise the replicas will deviate. Chain replication does this 
broadcasting serially, resulting in higher latency than the primary/backup approach where 
updates are disseminated to backups in parallel. With parallel dissemination, the time needed 
to generate a reply is proportional to the maximum latency of any non-faulty backup; with 
serial dissemination, it is proportional to the sum of those latencies [32]. Chain replication 
exhibits a higher latency than multicast-based replication solutions but, on the other hand, it is 
extremely resource efficient and, therefore, it has been adopted in several practical systems. 
FAWN-KV [39] and Hyperdex [40] are two data stores that offer strong consistency using 
chain-replication as the main replication technique. BCR extends CR to achieve better 
utilization of computing and communication resources and to gain higher throughput. 

The work in [34] proposed a novel datastore design, named ChainReaction. The proposed 
solution relies on a novel variant of chain-replication that offers the causal+ consistency 
criteria [37and 38] and is able to leverage the existence of multiple replicas to distribute the 
load of read requests. As a result, ChainReaction avoids the bottlenecks of linearizability 
while providing competitive performance when compared with systems merely offering 
eventual consistency. ChainReaction can be deployed either on a single datacenter or on Geo- 
replicated scenarios, over multiple datacenters. Additionally, ChainReaction provides a 
transactional construct that allows a client to read the value of multiple objects in a causal+ 
consistent way. 

The work in [35] presents the design, implementation, and evaluation of CRAQ (Chain 
Replication with Apportioned Queries), an object storage system that, while maintaining the 
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strong consistency properties of chain replication, provides lower latency and higher 
throughput for read operations by supporting apportioned queries: that is, dividing read 
operations over all nodes in a chain, as opposed to requiring that they all be handled by a single 
primary node. CRAQ enables any chain node to handle read operations while preserving 
strong consistency, thus supporting load balancing across all nodes storing an object. 
Furthermore, when workloads are read mostly, an assumption used in other systems such as 
the Google File System [24] and Memcached [25], the performance of CRAQ rivals systems 
offering only eventual consistency. In addition to strong consistency, CRAQ’s design 
naturally supports eventual-consistency among read operations for lower-latency reads during 
write contention and degradation to read-only behavior during transient partitions. CRAQ 
allows applications to specify the maximum staleness acceptable for read operations. CRAQ 
techniques can be directly supported in BCR. 

4. The Proposed BCR 

4.1 BCR Intuitions and Contributions  
The main objective of BCR is to improve throughput in CR without sacrificing consistency 
through better utilization of computing and communication resources of the chain. As shown 
in Fig. 2, BCR is composed of four uniquely identified servers (S1, S2, S3, and S4) which are 
linearly connected to form a chain. To maintain availability, data is replicated on each server, 
the replicated data is divided into two logical partitions (LP1, LP2). In order to maintain data 
availability in BCR, data is replicated on each server, the replicated data is divided into two logical 
partitions (LP1, LP2). Thus, data redundancy is achieved by this replication. If LP1 or LP2 is 
corrupted on one server, data can be recovered from another server. It is worthy to mention 
here, that fault tolerance techniques used in traditional CR are valid in BCR, hence, it is out of 
scope of this work. On server level, the first server in BCR, S1, (formerly the head in CR) has 
the exclusive right to concurrently write to the LP1 and read from the LP2. Conversely, the last 
server in BCR, S4, (formerly the tail in CR) has the exclusive right to concurrently write to the 
LP2 and read from LP1.  Thus, S1 employs two processes: H1 to exclusively write to LP1 and T2 
to exclusively read from LP2. Conversely, S4, employs two processes: H2 to exclusively write 
to LP2 and T1 to exclusively read from LP1. The inverse assignment of the read and write 
operations on S1 and S4 with respect to the logical partitions is motivated by attaining 
concurrent operation of S1 and S4 without conflict. Server, S2, writes on LP1 when triggered by 
H1 and writes to LP2 when triggered by S3. On the contrary, server, S3, writes on LP1 when 
triggered by S2 and writes to LP2 when triggered by H2. On chain level, BCR forms two chains 
running concurrently in two opposite directions (bidirectional chain). The first chain (CR1) 
runs from left to right (from S1 to S4) and manipulates data objects belonging to LP1. The 
second chain (CR2) runs from right to left (from S4 to S1) and manipulates data objects 
belonging to LP2.  The processes H1 and T1 forms respectively the head and the tail of CR1, 
while the process H2 and T2 forms respectively the head and the tail of CR2. 

From the client point of view, BCR has two servers (S1, S4), each one of them can execute 
both write and read requests, but on two different data slices. This is contrary to traditional CR 
where S1 can only write and S4 can only read. In BCR, a client request manipulating a data 
object needs to be directed to the partition to which this object belongs (either LP1 or LP2). 
This is illustrated in Table 1 shown below. From this table, we notice that BCR is able to 
perform four requests concurrently without affecting consistency. CR1 is able to write 
(through H1) to LP1 and read (through T1) from LP1. Conversely, CR2 is able to write (through 
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H2) to LP2 and read (through T2) from LP2. This represents twice the number of requests that 
traditional CR can perform concurrently since it can only write through the head and read 
through the tail. Servers S1 and S4 shares write and read workload since S1 writes to LP1 and 
reads from LP2 while S2 writes to LP2 and reads from LP1. The intermediate servers (S2, S3) are 
able to write to both LP1 and LP2. Hence, BCR distributes the workload (write and read 
requests) on both chains without conflict between the two chains since data on each server is 
partitioned into two disjoint sets. The concurrent deployment of the two chains provides better 
utilization of the chain hardware which results in an improved throughput compared to 
traditional CR. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
Table 1. BCR form the client view 

client request corresponding partition sever process chain  
Write to  LP1 S1 H1 CR1 Read from  LP1 S4 T1 
Write to  LP2 S4 H2 CR2 Read from  LP2 S1 T2 

 

4.2 BCR Protocols  
The design of BCR is shown in Figs. 3 and 4. The first chain (CR1:H1→S2→S3→T1), shown 
in Fig. 3, consists of a head (H1 at S1), two servers (S2, S3), and a tail (T1 at S4). Client requests 
targeting data in LP1 are implemented as follows: each write-request is directed to the head 
(H1) and is executed at its local store (LP1), then the state changes are forwarded along the 
chain link to the next server (S2) which updates its local data store (LP1) and so on until the 
changes reach the tail (T1). T1 updates its local store (LP1) and sends a write-notification to the 
client and an update-acknowledgement to S3. The last acknowledgement is propagated down 
the chain until it reaches H1. Each query-request is directed to T1 which replies directly to the 
client. 
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Fig. 3. The First Chain (CR1) 
 

Similarly, the second chain (CR2:T2←S2←S3←H2), shown in Fig. 4, consists of a head (H2 
at S4), two servers (S3, S2), and a tail (T2 at S1). Client requests targeting data in LP2 are 
implemented as follows: each write-request is directed to the head (H2) and executed at it local 
store (LP2), then the state changes are forwarded to the next server (S3) which updates its local 
data store (LP2), and so on until the changes reach the tail (T2). T2 updates its local data store 
(LP2) and sends a write-notification to the client and an update-acknowledgement to S2. The 
last acknowledgement is propagated down the chain until it reaches H2. Each query-request is 
directed to T2 which replies directly to the client.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The Second Chain (CR2) 
 

The protocol of the client side of BCR is shown in Fig. 5. Upon write request, the client has 
to determine the partition (LP1 or LP2) to which the target object belongs. If the object belongs 
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to LP1, the request is directed to S1, otherwise, it is directed to S4. Similarly, upon read request, 
the client determines the partition to which the target object belongs. If the object belongs to 
LP1, the request is directed to S4, otherwise, it is directed to S1. The code implementing the 
server side is similar the code of traditional CR with minor modifications. We enabled the read 
process at S1 and the write process at S4 to allow both servers to read and write. In addition, we 
modified the code on all servers to allow update notifications and acknowledgements to 
transfer in both directions (i.e., from S1 to S4 and vice versa). 

 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Client side read and write protocols in BCR 
 

Finally, it is worth noticing that the mechanisms employed by BCR to recover from failure 
of a node are similar to those in the original chain replication. There are three types of failures 
and corresponding repairs [32]:1) Head Failure: when the head (S1 for CR1 or S4 for CR2) node 
fails, its successor (S2 for CR1 or S3 for CR2) takes over as the new head, as it contains most of 
the previous state of the head. All updates that were in head but were not propagated to it 
successor are retransmitted by the client proxy when the failure is detected. 2) Tail Failure: 
when tail node (S4 for CR1 or S3 for CR2) fails, it is easily recovered by replacing it with its 
predecessor, (S3 for CR1 or S2 for CR2). Because of the properties of the chain, the predecessor 
is guaranteed to have newer or equal state to the failing tail. 3) Failure of a middle node (S2 or 
S3): when a middle node (S2) fails, the chain is repaired by connecting S1 to S3 without any 
state transfer, however, the two nodes (S1, S3) may have to exchange some pending PUT 
operations that were sent to S2, but did not arrive to any of them. Similarly, when a middle 
node (S3) fails, the chain is repaired by connecting S4 to S2 without any state transfer, however, 
the two nodes (S4, S2) may have to exchange some pending PUT operations that were sent to 
S3, but did not arrive to any of them.  

5. Experiments 
In order to evaluate the throughput of BCR vs. the throughput of CR, we have conducted a set 
of experiments.  The experiments were conducted on six Virtual Machines (VM) outsourced 
from the private cloud of King Saud University. Each VM is an eight-core machine with eight 
GB memory. Four VMs are dedicated for servers S1, S2, S3, S4, one VM is used as a master, 
and the last VM is used to generate client requests. Since we have up to 500 clients, we cannot 
provide a separate VM for each client program; hence, we created a thread for each client 
program on the same VM. The object store is replicated at each sever and contains 4000 

Upon write k do 
Get LP where k belongs 
If k belongs to LP1 then send write request to S1 
Else send write request to S4 

End 
 
Upon write k do 

Get LP where k belongs 
If k belongs to LP1 then send write request to S4 
Else send write request to S1 

End 
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objects which are evenly divided into two partitions, LP1 and LP2, each partition contains 2000 
objects.  
 

5.1 Experiments Setup 
We have conducted four experiments as shown in Table 2. The number of clients in each 
experiment is 200, 300, 400, and 500 respectively where each client sends 10 requests. The 
total number of requests sent by the clients in each experiment is 2000, 3000, 4000, and 5000 
respectively. Client requests are generated at a rate of 10% writes and 90% reads since this rate 
is very common in most large-scale applications such as Facebook and Twitter. Another 
reason for choosing this rate is that the original CR is more suitable for applications with high 
read rate. However, we have conducted experiments with different rates (i.e., 20% writes-80% 
reads, 30% writes-70% reads, and 40% writes-60% reads) and have obtained similar results. In 
all experiments, we measured throughput and execution time for both BCR and CR. The 
execution time is measured empirically by registering the VM local time at the instant of 
issuing the first request from a client till the execution of the last request and take the 
difference between them. 
 

Table 2. Experiment Setup 
Exp. 
ID 

No. of 
clients 

No. of 
requests 

No. of write 
requests 

No. of read 
requests 

Exp. 1 200 2000 200 1800 
Exp. 2 300 3000 300 2700 
Exp. 3 400 4000 400 3600 
Exp. 4 500 5000 500 4500 

 

5.2 Experimental Results 
Tables 3, 4, 5 and 6 and Figs 6, 7, 8, and 9 show the load distribution in BCR and CR in 
Exp1,2,3, and 4 respectively. From these tables, we can see that in CR, S1 (the head) executes 
write requests only which represent 10% of all requests, while S4 (the tail) executes read 
requests only which represent 90% of all requests. On the other hand, in BCR, both servers S1 
and S4 can executes write and read requests and they approximately share these requests 
evenly. The tables also show that in BCR, the two chains approximately execute the same 
number of requests. 
 

Table 3. Load Distribution (no. of requests) in CR and BCR (Exp.1) 
CR BCR 

S1 S4 S1 S4 
R W R W R W R W 
0 200 1800 0 904 98 896 102 

200 1800 1002 998 
CR1 CR2 (NA) CR1 CR2 
2000 0 994 1006 
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Fig. 6. Load Distribution (no. of requests) in CR and BCR (Exp.1) 

 
 

Table 4. Load Distribution (no. of requests) in CR and BCR (Exp.2) 
CR BCR 

S1 S4 S1 S4 
R W R W R W R W 
0 300 2700 0 1377 156 1323 144 

300 2700 1533 1467 
CR1 CR2 (NA) CR1 CR2 
3000 0 1479 1521 

 
 

 
 

Fig. 7. Load Distribution (no. of requests) in CR and BCR (Exp.2) 
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Table 5. Load Distribution (no. of requests) in CR and BCR (Exp.3) 
CR BCR 

S1 S4 S1 S4 
R W R W R W R W 
0 400 3600 0 1768 203 1832 197 

400 3600 1971 2029 
CR1 CR2 (NA) CR1 CR2 
4000 0 2035 1965 

 
 

 
Fig. 8. Load Distribution (no. of requests) in CR and BCR (Exp.3) 

 
 

Table 6. Load Distribution (no. of requests) in CR and BCR (Exp.4) 
CR BCR 

S1 S4 S1 S4 
R W R W R W R W 
0 500 4500 0 2312 244 2188 256 

500 4500 2556 2444 
CR1 CR2 (NA) CR1 CR2 
5000 0 2432 2568 
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Fig. 9. Load Distribution (no. of requests) in CR and BCR (Exp.4) 

 
Fig. 10 compares the load distribution in BCR and CR, the results depict that while in CR 

there is a significant difference between the loads on S1 and S4, in BCR, these servers have 
approximately the same load. Moreover, Fig. 11 shows that in BCR, the load on CR1 and CR2 
are approximately the same.  

 
 

 
Fig. 10. Load distribution on S1 and S4 in BCR and CR 
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Fig. 11. Load distribution on CR1 and CR4 in BCR  

 
Fig. 12 compares throughput in BCR and CR, a quick inspection to this figure releases that 

BCR outperforms CR in terms of read, write, and total throughput by approximately 85%. The 
reason for this result is that BCR utilizes two chains in parallel to execute all requests.  This 
result is also shown in Fig. 13, which depicts that in all experiments, BCR execution time is 
less than CR execution time by a factor of approximately two. 

 
 

 
Fig. 12. Throughput (request/sec) in BCR and CR 
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Fig. 13. Execution time in BCR and CR 

 

6. Conclusions and Future Work 
In this paper, we proposed a novel approach called Bidirectional Chain Replication (BCR) to 
improve throughput in traditional Chain Replication (CR) through better utilization of 
computing and communication resources of the chain. Unlike CR where the whole replicated 
data store is treated as a single unit, in BCR the replicated data at each server in the chain are 
split into two disjoint Logical Partitions (LP1, LP2). This forms two chains that can work 
concurrently on the same hardware in two opposite directions and share the workload without 
conflict since the first chain (CR1) exclusively manipulates data objects in LP1 and the second 
chain (CR2) exclusively manipulates data objects in LP2. Experimental performance 
evaluation of BCR showed an improvement of approximately 85% in throughput over 
traditional CR. One limitation on BCR is that its performance depends on how requests are 
distributed on the logical partitions. In the ideal case, both types of requests are evenly 
distributed over the two partitions. Practically, some data objects belonging to a single 
partition are requested more frequently than others belonging to the other partition which 
results in unfair distribution of the requests on the partitions. The challenge is how to 
dynamically redistribute the popular data objects between the two logical partitions such that 
requests are uniformly distributed over partitions. This challenge is left for future work. 
Another future research direction is how to expand BCR to duplicate the performance of 
existence practical systems such as ChainReaction [34] and CRAQ [35]. 
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