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Abstract 
 

Recent works have validated the possibility of reducing the energy consumption in wireless 
heterogeneous networks, achieved by switching on/off some base stations (BSs) dynamically. 
In this paper, to realize energy conservation, the discrete time Markov Decision Process 
(DTMDP) is developed to match up the BS switching operations with the traffic load 
variations. Then, an asynchronous decision-making algorithm, which is based on the Bellman 
equation and the on/off priorities of the BSs, is firstly put forward and proved to be optimal in 
this paper. Through reducing the state and action space during one decision, the proposed 
asynchronous algorithm can avoid the “curse of dimensionality” occurred in DTMDP 
frequently. Finally, numerical simulations are conducted to validate the effectiveness and 
advantages of the proposed asynchronous on/off strategies. 
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1. Introduction 

1.1 Motivation and Related Work 

For the environmental and economic benefits, saving energy has been the shared goal among 
every walk of life. With the explosive popularity of smartphones and tablets, the information 
and communication technology (ICT) has accounted for 2%~10% of the world’s total energy 
consumption and the proportion is growing year by year [1-3]. Therefore, some energy 
efficiency-based algorithms have been designed recently for different network environments  
to ease the current situation. 

In [4], to improve the throughput and energy efficiency of the system simultaneously, a 
Cat swarm optimization (CSO) was used to realize the energy harvesting and spectrum sharing 
in 5G networks. In [5], a quantum fireworks algorithm (QFA) was designed to acquire high 
energy efficiency in energy harvesting cognitive radio. An efficient iterative algorithm based 
on stochastic geometry was presented in [6] for optimal energy efficiency in wireless powered 
communication networks.  

Notably, the wireless heterogeneous networks have been introduced as the promising 
solutions to satisfy the requirements of user equipments (UEs) while reducing the energy 
consumption of networks through deploying the high-capacity and low-cost small BSs (SBSs) 
over macro BSs (MBSs) [7-9].  

The SBSs in the heterogeneous networks are usually deployed to satisfy the traffic load in 
peak period irrespective of its heavily dynamic variations [10,11]. Therefore, when the 
networks are lightly loaded, turning off the underutilized SBSs has huge potential to decrease 
the energy consumption. Through defining the indicators of on-state SBSs as 1,and off states 
as 0, different 0-1 programming models have been formulated to achieve energy conservation 
when the SBSs are underutilized [12-14].  

In [12], a distributed switching-on/off based energy saving algorithm was proposed based 
on the additional load increments brought to the neighboring BSs by the switching off ones. In 
[13], two greedy algorithms were proposed to minimize the number of active BSs under the 
limitation of the minimal rate requirements of UEs. In [14], the lower limit of load was 
deduced for the switching on/off mechanism to reduce the energy consumption while 
guaranteeing the service performance of the heterogeneous networks. However, for the 
stochastic nature of traffic arriving process in practical networks, the traffic distribution after 
switching off some BSs is uncertain, and the traffic variation near the off-state BSs would 
increase the risk of unstable networks. Based on these, the DTMDP is an effective means to 
decide the on/off states of BSs based on the dynamics of traffic load.  

 Different DTMDP-based algorithms have been designed to achieve energy conservation in 
the heterogeneous networks [15-17]. In [15], the optimal sleep/wakeup schemes were derived 
based on the information of user localization and traffic load. In [16], a transfer actor-critic 
learning algorithm was adopted to obtain the BS switching operations. However, the two 
works always face the challenging issue of “curse of dimensionality” when the size of state 
space expands. In [17], a compact state representation was developed to reduce the state space 
for avoiding the high computational complexity. 

1.2 Contributions and Organizations 
Inspired by the work [17], a novel asynchronous on/off strategy is proposed to save 

energy while overcoming the “curse of dimensionality ”. The mechanism proposed in the 
paper can be applied in the dense heterogeneous networks with dynamic traffic variations.  
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The key contributions of the paper can be summarized as follows:  
• Firstly, the UEs in the networks are classified according to their associated BSs, and 

when an underutilized SBS is switched off, its UEs will be transferred to MBS for it is always 
in the active state to ensure coverage. To reduce the energy consumption during the whole 
period, the minimization model of the long-term average energy consumption under the 
constraint of the blocking probability is formulated in the paper. 

• Secondly, through defining the UE numbers of all BSs as the states and the switching 
operations of all SBSs as the actions, the load-based on/off strategies have been mapped into 
DTMDP. The on/off priorities of the SBSs are arranged according to their UE numbers. Based 
on the resulting priorities and Bellman equation, an asynchronous solving algorithm is finally 
designed in the paper to obtain the optimal BS switching operations. 

• Finally, the paper evaluates the performance of the proposed asynchronous on/off 
strategies through extensive simulations, and compares it with four other approaches, which 
are the conventional network operation, the heuristic sleep approach proposed in [9], a similar 
asynchronous on/off strategy to the proposed one but without priorities and the general 
synchronous on/off decisions based on DTMDP. The results demonstrate that the proposed 
algorithm can significantly reduce the energy consumption of the networks under the 
limitation of blocking probability. 
The remainder of this paper is organized as follows. The system model is introduced in Section 
2 and the problem formulation is presented in Section 3. In Section 4, the constrained 
energy-saving goal is mapped into DTMDP and the optimality of the proposed asynchronous 
on/off strategies is proved. Section 5 provides the numerical analysis and the conclusions are 
drawn in Section 6. 

2. System Model 

2.1 Two-tier Heterogeneous Networks 
As shown in Fig. 1, a typical scenario of two-tier heterogeneous networks, whose 

topology consists of a single MBS underlaid with a set of SBSs K , is considered in the paper, 
and |K = K|denotes the number of SBSs. All BSs in the scenario are numbered by 0,1,..., K , 
where 0 represents the MBS. The set of all UEs in the scenario is composed of a finite set of 
classes, where the class 0 is a cluster of UEs who can only associate with the BS 0 (MBS), and  
a class k ( k∈K ) is a population of UEs who can not only associate with the MBS but the 
SBS k . Assume that the UEs of class k ( k∈K ) only associate with the SBS k  when it is in 
active state. Therefore, the UEs of class k ( 0,1,...,k K∈ ) and the UEs of BS k  are 
interchangeably used hereinafter. Furthermore, when an underutilized SBS k  is switched off 
to save energy, the UEs of class k  will be adjusted to that of class 0 for the MBS will be 
always in the active state to ensure coverage. 

A discrete time model is adopted in the paper, where the time domain is segmented into 
the same-length time slots of duration T . The term “time slot n ” is defined as the time 
interval ( 1)nT t n T≤ < + , which is equivalent to the term “ time t ” in the paper.  

The evolution of network states across time epochs 1, 2,...t =  is described by a 
stochastic process ( )t X⊂x , where X  denotes the state space, then ( )tx  is defined as: 
 

( )0 1( ) ( ), ( ),..., ( )Kt x t x t x t=x                                                    (1) 
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where each element means the number of UEs of class k  during time t . By knowing ( )tx , a 
SBS on/off decision is selected for time 1t + . A decision set performed in each time t  is 
given by: 
 

1 2( ) ( ( ), ( )..., ( ))Kt y t y t y t=y                                                 (2) 
 
where ( )ky t  represents the working mode of SBS k , with ( ) 0ky t =  if SBS k  is switched 
off and ( ) 1ky t =  otherwise. Let Y denote the action space, then ( )t Y⊂y . 
 

(a) When the SBS k is in the active state

U0

UE 1
SBS k

MBS
UE 1

UE 2

(b) When the SBS k is in the inactive state
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Fig. 1. The schematic diagram for BS switching operations. 
 

2.2 Traffic Model 

Let 0 1( )=( ( ), ( ),..., ( ))Kt t t tλ λ λλ  and 0 1( )=( ( ), ( ),..., ( ))Kt t t tµ µ µµ  denote the sets of 
UE arrival rate (UAR) and UE departure rate (UDR) in time t , in which ( )k tλ  and ( )k tµ  
respectively represent the UAR and UDR of class k  in time t .  

When the SBS k  is switched off, its UEs will be delivered into MBS and its UAR and 
UDR will become 0. Therefore, the actual UAR and UDR of class k  can be calculated by:  
 

a a
0 0 { 0} 0 0

a a
{ 0} { 0}

( ) ( ) ( ) 1 , ( ) ( )

( ) ( ) 1 , ( ) ( ) 1 ,

k

k k

k y
k

k k y k k y

t t t t t

t t t t k

λ λ λ µ µ

λ λ µ µ

=
∈

= =

= + ⋅ ≈

= ⋅ = ⋅ ∈

∑
K

K
                                  (3) 
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where Θ{ }1  is an indicator function that equals to 1 if Θ  is satisfied and 0 , otherwise. The 
smaller the number of the off-state SBSs in the network is , the lower interference the MBS 
will experience and the higher UDR the MBS will possess. However, the link quality between 
the MBS and the UEs transferred from the SBSs is worse than that of class 0 , which will 
lower the UDR of MBS. Due to the specific impact of the two cases is difficult to predict, that 
the negative impact on the UDR can be offset by the positive one is assumed. Therefore, 
whatever the action ( )ty  is taken, the actual UDR of MBS is assumed to approximate the 
original one. 

Referring to the literature [18], the UE arrival and UE departure of any class are two 
independent stochastic processes in the paper. Specifically, UE arrival of class k in time t  is a 
poisson process with parameter a ( )k t Tλ , such that the probability of having p  UEs in class 
k within time t  is expressed as follows: 
 

a ( )a( ( ) ){  users arrive}
!

k t Tp
k t T eP p

p

λλ −

=                                             (4) 

 
Similar to user arrival, the UE departure of class k during time t  follows a Poisson 

process with parameter a ( )k t Tµ , so the probability of serving q  UEs within time t  is 
expressed as follows: 
 

a ( )a( ( ) ){ users depart}
!

k t Tq
k t T eP q

q

µµ −

=                                               (5) 

3. Problem Formulation  

Assume that , ( )k nr t  denotes the required resource units of  UE n  served by the BS k  

and kU  is the total number of resource units in BS k , then the system load of BS k  can be 
obtained by: 
 

 ( ),( )
( ) / , 0,1,...,

k
k k n kn x t

r t U k Kρ
∈

= =∑                                       (6) 

 
In each time t , if an on/off decision set ( )t=y y is executed under a network state 
( )t=x x , the power consumption of the MBS can be expressed as: 

 
(m) (m) (m) (m)

0 cst 0 tx( , )P P Pα ρ= +x y                                           (7) 
 
where (m)

cstP  denotes the fundamental power consumption of MBS caused by the signal 

processing unit, and (m)α  is the linear dependence factor of transmission power (m)
txP . For the 

SBSs consume no power in the inactive states, the power consumption of the SBS k  is given 
by: 
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(s) (s) (s) (s)
cst tx { 1}( , ) ( ).1 , 1, 2,...,

kk k yP P P k Kα ρ == + ∈x y                            (8) 
 
where (s)

cstP  denotes the fundamental power consumption of SBSs and (s)α is the dependence 

factor of transmission power (s)
txP .  

The total network power consumption in time t  can be calculated by: 
 

(m) (s)
0( , )= ( , ) ( , )k

k
P P P

∈

+∑x y x y x y
K

                                            (9) 

 
One crucial metric for measuring QoS is the blocking probability of the UEs. In time t , 

the ( )k kU u t−  resource units of BS k  are free ,where ( )ku t  denotes the number of occupied 
resource units of BS k in time t . A UE blocking occurs when a new arrival UE n  finds the 
associated BS k  less than nr  free resource units. Therefore, the blocking probability of BS k  
at time t  is defined as follows: 
 

blocking
,

,

,

( ) ( {new user ( , ) requires resource

units} { ( ) }), 0,1,...,
k n

k
k n

r

k k n

P t P k n r

P U u t r k K

=

× − < =

∑
                              (10) 

 
The primary goal of the paper is to find an on/off strategy : X Yω →   that selects the 

optimal working modes y  for all SBSs in every network state x , under which the long-term 
average energy consumption over the whole period can be minimized subject to the blocking 
probability constraints. Therefore, the optimization objective can be formulated as follows: 
 

blocking

1

0
th

1min limsup {| ( ( ), ( )) |}

. . 1: ( ) , , 0,1,...,

t

t

k

P E P
t

s t C P t P t k K

ω τ

τ τ
−

∈Ω →∞
=

=

< ∀ ∈

∑ x y
                                     (11)   

 
where Ω  denotes the set of all available on/off strategies and thP is the blocking probability 
threshold to guarantee the QoS of UEs.  

In each time epoch, the working states of SBSs in the networks need to be decided to 
realize the minimization of average energy consumption over the whole period. Accordingly, 
the DTMDP is an effective decision-making algorithm that can choose the relevant actions in 
each time epoch to obtain the optimal long-term expected cost or reward.  

4. The Solution to BS Switching Operations 

4.1 Map the Problem to DTMDP 
Referring to Fig. 2, to solve the long-term average optimization goal formulated in (11), a 

DTMDP , , ,X Y A C< >  can be defined as follows:  
• State space : { : }X∀ ∈x x , the network load vectors; 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018                  5455 

• Action space : { : }Y∀ ∈y y , the on/off operations of all SBS; 
• Transition probability matix : ,{ ( | , ) }P A∈x x y ; 
• Cost Function : { ( , ) ( , )}C P=x y x y  as defined in (7).  
 

Agent

(b) The implementing flow of on/off strategies.

Controller NETWORK

1.traffic condition

2.On/off strategies

3.Feedback=Energy/QoS

Environment

1.State

2.Action

3.Feedback=Reward/Penalty

(a) The basic model for DTMDP.

 

Fig. 2. The rationale for using DTMDP in BS switching operations. 
 

In DTMDP, every network state X∈x is associated with an action Y∈y , a 
corresponding state transition ,( | , )P A∈x x y ,and a cost function ( , )C C∈x y . The network 
controller observes the current network state ( )tx , to which an action ( )ty  is associated, then 
the both elements of the current time t  transforms the network state from x to ,x  with a 
corresponding transition probability ,( | , )P x x y , and a value of cost ( , )C x y is generated as a 
feedback for the network controller. 

For the UE states ( )ki x t=  and ( 1)kj x t= +  of class k , let z j i= −  denote the UE net 
arrivals within time t . Note that the value of z  can be positive or negative. It is positive when 
the arrival UEs are more than the depart ones, and negative otherwise. Hence, the user 
transition probability , , ( ) ( ( 1) | ( ) , ( ))i j k k kp t P x t j x t i t= + = = y  of class k  can be 
determined as follows: 
 

, ,

{ net arrivals}, if
( )

0, otherwiswei j k

P z j i z
p t

− =
= 


                                            (12) 

 
where { net arrivals}P z  is calculated by: 
 

a a( ) ( )a a

{ net arrivals} { arrivals} { departures}

( ( ) ) ( ( ) )
! !

k kt T t Tp q
k k

P z P p P q

t T e t T e
p q

λ µλ µ− −

= −

= −
                          (13) 

 
From (13), it can be noticed that z  is the difference between two independent Poisson 

random variables, such that the probability distribution of z  can be expressed as the Skellam 
distribution [18] : 



5456                        Tang et al.:Energy-S. Oriented On/Off Strategies in Hetnets : an Asyn.Approach with Dynamic Traffic Var. 
 

a a
a

( ( ) ( )) / 2 a a
| |a

( ){ net arrivals} ( ) (2 ( ) ( ))
( )

k kt t T zk
z k k

k

tP z e I T t t
t

λ µ λ λ µ
µ

− +=                      (14)   

 
where ( )zI ⋅  denotes the modified Bessel function of the first kind and is defined as follows: 
 

(2 )

0

1( ) ( )
! ( 1) 2

m z
z

m

xI x
m m z

∞
+

=

=
Γ + +∑                                          (15)   

 
Combining (12) and (14), the complete UE transition probability expression of class k  

can be obtained as given in (16): 
 

a a
a

( ( ) ( )) / 2 a a
| |a

, ,

( )( ) (2 ( ) ( )), if 
( ) ( )

0, otherwise

k kt t T zk
z k k

i j k k

te I T t t z j i
p t t

λ µ λ λ µ
µ

− +
⋅ ⋅ = −= 




                (16)  

 
The transition probability matrix A  can be determined by combining the user transition 

probability of every class. 
The goal is to obtain a strategy ω , which maps a state x  to an action ( )ω x , i.e., y , to 

minimize the total expected discounted cost starting from the state x . Generally, the cost of 
this kind is called a state value function, which is defined as follows [19]: 
 

,

, ,( ) ( , ) ( | , ) ( )V E C P Vω ω
ω γ

∈

 
= + 

 
∑
x

x x y x x y x
X

                             (17) 

 
where the parameter γ  ( (0,1)γ ∈ ) represents the discount factor that maps the impact of 
future cost to the current state. Importantly, the state value function defined in (17) is a 
recursive form of the long-term expected energy cost expressed in (11). Given the blocking 
probability constraints, i.e. C1, the optimal strategy *ω  for the long-term average goal (11) 
can be obtained by the following constrained Bellman equation [19]: 
 

,

, ,( ) arg min ( , ) ( | , ) ( ) 1
Y

E C P V Cω
ω

ω ω γ
∗

∗
∗ ∗

∈ ∈

   = = +  
   

∑
y x

x x y x x y x
X

|              (18)  

 

4.2 A DTMDP-based Asynchronous On/off Strategy          
Assume that the paper adopts the synchronous on/off strategies for all the SBSs, and the 

minimum number of states for any class is M  in the next time slot, then the size of state space 
is more than 1KM + . Furthermore, to avoid turning the SBSs on and off repeatedly in a short 
time, the value of duration T can not be very small, which will cause the relatively large value 
of M . In this case, the modest-scaled number of SBSs would cause the very large state space 
of the networks, which leads to the "curse of dimentionality" occurred in DTMDP frequently. 
Given these, the paper first proposes a DTMDP-based asynchronous on/off strategy, which 
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can lower the solution complexity of MDP greatly. The specific steps of the asynchronous 
on/off strategy are shown in Fig. 3, where ( )tH  denotes the on/off priority set of all SBSs and 

0 ( )kx t  represents the temporary state of MBS when the on/off decision of SBS k  is 
performed.  

For the capacity of MBS is limited and the blocking probability threshold is set to limit 
the number of switched-off SBSs, an on/off priority for SBSs is expected to be developed 
during the execution of the asynchronous on/off strategy. The priorities ( )tH  are arranged 
according to the UE numbers of all SBSs. The fewer the number of UEs of the SBS is, the 
earlier the on/off strategy of the SBS implements, such that more SBSs can be switched off 
and more network energy can be saved for the existence of the fixed power consumption.  
 

, update 

...
1( 1)x t +

( 1)Kx t +

0 ( 1)x t +0 1( ) ( ( ), ( ),..., ( ))Kt x t x t x t=x
( )tH

1
0 ( )x t 2

0 ( )x t 0 ( )Kx t

1( )x t 2 ( )x t ( )Kx t

1( )y t 2 ( )y t ( )Ky t

2 ( 1)x t +

 

Fig. 3. The specific steps to the DTMDP-based asynchronous on/off strategies. 
 

Theorem 1: The asynchronous on/off strategies are equivalent to the optimal ones.  
Proof : Let ( ), 1, 2,...,k t k Kω∗ =  represent the optimal strategy of SBS k . For 

convenience, some temporary variables are defined as follows:  
 

0 0
, 1 1 ,

0 0
, 1 , ,

0 0

( ( ), ( )) ( , ), ;
( ( ), ( 1)) ( , ), 1,..., 1;
( ( 1), ( 1)) ( , ).

k k
k k k

k k
k k k

K K K

x t x t x x k
x t x t x x k K
x t x t x x

+ +

= = ∀ ∈

= + = = −

= + + =

x
x
x

K

                                 (19)  

                         
According to the Bellman equation, the optimal on/off strategy of SBS k  is determined 

as follows: 
 

*
1

,1 1

*

,

* 1 , ,
1 1 1 1 1

* , ,

arg min ( | , ) ( ) 1

...

arg min ( | , ) ( ) 1

...

k

k k

y

k
k k k k k

y

c P y V C

c P y V C

ω

ω

ω γ

ω γ

∈ ∈

∈ ∈

 
= + 

  

 
= + 

  

∑

∑

x

x

x x x

x x x

Y X

Y X

|

|
                               (20) 
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where (m) (s)
0 ( , ) ( , )k

kc P P= +x y x y denotes the temporary cost function after the decision of 
SBS k . 

  The entire policy * * *
1 2( , ,..., )Kω ω ω ω∗ = can be obtained by combined the K  

expressions of (20) in (21): 
 

,

,

(m) (s) ,
0 1 1 1

, , ,
2 2 2

(m) (s) 2 , 1
0 0 1 0 1 1

3 , 2
0 2 0 2

( , ) ( , ) ( ) | , )
arg min 1

( | , ) ... ( | , ) ( )

( , ) ( , ) ( , ) | , , )
arg min

( , | ,

k
k

K K K

k
k

KP P P y
C

P y P y V

KP P P x x x x y

P x x x x

ω

γ
ω

γ

∗

∗ ∈ ∈

∈

∈ ∈

∈

  + +
  =    ⋅ ⋅ ⋅ ⋅   

+ +
=

⋅

∑ ∑

∑ ∑

x

y

x

y

x y x y x x

x x x x x

x y x y

K X

Y

K X

Y

|

, , ,
2 0 0

1
, ) ... ( , | , , ) ( )K

K K K

C
y P x x x x y V ω∗

  
     ⋅ ⋅ ⋅   x

|

              (21)    

  
The value function is a nested model, i.e., ,( )k

kV ω∗

x  has the same structure as its front part 
in formula (20). Therefore, if the front part of formula (21) and that of (18) are equivalent, so 
are the asynchronous on/off strategies and the optimal strategies. 

For the coefficient before (m)
0 ( , )P x y has no impact on the optimal strategies and 

, , , ,
1 2, ,..., Kx x x ∈x  are independent from each other, furthermore, the current action ky  of SBS 

k only influences the next state ,
0x  of MBS and ,

kx  of its own, so the equation (22) can be 
derived as follows: 
 

,

2 , 1 3 , 2 , ,
0 1 0 1 1 0 2 0 2 2 0 0

, , , ,
0 1 2 0 1 2 1 2

,

( , | , , ) ( , | , , ) ... ( , | , , )

( , , ,..., | , , ,..., , , ,..., )

( | , )

K
K K K

K K K

P x x x x y P x x x x y P x x x x y

P x x x x x x x x y y y

P
∈

⋅ ⋅ ⋅

=

=

∑

∑

∑
x

x x y

X

X

X

                 (22) 

 
Therefore, the optimality of the proposed asynchronous on/off strategies is proved. 
The optimal asynchronous strategies can be obtained based on the on/off priorities and 

Bellman equation, whose detailed steps are shown in Algorithm 1.  
Notably, the proposed asynchronous solving algorithm has a complexity of 2( )O KM , 

which is much lower than 1( )KO M + . Therefore, the proposed algorithm not only can obtain 
the optimal on/off strategies but has a stable performance when the network size expands. 

5. Simulation Results 
A relative simple but representative two-tier heterogeneous network, which consists of 

one MBS and 14 SBSs is considered in the numerical simulations of this paper. According to 
the practical network condition, the variables about the power consumption are set as follows: 

(s)
cst 4.8WP = ; (s)

tx 0.05WP = ; (m)
cst 130WP = ; (m)

tx 20WP = ; (m) 4.7α = ; (s) 8α =  [17]. The  
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duration T  is set to be 1 min to achieve a trade-off between the dimension of state space and 
the state change times of SBSs. The proposed asynchronous on/off algorithm is compared with 
the conventional network operation, in which all BSs are always in active state and there is no 
switching operation being conducted. For further comparisons, the paper considers the other 
three strategies, the heuristic sleep approach proposed in [9], a similar asynchronous on/off 
strategy to the proposed one but without priorities and the general synchronous on/off 
decisions based on DTMDP. Matlab is used as the simulation tool to verify the performance of 
the proposed algorithm. The presented results are averaged a great number of independent 
runs with different practical configurations.  

Fig. 4 shows the changing trend about the number of active SBSs when the arrival rate of 
the MBS varies. It can be observed that as the arrival rate of the MBS increases, the number of 
active SBSs in the network increases accordingly. Furthermore, the change trends of the two 
variables are not in synchrony for the proposed DTMDP-based asynchronous on/off strategies, 
which can bring the effect of future cost into the current decisions, will adjust the number of 
active SBSs prior to the exhaustion of the resource units of MBS.  

Fig. 5 presents the converging process of the energy consumption for different arrival 
rates of the MBS as the iteration times in one epoch increase. Through analyzing the 
converging trend, the total energy consumption of the network will decrease gradually for the 
increased number of inactive SBSs as the asynchronous on/off strategy performs iteratively. 
Besides, it can be found that the simulation configurations with large arrival rates need few 
iteration times. It is because when the new arrival UEs increase, the number of the SBSs that 
can be turned off will decrease, and the iteration times for the convergence of the proposed 
strategy will decrease accordingly. 
 

Algorithm 1: The DTMDP-based asynchronous on/off strategies 
Input:The network state: ( )0 1( ), ( ),..., ( )Kx t x t x t=x , 

           the transition probability matrix: , ,{ ( ), 0,1,..., }i j kp t k K∈  

Output:the optimal on/off strategy of the SBSs: ( )tω∗  
1:Obtain the on/off priority set ( )tH  based on the UE numbers of all SBSs 
2: Number the SBSs by 1, 2,...,k K∈ according to the on/off priority set ( )tH  
3:Initialize 0k =  
4:while ( 

blocking

th( ) , 0,1,...iP t P i K< ∈ ) do 
6: Determine the on/off state of all SBSs one by one: 1k k= +   
7:     Obtain the optimal on/off strategy of the SBS k  according to the Bellman equation:   

**

( 1)
( ) arg min ( ) ( ( 1) | ( ), ( )) ( ( 1))k

k k

k
k k k k k

y t
t c t P t t y t V tωω γ

∈ + ∈

  = + + + 
  

∑
x

x x x
Y X

 

8:end 
9:for :l k K= do 
10:    The current on/off state of SBS l  is same as the previous one: *( ) ( 1)l lt tω ω∗= −  
11:end 
12: Obtain the optimal on/off strategy set: 1 2( ) ( ( ), ( ),... ( ))Kt t t tω ω ω ω∗ ∗ ∗ ∗=  
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Fig. 4. The changing trend about the number of active SBSs when the arrival rate of the MBS varies. 
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Fig. 5. The converging process of the energy consumption for different arrival rates of the MBS. 
 

Fig. 6 shows the influence of blocking probability thresholds on the total energy 
consumption and  QoS of the networks. By comparing the subfigures (a) and (b), it can be 
found that when the blocking probability threshold is set larger, the total energy consumption 
will decrease and the average number of blocking UEs will increase. Through sacrificing the 
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service quality of the networks, the higher blocking probability threshold can bring more 
energy conservation for more SBSs can be switched off to save energy. Therefore, the value of 
blocking probability threshold can be dynamically adjusted based on the different sensitivity 
of different networks to the energy consumption and QoS. 
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(a) The relationship between the blocking probability thresholds and the total energy consumption 
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(b) The relation between the blocking probability thresholds and the blocking UE numbers. 
Fig. 6. The influence of  Pth  on the total energy consumption/ the average number of  blocking UEs. 
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Fig. 7 compares the different on/off strategies about the total energy consumption when 
the arrival rate of MBS varies. As expected, the proposed asynchronous on/off strategy 
performs much better than the conventional network operation and the similar asynchronous 
algorithm to the proposed approach but without priorities. It can be observed that the proposed 
asynchronous on/off strategy can achieve a better performance compared with the heuristic 
sleep approach, which obtains the sub-optimal on/off  strategy according to the load of BSs 
and the interference relation matrix. Furthermore, when the arrival rate of MBS is low, the 
energy-saving performance of the heuristic sleep approach is a little worse than the 
asynchronous on/off algorithm without priorities, but when the arrival rate of MBS increases, 
the situation is reversed. It is because the priority, which decides the switching order of the 
SBSs, has a greater influence on the energy-saving performance as the SBSs that can be 
switched off decrease. It is noteworthy that such a simple strategy with low computational 
complexity can obtain the same performance with the general synchronous on/off decisions, 
whose complexity is exponential level and should be avoided in practical networks. Therefore, 
the availability and effectiveness  of the proposed strategies are  further validated. 
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Fig. 7. The comparison of the total energy consumption among different strategies. 

6.  Conclusion 
A novel asynchronous on/off strategy has been first presented in the paper to save energy 

by switching off some underutilized SBSs. Specifically, the BS switching operations was 
formulated as a DTMDP under the dynamic traffic load. Besides, the optimal asynchronous 
algorithm, which was based on the on/off priorities of the SBSs and the Bellman equation, has 
been designed to obtain the BS switching solution for decreasing the overall energy 
consumption. The DTMDP-based asynchronous on/off strategies can avoid the “curse of 
dimensionality ”through reducing the state and action space during one decision. Finally, the 
optimality of the proposed algorithm was proved. The extensive simulation results have 
validated the effectiveness and robustness of the asynchronous on/off strategies under various 
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practical configurations. 
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