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Abstract 
 

The field of periocular biometrics has gained wide attention as an alternative or 
supplemental means to conventional biometric traits such as the iris or the face. Periocular 
biometrics provide intermediate resolution between the iris and the face, which enables it to 
support both. We have developed a periocular recognition system by using uniform 
Multiscale Local Binary Pattern (uMLBP) and attribute features. The proposed system has 
been evaluated in terms of major factors that need to be considered on a mobile platform (e.g., 
distance and facial pose) to assess the feasibility of the use of periocular biometrics on mobile 
devices. Experimental results showed 98.7% of rank-1 identification accuracy on a subset of 
the Face Recognition Grand Challenge (FRGC) database, which is the best performance 
among similar studies. 
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1. Introduction 

Biometric trait-based user recognition has long been used for login authentications on 
PCs and laptop computers [6]. Fingerprints and the face are the two most widely used 
biometric traits for PC login authentication systems. Even though fingerprints have shown 
high verification accuracy, their contact-based sensing interface has offered lower user’s 
convenience. This has triggered the development of non-contact user authentication 
systems; the face is the most popular non-contact biometric trait. However, facial 
biometrics suffer from lower recognition accuracy due to the large intra-class variation. 

On the other hand, periocular biometrics have recently been introduced as a new 
biometric trait [17]. The increasing demands in preventing unauthorized access on mobile 
devices have been coupled with the characteristics of periocular biometrics to populate a 
new possibility of the use of periocular biometrics on mobile platforms. The advantages 
of using periocular biometrics on smartphones are listed below. 

 

• Periocular biometrics can be captured during the normal use of mobile devices. 
• Since the facial image is usually captured within arm’s length of mobile devices, 
there are high perspective distortions and occlusion problems. Variations from wobble 
and illumination are other problems that degrade the facial recognition accuracy of 
mobile devices. Periocular Biometrics can mitigate these problems of facial biometrics. 
Fig. 1 shows scenarios where Periocular Biometrics can help in identity verification. 
• The smartphone industry is trying to incorporate iris recognition systems on 
smartphones. Periocular Biometrics can supplement the iris-based recognition system 
with no additional hardware and minimal overhead in software upgrades. 
• The rapid increase of recognition accuracy of periocular biometrics to the level of 
facial biometrics has made the periocular-based login authentication system on mobile 
platforms more viable. 
 

 
 
Compared to ocular biometrics, periocular biometrics offer several benefits [16]. One of 

the most significant benefits of periocular biometrics is its alternative use for person 
recognition when ocular biometrics fail [4]. Even if ocular biometrics are used 

Fig. 1. Example images with face occlusions and illumination variations where periocular 
biometrics can help in identity verification. (Photo courtesy of www.freeimages.com). 
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successfully, periocular biometrics can still be added to the ocular biometric system to 
increase recognition accuracy. It has been shown that the combination of iris and 
periocular biometrics is more effective than using only one of the two methods [24]. In 
contrast to ocular biometrics which is mostly used in the near-infrared spectrum, 
periocular biometrics can be used both in the visible (VS) and the near-infrared (NI) 
spectrums [16][23]. Using classical encoding and matching techniques, Santos et al. [18] 
demonstrated the utility of an iris and periocular biometrics by combining the two 
modalities using Neural Network to overcome the issues associated with mobile 
environments. Recently, it has been shown that periocular biometrics can also provide a 
good recognition performance in non-ideal recognition conditions, such as surveillance 
environments [10]. Table 1 summarizes recent studies in periocular-based person 
identification. 

Table 1. Literature review on periocular-based person identification. The FRGC database is underlined 
for comparison. 

 Approach Database 
Rank-1 

identification 
accuracy (%) 

EER 
(%) d’ 

Park et al. 
2011 [16] 

GO, LBP, 
SIFT FRGC (568subjects, 2,272images) 87.32 

21.78 
19.26 
6.96 

- 

Woodard et 
al. 2010 [23] uLBP FRGC (410subjects, 4100images), 

MBGC (85subjects, 1600images) 
FRGC (90.00), 
MBGC (87.00) - - 

Woodard et 
al. 2010 [24] uLBP MBGC (80subjects for right, 70subjects 

for left eyes) 92.50 20* - 

Adams et al. 
2010 [1] 

GEFE 
feature 

FRGC (410subjects, 820images), 
FERET(54subjects, 162images) 

FRGC (92.16), 
FERET (85.06) - - 

Dozier et al. 
2011 [5] 

GEFeS 
feature FRGC (410subjects, 820images) 93.09 - - 

Juefei-Xu et 
al. 2011 [9] 

WLBP + 
UDP FG-NET (82subjects, 1002images) 100.00 0.6 - 

Joshi et al. 
2012 [8] uLBP CASIA (400subjects, 2400images), 

UBIRIS (400subjects, 2400images) 

CASIA iris 
(88.79), UBIRIS 

periocular (81.03), 
fusion (96.50) 

7.33* - 

Uzair et al. 
2013 [21] LBP + PCA MBGC (85subjects, 3163images) 97.70 13.13 - 

Jonathon et 
al. 2013 [7] 

PDM + 
mSIFT 

FOCS (136subjects, 9581images), 
UBIPr (259subjects, 10252images) 

FOCS (97.00), 
UBIPr (99.00) 

23.95  
6.43 - 

Santos et al. 
2015 [18] 

LBP+HOG+
SIFT+uLBP

+GIST 

CSIP (50subjects, 10 setups,  
2004images) 

Periocular (92.70), 
Iris (71.10), 

Fusion (93.40) 

0.15 
0.71 
0.14 

- 

Bakshi et al. 
2014 [28] PIGP UBIris v2 82.86 12.69 1.47 

Bakshi et al. 
2015 [2] PILP 

BATH (200subjects, 8000 NIimages) 
CASIA (411subjects, 16212 NIimages) 
UBIrisv2 (241subjects, 1877 VSimages) 

FERETv4 (1191subjects, 14126 
VSimages) 

BATH (100) 
CASIA (100) 
UBIris (87.62) 
FERET (85.80) 

0.13 
0.38 
4.49 
7.53 

3.31 
2.90 
2.29 
2.01 

Proposed 
method 

uMLBP + 
LDA+PA FRGC (568subjects, 2,272images) 98.70 4.89 1.42 
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* Average EER = (EER of right eye + EER of left eye)/2 
 

 
 
In this article, we propose a state-of-the-art periocular recognition system using uniform 

Multiscale Local Binary Pattern (uMLBP), Linear Discriminant Analysis (LDA) and 
periocular attribute features. Our contributions differ from previous studies in following 
respects: 

 
• First, we propose a periocular recognition system using uMLBP and LDA that shows 
state-of-the-art recognition accuracy on the subset of the FRGC database. We 
compared the proposed method with state-of-the-art periocular recognition methods 
and two other state-of-the-art MLPB methods that were applied on facial recognition. 
LDA has been widely used in facial recognition, but has never been used in periocular 
recognition. We showed that the combination of uMLBP and LDA provide improved 
performance in periocular recognition. 
 
• Second, we propose to use the describable attributes extracted from the periocular 
region to further improve the identification accuracy. Fig. 2 shows periocular regions 
that can be differentiated based on their describable facial attributes. Facial attributes 
are naturally used to recognize a person. For example, we could describe Barak Obama 
as a Middle aged African American male, with curly short hairs, without eye glasses, 
oval face shape and thick lips, etc. These traits or facial attributes are helpful to 
distinguish two persons very quickly. Using similar idea, Kumar et al. [11] proposed a 
face verification method using describable facial attributes. Kumar et al. [11] used 
high-level visual features, or attributes, to represent a face image. These describable 
facial attributes such as, gender, ethnicity, age, etc., are insensitive to illumination 
conditions, expression, pose and other imaging variations [11]. As the describable 
attribute features of face image is called facial attributes, we call it for periocular image 
as periocular attribute (PA) in this article. We also used Partial Least Squares (PLS) 
method to reduce the feature dimensions, which not only improved the computation 
speed at post-processing steps but also increased the recognition accuracy. On an 
embedded platform, these describable periocular attributes can be computed in parallel 
with the uMLBP+LDA approach. Finally the scores from the two different methods 
can be fused to provide robust recognition performance. To the best of our knowledge, 
no existing research utilizes the attribute information along with low-level features in 
periocular biometric-based recognition. 
 
 

Fig. 2. Example images to illustrate the describable attribute based recognition. (a) Indian 
Female, (b) Caucasian Female with Thin eyebrows, (c) African American with bags under eyes, (d) 
Male with thick eyebrows, (e) Asian and (f) Wearing eyeglasses.  

(a) (b) (c) (d) (e) (f) 
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• Third, to emphasize a real world scenario, a periocular image database is constructed 
for periocular recognition research in mobile platforms with considering variations in 
distance and pose captured by a smartphone. The effect of perspective distortion as a 
function of the capture distance was evaluated to test the feasibility of applying 
periocular recognition system on mobile platforms. 

 
The rest of the paper is organized as follows. Section 2 describes proposed method and 

its implementation in detail. Section 3 describes the experimental procedures and their 
results. Finally, we draw the conclusions and future scope of our research work in Section 
4. 

2. Proposed Approach 
 

In this section we provide detailed explanations about the proposed periocular 
recognition method based on uMLBP and LDA subspace learning, the attribute based 
periocular region matching method, and fusion of uMLBP and periocular attribute (PA) 
based recognition methods. The overall periocular recognition system based on 
uMLBP+LDA and PA+PLS is shown in Fig. 3. We first explain the workflow of the 
overall system briefly, and then discuss each component in more details in the following 
sections. 

The overall system diagram shown in Fig. 3 shows process flows for uMLBP+LDA 
based and PA+PLS based periocular recognition. The training pipeline (orange color) 
consists of labelled dataset of periocular attributes. An example of 4 classes i.e., age (old 
vs young), gender (male vs female), ethnicity (Caucasian vs black, India1, and Asian), 
eyebrows (thick vs thin) are shown in Fig. 3. For each image in the dataset, STASM 
landmark detector [13] is applied to acquire facial landmarks. The facial landmarks are 
used for rotation and scale normalization of the input images and cropping the four 
sub-regions from the two periocular regions as shown in Fig. 3. The low level features 
from the four regions are extracted and then mapped to the learnt PLS weights to reduce 
the feature dimensions. These feature are then used to train 15 SVM based PA classifiers. 
The subject ID is verified by matching the feature vectors with the stored feature vectors 
in the periocular database. In following section, we give the detail explanation of all the 
modules shown in Fig. 3. 

2.1. Periocular recognition system based on uMLBP and LDA  
We reviewed representative approaches in periocular-based person recognition systems, 

as summarized in Table 1. The majority of the approaches have used uniform Local 
Binary Pattern (uLBP) or multiscale Local Binary Pattern (MLBP) due to their superior 
performance in representing texture features and robustness in scales. LBP was first 
introduced by Ojala [15] to describe texture-type features. The LBP was later extended to 
uLBP and MLBP [20] to handle the performance degradations incurred from noise and 
scale variations. We used the uMLBP as a low-level feature in the proposed system to 
address both uniformity and multiscale aspects. 

 

1 Even though Indian is not known as an ethnicity, we used that category following the original facial attribute work 
of [11].  
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In order to describe the basic LBP operator, we assume there are NP circular 

neighborhood pixels (=𝑔𝑛𝑝) in a circle of radius R centered at C (=𝑔𝐶), then the LBP 
operator can be defined as: 

 
  𝐿𝐵𝑃𝑁𝑃,𝑅(𝑥, 𝑦) =  ∑ 𝛿�𝑔𝑛𝑝 −  𝑔𝐶�2𝑁𝑃𝑁𝑃

𝑛𝑝=0 ,   (1) 
 

where 𝛿(𝑑) = 1 𝑖𝑓𝑓 𝑑 ≥ 0. A subset of these 2NP binary patterns, which contains at most 
two bitwise transitions (01 or 10) are called uniform patterns. The measure of 
uniformity is given by: 

 

Trained SVM Models 
for PA classification 

Face 
image 

Final PA feature vector 

Low level features 
Mapping uMLBP 
features to LDA 

subspace 

Final uMLBP 
feature vector 

Normalization 
and 

Segmentation 

uMLBP features 

Landmark 
 detection 

Fig. 3. Overall system diagram. 

Feature dimension 
reduction using PLS 

Landmarks 
detection 

Normalization 
 and  

Segmentation 

 Age (Old)   

Eyebrows 
(Thick) 

  

Gender 
(Male) 

Ethnicity 
(Caucasian) 

Positive 
Samples 
  

Negative  
Samples 
  

Labelled dataset of PA 
  

Feature dimension 
reduction using PLS 

Low level features 

Feature matching  

ID 

Attribute classifier training 

SVM training 
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𝐿𝐵𝑃𝑢𝑛𝑖𝑓𝑜𝑟𝑚 = |𝛿(𝑔𝑁𝑃−1 − 𝑔𝐶)− 𝛿(𝑔0 − 𝑔𝐶)| + ∑ �𝛿�𝑔𝑛𝑝 − 𝑔𝐶� − 𝛿(𝑔𝑁𝑃−1 − 𝑔𝐶)�𝑁𝑃
𝑛𝑝=1  (2) 

 
Some example uniform patterns are, 11111111 (0 transitions), 00110000 (2 transitions) 

and 10111111 (2 transitions), whereas the patterns 10101010 (7 transitions) and 00110011 
(3 transitions) are non-uniform. These uniform binary patterns can be used to represent 
spots, flat areas, edges and corners robustly. The total number of these uniform binary 
patterns in 2NP patterns are (NP – 1)×NP + 3. The uniform LBP (uLBP) operator is then 
defined as: 

 

𝐿𝐵𝑃𝑁𝑃,𝑅
𝑢2 (𝑥, 𝑦) =  �

𝐿𝑢(𝐿𝐵𝑃𝑁𝑃,𝑅(𝑥, 𝑦) , 𝑖𝑓 𝐿𝐵𝑃𝑢𝑛𝑖𝑓𝑜𝑟𝑚 ≤ 2
(𝑁𝑃 − 1) × 𝑁𝑃 + 3 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               

� (3) 

 
where u2 represents LBPuniform is up to 2, Lu assigns a unique label ∈ [0, (𝑁𝑃 − 1) × 𝑁𝑃 +
2] among the uniform LBP. For example, there are total 59 unique uniform LBP features 
for NP = 8. 

In our experiments, we have used another variant of uLBP called uMLBP, which is 
computed by varying the sampling radius R and concatenating uLBP features at each 
radius (scale) to achieve a multi-resolution representation of uLBP. We used patch radii of 
1, 3, 9 and 12 in our experiments. The uMLBP descriptors at these patch radii are 
converted to column vectors and concatenated all together. 

In addition, a subspace learning method based on LDA [3] was used to construct 
compact and discriminative features for mobile environment. LDA minimizes the 
redundant information from uMLBP features, which is inherited by uMLBP features due 
to resampling the same image at multiple resolutions. LDA maximizes the ratio of 
between-class scatter (SB) and within-class scatter (SW), given as: 

 
𝐒𝐁 =  ∑ 𝑛𝑠𝑖  (𝑒𝑖 − 𝑒)(𝑒𝑖 − 𝑒)𝑇𝑁𝐶

𝑖=1      (4) 
 

𝐒𝐖 =  ∑ ∑ (𝑓𝑠𝑗𝑖 −  𝑒𝑖)(𝑓𝑠𝑗𝑖 −  𝑒𝑖)𝑇𝑛𝑠𝑖
𝑗=1  𝑁𝐶

𝑖=1     (5) 
 

where NC is the total number of classes, 𝑛𝑠𝑖  and 𝑒𝑖  are the number of samples and the 
mean of all the face images in ith class, respectively, 𝑓𝑠𝑗𝑖  represents the jth feature sample in 
ith class, and e is the mean of all the samples. The optimal projection WLDA is chosen as the 
matrix that maximizes the expression below. 

 
𝐖𝐋𝐃𝐀 =  𝑎𝑟𝑔max

𝐖

�𝐖𝐒𝐁𝐖T�
�𝐖𝐒𝐖𝐖T�    (6) 

 
Periocular recognition starts with periocular region cropping from the facial image as 

shown in Fig. 3. We detected facial landmarks using STASM landmarks detector [13], and 
did the rotation normalization, scale normalization, and cropped with a fixed aspect ratio 
(241×227 pixels) for both eyes. The uMLBP features are then extracted from the 
periocular regions. Then, all the uMLBP feature vectors are transformed by LDA. We 
used 4 fold cross validation method and reported average recognition performance from 
the four folds. The matching scores of uMLBP+LDA method is computed by: 

 
        𝑆𝑢𝑀𝐿𝐵𝑃+𝐿𝐷𝐴(𝑃,𝐺) = 𝑒𝑥𝑝−𝑐𝑚×𝑑𝑖𝑠𝑡(𝑃,𝐺)                (7) 
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where cm is a constant (=0.1) and 𝑑𝑖𝑠𝑡(𝑃,𝐺) =  �(𝐹𝑃 −  𝐹𝐺)2. The transformation from 
distances to scores can be achieved in many different ways. We experimented with inverse 
and exponential functions and found that the use of exponential function gave a better 
mapping results. We were able to achieve significant performance improvement by using 
the LDA for the first time in periocular recognition studies, as it can be seen in Table 1. 
Also, mapping to LDA subspace reduced the size of uMLBP feature dimensions by 92.8% 
(uMLBP feature dimensions before and after mapping to LDA subspace is equal to 5900 
and 425, respectively). On an embedded platform, this reduction in feature dimensions 
may lead to significant reduction in processing and implementation complexity. 

2.2. Periocular Recognition System Based on Periocular Attributes 
2.2.1. Database Acquisition and Labelling 
 
In order to have a large dataset of faces with labelled attributes for the training, we used 

Extreme Picture Finder software (www.exisoftware.com/picture_finder). The software 
takes keywords, such as Asian people, male, people with thick eyebrows, etc., and 
searches the corresponding images using several search engines. In total, we downloaded 
68,382 images. We used STASM [13] to detect face landmarks and normalize the facial 
images. After removing images with poor landmark detection, we had 39,612 face images 
with their 15 describable attributes, such as Ethnicity (African American, Caucasian, 
Indian and Asian), Eyebrow shape (Arched, Thick, Thin), Eye shape (narrow eyes), Bags 
under eyes, Eyeglasses, Gender (Male, Female), and having eye makeup. Examples of the 
positive and negative samples for the four classes i.e., old age, male, Caucasian ethnicity 
and thick eyebrows are shown in Fig. 3. 

 
2.2.2. Feature Extraction and Dimension Reduction using Partial Least Squares 
 
Using the detected landmarks, we cropped the periocular regions of all the face images 

in our labelled dataset of facial attributes. A set of k low-level feature extractors fAj are 
applied to the input periocular image I to form a feature set fA(I) = {fA1(I), …., fAk(I)}. We 
describe each extractor fAj in terms of different low-level features, which includes the 
mean and variance of RGB, intensity and HSV values, magnitude and orientations of edge 
gradients, as shown in Fig. 3. For eyebrows related periocular attributes, we extracted the 
features from the eyebrows region only, represented by two blue boxes in Fig. 3. 

The use of many types of low-level features increase the size of the overall feature 
vectors, which resulted in over-fitting of the SVM models, hence in order to reduce the 
feature dimensions we experimented several methods such as LDA, Principle Component 
Analysis (PCA), and partial least squares (PLS), out of which PLS performed the best. 

PCA, LDA and PLS are representative methods used for feature dimensionality reduction. 
In case of uMLBP+LDA, our main purpose of using LDA is to reduce feature dimensions, 
while in case of PA+PLS, our purpose of using PLS is not only to reduce the feature 
dimensions, but also learn attribute classifiers. The PCA only utilize the variance of all the 
features without considering the class labels. The LDA takes class labels into account, and it 
tries to find optimal projection by maximizing the ratio of between-class and within-class 
scatter. On the other hand, PLS uses the annotation labels not only to maximize inter-class 
variance, but also maximize the fit and minimize the misfit [29]. This means we take into 
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account the classes and try to reduce the dimension while maximizing the separation of classes, 
but at the same time we do not let the misfit to increase, which is ideal in classification 
scenario. We believe the superior performance of PLS on attribute features compared with 
those of LDA is due to the low dimensionality of the attribute features. 

To understand PLS, let F denote a matrix containing o samples of m-dimensional feature 
vectors, and similarly let l represent the class labels for o samples. In order to build an indirect 
relationship between F and l, PLS searches for a set of components (called latent vectors) that 
performs a simultaneous decomposition of F (o × m) and l (o × 1) with the constraint that these 
components cover the covariance between F and l as much as possible. PLS decomposes the 
zero-mean matrix F and zero-mean vector l into: 
 

𝐅 = 𝐔𝐎𝑇 + 𝐄,       𝒍 = 𝐕𝒒𝑇 + 𝒉   (8) 
 

where U and V (o × p matrices) contains p latent vectors, 𝐎 (m × p) and q (1 × p) represent 
the loadings and E (o × m) and h (o × 1) are the residuals. The PLS method, using the 
nonlinear iterative partial least squares (NIPALS) algorithm [19], constructs a set of 
weight vectors (or projection vectors) 𝐖𝑷𝑳𝑺 = {𝒘𝑷𝑳𝑺_𝟏,𝒘𝑷𝑳𝑺_𝟐, … . ,𝒘𝑷𝑳𝑺_𝒑} such that: 

 
     [𝑐𝑜𝑣(𝒖𝒊 ,𝒗𝒊)]2 =  max|𝒘𝑷𝑳𝑺_𝒊|=|𝒄𝑷𝑳𝑺_𝒊|=1[𝑐𝑜𝑣(𝐅𝒘𝑷𝑳𝑺_𝒊, 𝒍𝒄𝑷𝑳𝑺_𝒊)]2                (9) 

 
where 𝒖𝒊 is the ith column of matrix 𝐔, 𝒗𝒊 the ith column of matrix V, 𝑐𝑜𝑣(𝒖𝒊 ,𝒗𝒊) is the 
sample covariance between latent vectors 𝒖𝒊 and 𝒗𝒊, and �𝒘𝑷𝑳𝑺_𝒊�, |𝒄𝑷𝑳𝑺_𝒊| represents the 
determinants of 𝒘𝑷𝑳𝑺_𝒊 and 𝒄𝑷𝑳𝑺_𝒊 respectively. Eq. 9 finds the latent vectors 𝒖𝒊 𝑎𝑛𝑑 𝒗𝒊  
by updating the weights, such that the covariance of F and l becomes the maximum. After 
getting latent vectors 𝒖𝒊 𝑎𝑛𝑑  𝒗𝒊  , F and l are deflated (confidence is lowered) by 
subtracting their rank-1 approximations based on 𝒖𝒊  𝑎𝑛𝑑 𝒗𝒊. This procedure is iterated 
until desired number of latent vectors are extracted. The dimensionality reduction for 
periocular attributes is performed by projecting the low level features onto the weights 
𝐖𝑷𝑳𝑺, obtaining the latent vector zi as a result, which are then used to train the linear 
SVM-based attribute classifiers as shown in Fig. 3. To learn the PLS weights, we used all 
the features of the labelled dataset of PA and performed 10 fold cross validation.  
 

2.2.3. Attribute Based Periocular Region Matching 
 
Consider an attributes function ai that maps an input image I to a real value ai. Large positive 

values of ai indicate the presence or strength of the ith attribute, while negative values indicate 
its absence [11]. We trained a total of 15 linear SVM classifiers using vlfeat library [22]. A 
grid search approach was used to compute the value of cost parameter for training each SVM 
classifier. When the low-level feature vector of a test image is passed to the trained SVM 
models for PA classification, the module outputs a 1×15 attribute vector ac(I), as shown in Fig. 
3. 

In order to find the similarity between two periocular regions based on PA, we defined a 
periocular region matching method. This method compares the attribute vectors, ac(I1) and 
ac(I2) of two periocular images I1 and I2, and returns the attribute recognition decision vector 
av(I1, I2) by computing the similarity between the attributes of the two images, as shown in Fig. 
4. Let ai = aci(I1) and bi = aci(I2) be the outputs of the ith attribute (i =1,2,3, …,15) classifiers for 
each periocular image. Then, the term �|𝑎𝑖|− |𝑏𝑖|� represents the dissimilarity of the ith 
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attribute in those two periocular images. The sign (+, -) of the product aibi signifies the 
presence or absence of that attribute. The attribute score (SPA) is computed as: 

 
                  𝑆𝑃𝐴�𝑃,  𝐺� =  𝑒𝑥𝑝− 𝑐𝑎  ×𝑑 +  𝑀𝐶𝑃𝐴(𝑃,𝐺)        (10) 

 
where, 𝑑 = �∑ 𝑝𝑎𝑖15

𝑖 �  (𝑓𝑜𝑟 𝑝𝑎𝑖 ≥ 0), MCPA�𝑃𝑖 ,  𝐺𝑗� = 𝑛/𝑁  (PA match count matrix), 
𝑝𝑎𝑖 = sign(𝑎𝑖) ∗ sign(𝑏𝑖) ∗ �|𝑎𝑖| − |𝑏𝑖|�, ai and bi denote the ith attribute values of subject 
a and b, Pi and Gj represent probe and gallery indices, n is the number of attributes having 
same signs and N is total number of attributes. Value of ca is constant and fixed as 0.25.  
 

 
 

3. Experimental Results 
We describe the database used in the experiments and then provide experimental results 

in three different subsections: (i) the general performance of the proposed system on the 
FRGC and Sogang Periocular Database (SPDB), (ii) the effect of distance variation on 
recognition accuracy, and (iii) the performance comparisons between the proposed 
method and two other state-of-the-art LBP-based methods [12][14]. 

3.1. SPDB and FRGC Database 
Existing periocular databases have mostly addressed challenging factors regarding pose, 

expression, illumination, and blinking. We address distance as one of the major factors in 
our periocular database composition. The distance between a subject and a camera plays 
an important role in the level of perspective distortions, especially on mobile platforms. 
We have captured facial images at three different distances (0.5m, 1.0m and 1.5m) and 
five different facial poses (frontal, left, right, up, and down at ±20°) using the built-in 

Fig. 4. Example of PA feature vector comparison of the same and different subject pairs 
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camera of a smartphone (Samsung Galaxy S3). The facial image resolution is 2448×3264 
in JPEG format. The database is composed of 15,000 images of 50 different subjects (2 
images at 5 different poses at 3 different distances for each of the 50 subjects). 

 

 
The periocular images captured at three different distances and various facial poses, 

makes SPDB a special database to study the characteristics of periocular biometrics in 
smartphone environments. Example images of SPDB and cropped periocular regions of a 
subject at three different distances are shown in Fig. 5. We also used a subset of the FRGC 

Fig. 5. Example images from the Sogang Periocular Database (SPDB). Facial images of frontal; left; 
right; up; and down at (a) 0.5m, (b) 1.0m and (c) 1.5m. Periocular images of frontal; left; right; up; 

and down at (d) 0.5m, (e) 1.0m and (f) 1.5m. 
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ver. 2.0 database along with SPDB in the recognition experiments. The subset of FRGC 
contains 1136 frontal images of 568 subjects (2 frontal images per subject). 

3.2. Performance Evaluation 
3.2.1. Periocular recognition based on uMLBP and LDA learning 
 
We performed a four-fold cross-validation to evaluate the subspace learning method on 

FRGC dataset. Moreover, we used the learned model of FRGC dataset and applied it to 
the SPDB feature space. The recognition accuracy of 98.37% in the FRGC database is the 
state-of-the-art performance based on the literature survey shown in Table 1. The 
performance on SPDB was evaluated using four different poses in query images (yaw and 
pitch at ±20°) and only frontal images enrolled in the gallery database (capture distance of 
0.5m). Similarly as FRGC, the uMLBP with LDA showed the best performance in the 
SPDB database. Even though the recognition accuracy with SPDB containing pose 
variation is much lower than that of FRGC when only low level features were used, their 
performances are improved to similar level after applying LDA. The recognition 
performance on the FRGC database using uLBP and uMLBP with or without LDA are 
summarized in Table 2. 

We used weighted score sum method to combine the matching scores of the PA with the 
other four primary methods. For each fusion, a weight w ∈ [0,1] is assigned to primary 
method’s score matrix and weight ‘1-w’ is assigned to PA’s score matrix. Finally, both the 
score matrices are added to get the final (fused) score (using eq. 7 and eq. 10) as: 

 
      𝑆𝑓𝑖𝑛𝑎𝑙 =  𝑤 ×  𝑆𝑢𝑀𝐿𝐵𝑃+𝐿𝐷𝐴 + (1 −𝑤)  × 𝑆𝑃𝐴   (11) 

 
 Table 2 shows that the state-of-the-art recognition accuracy of 98.7% is achieved when we 

fuse the uMLBP+LDA method with PA+PLS method, for FRGC database. 

Table 2. Recognition accuracies of four different approaches with the FRGC and SPDB databases. 

Feature Type 

Database 
FRGC (2,272 images, 

leave-one-person-out* fashion) 
SPDB (800 non-frontal images for 

probe, 200 frontal images for 
gallery) 

Primary method Fusion with 
PA+PLS  

Primary method Fusion with 
PA+PLS  

uLBP** 92.25%  92.6% 
(w′=0.88)  

86.1% 86.3% 
(w′=0.85) 

uMLBP*** 92.21%  92.4% 
(w′=0.90) 

84.1% 85% (w′=0.85) 

uLBP+LDA 96.7% 96.83 % 
(w′=0.98) 

95.5% 95.71% 
(w′=0.99) 

uMLBP+LDA 98.37% 98.7% 
(w′=0.99) 

97.5% 97.8% 
(w′=0.99) 

∗ We take one image as a probe from the first to the last in turn, and other images of all other 
subjects are considered as gallery set. 
∗∗ Patch size 74×74 pixels, radius 12 pixels 
∗∗∗ Patch size 74×74 pixels, radius 1, 3, 6, and 12 pixels 
w′ = optimal weight 
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It can be seen that uMLBP alone showed a little worse performance than uLBP, but the 

use of LDA subspace learning improved the uMLBP accuracy more than the accuracy of 
uLBP+LDA. We think this is due to the fact that although uMLBP contains more 
discriminative texture information than uLBP, it also induce some repetitive information, 
causing between-to-within class scatter ratio to drop. Fig. 6 depicts the visual 
representation of uMLBP features of four periocular regions. We selected two images of 
two different subjects from SPDB and FRGC dataset. In this example the uMLBP features 
are computed with patch radius R=3, 12 and 21, and then concatenated. In Fig. 6 we 
highlighted some of the prominent features (with green boxes), which are repetitive with 
little variations. LDA, on the other hand, uses this redundancy information in more 
effective way to learn the high dimensional reference system or the Eigen vectors, and 
hence result in better recognition accuracy than other methods with no LDA.  

 

 

R = 3          R=12          R=21 

Fig. 6. uMLBP feature visualizations of the periocular images of the two subjects from SPDB and 
FRGC datasets. The uMLBP feature is computed with patch radii R = 3, 12 and 21. 

R = 3          R=12          R=21 

R = 3          R=12          R=21 R = 3          R=12          R=21 

(a) Subject from SPDB 

(b) Subject from FRGC 
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Table 3. Effect of different features on between-to-within class scatter ratio  

Method |SB | |SW| 𝑺𝑩𝑾 =  |𝑺𝑩| |𝑺𝑾|⁄  
uLBP 52.33 73.87 0.71 

uMLBP 26.56 40.48 0.66 

uLBP+LDA 87.76 6.48 13.53 

uMLBP+LDA 88.37 3.81 23.21 
 

To support this hypothesis, we computed the between-class and within-class scatter 
matrix for the four cases, i.e., uLBP, uLBP+LDA, uMLBP and uMLBP+LDA. In 
multivariate analysis, it is often required to estimate a single representative value of the 
complete scatter matrix. Many researchers [25],[26],[27] proposes 𝑆 = 𝑡𝑟(𝚺)/𝑚, where 
𝑡𝑟 operator represent trace operation applied on the scatter matrix 𝚺, and m represents the 
dimension of the feature vector. Here S is also equal to the sum of Eigen values of the 
scatter matrix. We calculated the ratio of the sum of the Eigen values of between-class 
scatter matrix to that of within-class scatter matrix for the four cases, 𝑆𝐵𝑊, and compared 
the results in Table 3. In Table 3, |SB| and |SW| denote the magnitude (single representative 
value) of the between-class scatter and within-class scatter respectively. It is evident from 
Table 3 that 𝑆𝐵𝑊  of uLBP ( 𝑆𝐵𝑊_𝑢𝐿𝐵𝑃 ) is little greater than the 𝑆𝐵𝑊  of uMLBP 
(𝑆𝐵𝑊_𝑢𝑀𝐿𝐵𝑃), due to which the rank-1 accuracy of uMLBP is little worse than that of 
uLBP. However, the 𝑆𝐵𝑤  of uMLBP+LDA is significantly greater than that of 
uLBP+LDA, which causes significant improvement in the rank-1 accuracy of 
uMLBP+LDA, as shown in Table 2. 
 

3.3. Effect of Distance Variation on Periocular Recognition Accuracy 
 
Next, we evaluated the effects of distance on the recognition performance. For this 

experiment we used the SPDB, having facial images at three different distances (0.5m, 
1.0m and 1.5m), both for probe and gallery and evaluated the recognition accuracy in 
every combination (c.f., Table 4). We used uMLBP features combined with LDA for the 
features, and used only frontal images to evaluate the distance effect separately from the 
pose variation effect. The recognition results showed similar performances at different 
combinations of capture distances of probe and gallery images, but the uses of gallery and 
probe images captured at the same distances showed the best accuracies. Based on the 
results in Table 4, we conclude that the periocular recognition system can be used at 
closer distance (close to the normal operating distance of a smartphone), and the gallery 
database can be constructed using images captured at 0.5m distance. 

Table 4. Recognition accuracies with respect to the capture distance using the uMLBP+LDA method. 

 Probe 

Gallery 

Distance 0.5m 1.0m 1.5m 

0.5m 99.5% 98.0% 97.5% 

1.0m 98.0% 99.0% 97% 

1.5m 97.5% 97.0% 97.5% 
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3.4. Comparison with State-of-the-art LBP Based Features 
 
Even though the proposed system showed the best performance on the FRGC database as 

shown in the previous subsections, the proposed method (uMLBP and LDA) is not much 
different from the conventional methods. However, as can be seen in Table 1, conventional 
periocular recognitions mostly rely on LBP or uLBP rather than uMLBP, which can better 
handle the scale variations. Also, no previous approaches utilized LDA. Therefore, we believe 
the combination of uMLBP and LDA is proposed for the periocular recognition for the first 
time in this paper, and it is well-suited for periocular recognition. 

For additional evaluation of the proposed method, we compared our method with two other 
state-of-the-art LBP-based features [12][14]. Liao [12] proposed Multi-scale Block Local 
Binary Pattern (MB-LBP) that extend the MLBP by considering blocks instead of each pixel 
as the unit values. The MB-LBP is also extended by considering the concepts similar with 
uniform-LBP, and then combined with AdaBoost to select effective features for the classifier 
construction, which named as Statistically Effective Multi-scale Block Local Binary Pattern 
(SEMB-LBP). On the other hand, Nikisins et al. [14] extended the MLBP by applying feature 
weighting methods. 

Table 5. Comparison of the performance in facial recognition between [12] and our implementation 
of the proposed method in [12]. The FERET database is used for the evaluation. 

 Liao [12] Our implementation of [12] 

Rank-1 identification 
accuracy 91.81% 

96.34% (PS=56×72,s=9)* 

97.20% (PS=56×56,s=9) 

96.99% (PS=32×32,s=9) 
#images and 

#subjects used in 
training and testing 

12,776 images of 222 subjects for 
training, 932 images of 466 subjects 

for testing 

3,772 images of 275 subjects for 
training, 930 images of 465 subjects 

for testing** 
∗ PS and s represent patch size and the scale of SEMB-LBP, respectively. 
∗∗ There is no detailed explanation about the database construction for the experiment in 

[12]. We selected the number of images and subjects to construct the database similarly 
with that of [12]. 

 
We first implemented the methods of [12] and [14] because their codes are not publically 

available. We carefully followed the descriptions in those articles and compared the 
performance of our implementations of [12] and [14] using the same facial image databases 
(FERET). Then, we compared the methods of [12][14] and the proposed method on the 
periocular database (FRGC). 

Table 5 shows the comparison of the performances between [12] and our implementation of 
[12]. Since the detailed explanation of the dataset construction is not provided in [12], our 
dataset is slightly different from that in [12]. However, the number of images and subjects in 
the test dataset is almost the same. It can be seen that our implementation showed superior 
identification accuracy than that in [12]. Similarly, Table 6 summarizes the comparison 
between [14] and our implementation of [14]. Our implementation showed very similar 
performances as those of [14], and even showed better performances in some parameter 
settings. 



6148                                                                 Zahid Ali et al.: Periocular Recognition Using uMLBP and Attribute Features  

Table 6. Comparison of the performance in facial recognition between [18] and our implementation 
of the proposed method in [18]. The FERET database is used for the evaluation. 

 Nikisins [14] Our implementation of 
[14] Methods 

Rank-1 identification 
accuracy 

96.80% 97.11% MSLBP* 

97.80% 97.31% MSLBP+MF 

98.10% 98.50% MSLBP+MF+FW 

99.20% 98.64% MSLBP+MF+BF** 

#images and 
#subjects used in 

training and testing 

1,986 images of 993 
subjects both for 

training and testing 

2,010 images of 1,005 
subjects both for training 

and testing*** 
 

∗ The parameters used are L=11, K=8, NR=3 where L, K, and NR represent sampling 
radius, number of patches, and number of radii, respectively. 

∗∗ MF, FW, and BW represent mean filter, feature weighting, and block weighting, 
respectively. 

∗∗∗ There is no detailed explanation about the database construction for the experiment 
in [14]. We selected the number of images and subjects to construct the database 
similarly with that of [14]. 

 
Finally, Table 7 shows the periocular recognition performance comparisons between 

our implementations of [12] and [14] and our proposed methods. It is evident that the 
proposed method (i.e., uMLBP+LDA+PA+PLS) provides the best recognition accuracy. 
The recognition performances of uLBP, uMLBP, uLBP+LDA, and uMLBP+LDA are also 
provided in Table 7 for the comparison. 

Table 7. Comparison of the performances of various approaches in periocular recognition. The FRGC 
database is used for the evaluation. 

 Our implementation 
of [12] 

Our implementation of 
[14] Proposed method 

Rank-1 identification 
accuracy 

88.86% 
(PS=56×56,s=9) 

96.61% 
(MSLBP+MF+BF) 

98.7% 
(uMLBP+LDA+PA+P

LS) 

 

4. Conclusions and Future Work 
In this paper, we proposed a state-of-the-art periocular recognition method using 

uMLBP, LDA, and periocular attributes. We also collected a new database (SPDB) to 
investigate the effect of distance and pose variation in periocular recognition on mobile 
platforms. From the experimental results, we observed that the performance of the 
periocular recognition system did not degrade much depending on the capture distance. 
Besides the uMLBP+LDA based periocular recognition method, we also proposed the use 
of 15 periocular attributes for more robust recognition. We expect that the use of more 
number of periocular attributes (e.g., colour of the pupil, monolid eyes, almond eyes, 
upturned eyes, downturned eyes, hooded eyes, wrinkles in periocular region, etc.) can 
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further improve the recognition accuracy. Future work should also include reducing the 
negative effects of the pose and distance variations and finding deformation invariant 
descriptors or learning methods. 
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