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Abstract 
 

The problem of blocking artifacts is very common in block-based image and video 
compression, especially at very low bit rates. In this paper, we propose a post-processing 
method for JPEG-coded image deblocking via sparse representation and adaptive residual 
threshold. This method includes three steps. First, we obtain the dictionary by online 
dictionary learning and the compressed images. The dictionary is then modified by the 
histogram of oriented gradient (HOG) feature descriptor and K-means cluster. Second, an 
adaptive residual threshold for orthogonal matching pursuit (OMP) is proposed and used for 
sparse coding by combining blind image blocking assessment. At last, to take advantage of 
human visual system (HVS), the edge regions of the obtained deblocked image can be further 
modified by the edge regions of the compressed image. The experimental results show that our 
proposed method can keep the image more texture and edge information while reducing the 
image blocking artifacts. 
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1. Introduction 

Image and video have been becoming the main carriers of information. To adapt to the 
available and limited resource, such as a limited amount of transmitting bandwidth, images 
need to be compressed. Block discrete cosine transform (BDCT) has been widely used in 
current coding standards, such as JPEG [1], H.264/AVC [2], and H.265/HEVC [3]. However, 
BDCT coding technique usually produces blocking artifacts, especially at low bit rates. On the 
one hand, the blocking artifacts seriously affect the visual quality of the image. On the other 
hand, it affects the further image processing. Therefore, it is necessary to conduct image 
deblocking, especially for highly compressed images. 

There are two main approaches for deblocking: in-loop processing and post-processing. 
In-loop processing conducts the process of image deblocking in the coding loop. Since 
post-processing is performed after image decoding, it is easily incorporated in any existing 
compression standards. Therefore, it is more practical for image deblocking. There are also 
two categories for post-processing methods [4], [5]: image enhancement based method and 
image restoration based method. The image deblocking method based on image enhancement 
does not consider the cause of blocking artifacts and only conducts image enhancement 
operation, such as spatial filtering [6], [7] and frequency domain filtering [8], [9]. 

For image deblocking method based on image restoration, we usually formulate the 
deblocking as an ill-posed inverse problem [10], such as projection onto convex sets (POCS) 
method [11], maximum a posteriori (MAP) estimation method [12], and the energy based 
method [13], [14]. Another likely method is using spare representation for deblocking [15]. 
The learning-based sparse representation has been widely and successfully used in Gaussian 
noise reduction [16], multiplicative noise removal [17], Poisson image deblurring [18], 
super-resolution [19], and so on. Similarly, many researchers have proposed image deblocking 
methods for the JPEG compressed images by sparse representation. Jung et al. [20] obtained a 
deblocking dictionary via the K-singular value decomposition (K-SVD) algorithm [21] and 
proposed an adaptive residual threshold for orthogonal matching pursuit (OMP) [22] in image 
deblocking. Instead of processing each image patch individually, Zhang et al. [10] proposed 
group-based sparse representation (GSR) and used GSR for image deblocking. Combined 
with the total variation regularization, Chang et al. [23] proposed a novel image deblocking 
method for the JPEG-coded images via sparse representation. These studies show that sparse 
representation is effective in image deblocking. Therefore, this paper will focus on image 
deblocking for JPEG-coded images via sparse representation. 

For image deblocking via sparse representation, the proper over-completed dictionary and 
sparse coding algorithm are needed. An effective three-step algorithm for JPEG-coded images 
is propoesed in this paper. First, we obtain a over-completed dictionary for sparse 
representation using online dictionary learning algorithm [24] using the blocking image. The 
obtained dictionay is then decomposed into blocking sub-dictionary and non-blocking 
sub-dictionary via the K-means algorithm and histogram of oriented gradient (HOG) feature 
descriptor [25]. Second, for sparse coding algorithm, an adaptive residual threshold for OMP 
is proposed and used for sparse coding by combining blind image blocking assessment. At last, 
to take advantage of human visual system (HVS) [26], the edge regions of the obtained 
deblocked image can be further modified by the edge regions of the compressed image. 
Therefore, blocking artifacts are reduced by these steps. 



1702                                                                      Wang et al.: Post-Processing for JPEG-Coded Image Deblocking via 
Sparse Representation and Adaptive Residual Threshold 

In Section 2, we briefly show the JPEG compression model and review the concept of the 
sparse representation and dictionary learning techniques. In Section 3, we describe the 
proposed post-processing for JPEG-coded image via sparse representation and adaptive 
residual threshold in detail. Section 4 presents some experimental results and the 
corresponding analysis. Finally, we conclude the paper in Section 5. 

2. Related Work 
In this section, we show the model of JPEG compression and sparse representation. We also 
briefly review the concept of the over-completed dictionary learning techniques. 

2.1 JPEG Compression Model 
The image compression standard used here is JPEG [1], which contains three basic steps: 
BDCT, BDCT coefficient quantization, and Huffman entropy encoding. The decoding process 
is the inverse process of encoding. Fig. 1 shows the basic processes of JPEG encoding and 
decoding. 
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Fig. 1. Block diagram for JPEG compression. 

 
The process of encoding is shown as follows: 
Step 1. The input image is first converted into the YCbCr color space and then is grouped 

into blocks of size 8 8× . 
Step 2. Before carrying out a BDCT, the input image data are shifted from unsigned 

integers to signed integers. 
Step 3. Each block is transformed by BDCT. Each block will include 64 BDCT 

coefficients which are composed of one DC coefficient and 63 AC coefficients. 
Step 4. Quantize each matrix block. 
Step 5. For each block, the DC coefficient is performed a differential pulse code 

modulation (DPCM).The 63 coefficients are first converted into a 1-D zig-zag sequence, and 
then are conducted entropy encoding. 

2.2 Sparse Representation Model 

The sparse representation model is that every image patch n∈x R  could be represented 
sparsely over a dictionary of size n k×∈D R , 

0ˆ arg min || || subject to= ≈D x
α

α α α ,                                         (1) 

where 0|| ||α  is the count of the nonzero entries in α . For the sparse representation model, the 
solution of Eq. (1) is indeed very sparse, 0ˆ|| || nα . 
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To make the sparse representation model more precise, we can replace the rough constraint 
≈D xα  with a more clear bounded representation error, 2|| || ε≤D xα − . The MAP estimator 

for image patch y  denoising is established by solving 
2

0 2ˆ arg min || || subject to || || T= ≤D y
α

α α α − ,                                  (2) 

where y  is obtained by the sparse signal x  contaminated by the Gaussian noise with standard 
deviation σ . T  is decided by ε  and σ . The denoised image is obtained by ˆ ˆ=x Dα . 

In general, Eq. (2) is very hard to calculate. However, it can be efficiently solved by several 
available approximation techniques to get the sparse decomposition coefficients, such as basis 
pursuit (BP) [27], matching pursuit (MP) [28], and OMP [22]. In our work, we use OMP 
because of its simplicity and efficiency. 

2.3 Over-Completed Dictionary Learning Techniques 
Most recent algorithms for dictionary learning are iterative batch procedures such as the 
method of optimal directions (MOD) [29], the method proposed by Lewicki and Sejnowski 
[30], K-SVD [21], and the method proposed by Raina et al. [31]. To make a cost function 
smallest under some constraints, these methods use the whole training sets at each iteration. 
Therefore, these methods cannot handle very large training sets quickly and efficiently. Online 
dictionary learning algorithm [24] can solve this problem. Thus, in this paper, we adopt it to 
obtain the over-completed dictionary. 

Fig. 2 shows the over-completed dictionaries of size 64 1024× . Fig. 2(a) is the DCT 
dictionary, and Fig. 2(b) is obtained by the online dictionary learning which the input image is 
Lena image with compression factor 10q = . 

   

     
(a)                                                                      (b) 

Fig. 2. The over-completed dictionaries: (a) DCT dictionary and (b) learned dictionary. 

3. Our Proposed Method 
The framework of our proposed method is shown in Fig. 3. Our method is divided into two 
parts: dictionary training processes and sparse coding with adaptive residual threshold. 
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Fig. 3. Flow chart of our proposed algorithm. 

 

3.1 Dictionary Training Processes 
We first extract a series of overlapping image patches from the JPEG-coded images as the 
training samples for learning dictionary to obtain the over-completed dictionary totalD . In 
general, the atoms in the dictionary have typical features in the original image. We obtain the 
dictionary by using the compressed images. Therefore, the learned dictionary will have the 
blocking artifacts. It is necessary to remove atoms including blocking artifacts and obtain 
dictionary without non-blocking component for the image deblocking. 

The most striking feature of a blocking atom can be expressed by image gradient. In our 
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paper, the modified HOG descriptor is used to describe the most striking feature of each atom 
in totalD . Taking into account the characteristics of blocking artifacts, we only need to consider 
and use the vertical and horizontal gradients in each dictionary atom. Therefore, we use 72 bin 
histograms to count the gradient information of the atoms, and the 1st bin, 18th bin, 19th bin, 
36th bin, 37th bin, 54th bin, 55th bin, and 72nd bin are gathered as the final HOG descriptor. 
That is, for horizontal HOG descriptor, we calculate o o[355 ,5 ]  and o o[175 ,185 ] ; for the 
vertical HOG descriptor, we calculate o o[85 ,95 ]  and o o[265 ,275 ] . In this paper, we call this 
HOG descriptor as the blocking feature bf . 

The detailed process is described in the following parts and Fig. 4 shows the finalD  of the 
Fig. 2(b) by applying our proposed method. 

Step 1. Obtain the over-completed dictionary totalD  using the online dictionary learning 
algorithm; 

Step 2. Calculate the blocking feature bf  for each atom in totalD ; 
Step 3. To prevent dropping too much the texture and edge information of the image, we 

use the K-means algorithm to classify all of the atoms in totalD  into three groups, 1D , 2D , and 

3D , based on their blocking feature bf ; 
Step 4. According to the centers of the three groups 1D , 2D , and 3D , they can be divided 

into three categories: blocking sub-dictionary bD , little-blocking sub-dictionary lbD  and 
non-blocking sub-dictionary nbD . We combine lbD  and nbD  as the final learned dictionary 

finalD . 
 

    
(a)                                   (b)                                     (c)                                    (d) 

Fig. 4. The dictionary learning and partition: (a) blocking sub-dictionary, (b) little-blocking 
sub-dictionary, (c) no-blocking sub-dictionary, and (d) final sub-dictionary. 

 

3.2 Sparse Coding with Adaptive Residual Threshold 
We use finalD  for image deblocking. The objective function for image deblocking is shown by 
Eq. (2), but the optimization problem is a NP-hard problem. We usually use 1l  norm to 
approximately solve the problem as Eq. (3) 

2
1 2ˆ arg min || || subject to || || T= ≤D y

α
α α α − ,                                  (3) 

where y  is the blocking image, and T  is the residual threshold for OMP which is decided by 
ε  and σ . 

The residual threshold T  is important to optimize Eq. (3). Fig. 5 shows the objective 
experimental results which Lena and Barbara image at differernt compression factors are 
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conducted image deblocking via sparse representation, where the dictionary is DCT dictionary 
of size 64 1024× . Fig. 6 and Fig. 7 show some subjective experimental results of Fig. 5. From 
Fig. 5, we can find that: (i) different images have different optimal residual thresholds; (ii) one 
image with different compression factors has different optimal residual thresholds; (iii) the 
larger compression factor is, the smaller the optimal residual threshold would be. If we select a 
larger residual threshold, the deblocked image would be too smooth and some of the important 
information of edge and texture will lose, as shown in Fig. 6(f) and Fig. 7(f). If the residual 
threshold is too small, there are still some blocking artifacts in the images, as shown in Fig. 6(c) 
and Fig. 7(c). 
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Fig. 5. The effects of residual threshold T  on image deblocking: (a) Lena image and (b) Barbara image. 
 
 
 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017                                    1707 

 

   
(a)                                                 (b)                                                 (c) 

   
(d)                                                 (e)                                                (f) 

Fig. 6. The effects of residual threshold T  on Lena image deblocking: (a) the uncompressed image,  
(b) the compressed image with 10q = , (c), (d), (e), and (f) are the deblocked image with 2T = , 8, 14, 

and 20, respectively. 
 
 

In the previous work for image denoising [21], the T  is decided by Eq. (4). 
 

T C σ= × ,                                                           (4) 
 
where the σ  is the standard deviation of quantization noise, and the noise gain C  is set to be 
1.15. However, the optimal residual threshold blockT  for image deblocking is different from T  
for image denoising. To find the optimal residual threshold blockT  for image deblocking, Jung 
et al. [20] modified Eq. (4) according to the compression factor q  and the standard deviation 
of the entire image as follows: 
 

Jung ( )aT C c
q b

σ= × × +
+

,                                                (5) 

 
where ,a  ,b  and c  are the control parameters, and their appropriate values are set to be 20, 10, 
and 0, respectively. 
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(a)                                                 (b)                                                 (c) 

   
(d)                                                (e)                                                 (f) 

Fig. 7. The effects of residual threshold T  on Barbara image deblocking: (a) the uncompressed image, 
(b) the compressed image with 10q = , (c), (d), (e), and (f) are the deblocked image with 2T = , 8, 14, 

and 20, respectively. 
 
 

Eq. (5) is consistent with the experimental results of Fig. 4, that is, the larger the 
compression parameter is, the smaller the optimal residual threshold is. The compression 
factor is required to known in advance and we also need to obtain the standard deviation of 
quantization noise. To overcome these problems, we propose one pure adaptive residual 
threshold by using the blind image deblocking index [32] to modify Eq. (5). For method 
proposed in [32], it can detect the artifacts as shown in Fig. 8. The relationship between 
artifacts index score indexq  and q  is shown in Fig. 9. The higher quality of the image is, the 
smaller the artifacts index score indexq  is. Therefore, we modify Eq. (5) as follows: 

 
1 1base indexT a q b= + ,                                                         (6) 

 
where 1a  and 1b  are the control parameters. Their appropriate values are given by 
experiments. 
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(a)                                                                 (b) 

  
(c)                                                                  (d) 

Fig. 8. Reconstructed Lena images with different q  and blocking index images: (a) 10q = ,  
(b) the blocking image of (a), (c) 50q = , and (d) the blocking image of (c). 
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Fig. 9. The relationship between q  and indexq . 
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HVS is the ultimate recipient of videos and images in our daily life. According to HVS 
models, our eyes can significantly perceive the artifacts such as blocking, and high-frequency 
noise in smooth regions. However, some of the texture distortion can be masked by texture. 
Fig. 10 shows visual sensitivity based image classification. From Fig. 10, we can easily find 
the blocking artifacts in the image flat regions, but it is hard to find the blocking artifacts in the 
edge and texture regions. Therefore, based on these conceptions, the final edge regions of the 
deblocked image edgefinalI  can be further modified by the edge regions of deblocked image 

deblockingI  and the orginal image edgeblockingI  as: 
( , ) ( , ) (1 ( , ))edgefinal edgedeblocking edgeblockingI i j w i j I w i j I= + − ,                            (7) 

where w  and (1 )w−  denote the weights for edgedeblockingI  and edgeblockingI , respectively. 
 

  
(a)                                                                (b) 

  
(c)                                                                (d) 

Fig. 10. Visual sensitivity based image classification: (a) the original image, (b) smooth-pixel image,  
(c) texture-pixel image, and (d) edge-pixel image. 

4. Experimental Results and Analysis 
In this section, we test the deblocking performance of our proposed scheme. These blocked 
images are JPEG-coded images. The intensity of blocking artifacts in JPEG-coded image is 
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largely determined by the compression factor q , whose range is from 0 to 100. The larger of 
the compression factor is, the better the image quality will be. Typically, when the 
compression factor q  is less than 20, the blocking artifacts become noticeable. In this paper, 
the performance of the proposed scheme and other methods are quantitatively measured by the 
following indexes: peak signal-to-noise ratio (PSNR), structural similarity (SSIM) index [33], 
PSNR-HVS-M [34], and FSIM [35]. For all of them, the larger the value is, the better it is. In 
this paper, hardware configuration of computer is Intel (R) Core (TM) i5-4690 4 core CPU, 
3.50 GHz, 8 GB memory. The simulation is conducted with MATLAB 2014a. 

4.1 Automatic Estimation of the Residual Threshold 
To find a suitable residual threshold for different types of contents in Eq. (3), we have 
conducted several tests on eight standard test images: Lena, Baboon, Barche, Goldhill, 
Peppers, Barbara, Cameraman, and Airplane, which are listed in Fig. 11. 

First, we seek the relationship between q  and indexq  to obtain the optimal 1a  and 1b  for Eq. 
(6). As shown in Fig. 9, q  and indexq  are inversely proportional relationship. Therefore, in this 
paper, we use the linear fitting toolbox in MATLAB to obtain their expression: 

170.8
0.1027indexq

q
=

+
.                                                       (8) 

Second, to determine appropriate values 1a  and 1b , we have tested the PSNR performance 
of reconstructed images respect to different residual threshold baseT  and compression factor q . 
The compression factors q  are 5, 7, 10, 12, and 15. These experimental results are shown in 
Table 1 - Table 5. In these tables, the bold numbers represent the best threshold values. 
Combined with Eq. (6) and Eq. (8), we use the best threshold values for eight images as shown 
in Table 6 and the average of these values are used as the optimal 1 0.3203a =  and 

1 4.2123b = . In Table 6, SSE is the sum of squares due to error mean squared error (MSE); 
R-square is coefficient of determination; Adjusted R-square is degree-of-freedom adjusted 
coefficient of determination; and RMSE is root mean squared error. 

    
(a)                                    (b)                                    (c)                                    (d) 

    
(e)                                    (f)                                    (g)                                    (h) 

Fig. 11. Eight standard test images. 
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Table 1. The PSNR results of different T  for 5q =  ( 33.4725indexq = ) 

Image 13T =  14T =  15T =  16T =  17T =  18T =  19T =  JPEG 
Lena 28.82 28.81 28.78 28.74 28.68 28.60 28.53 27.33 

Baboon 22.08 22.09 22.09 22.09 22.07 22.05 22.01 21.52 
Barche 27.19 27.18 27.16 27.11 27.06 26.99 26.92 26.03 
Goldhill 27.28 27.25 27.21 27.13 27.07 26.99 26.90 26.16 
Peppers 28.79 28.81 28.81 28.79 28.78 28.73 28.65 27.18 
Barbara 24.81 24.85 24.88 24.90 24.91 24.91 24.91 23.86 

Cameraman 24.95 24.97 24.99 25.01 25.01 25.02 25.01 24.21 
Airplane 27.86 27.88 27.86 27.80 27.79 27.74 27.68 26.54 

 
 

Table 2. The PSNR results of different T  for 7q =  ( 23.9345indexq = ) 
Image 9T =  10T =  11T =  12T =  13T =  14T =  15T =  JPEG 
Lena 30.19 30.24 30.25 30.23 30.18 30.11 30.02 28.89 

Baboon 22.89 22.92 22.93 22.94 22.94 22.93 22.90 22.47 
Barche 28.47 28.51 28.51 28.48 28.43 28.345 28.26 27.46 
Goldhill 28.33 28.33 28.28 28.21 28.12 28.03 27.92 27.43 
Peppers 30.00 30.06 30.08 30.07 30.04 30.00 29.94 28.68 
Barbara 25.45 25.51 25.56 25.59 25.61 25.62 25.62 24.76 

Cameraman 25.93 25.97 25.60 26.01 26.01 26.01 26.00 25.33 
Airplane 29.26 29.34 29.37 29.39 29.37 29.34 29.21 28.11 

 
 

Table 3. The PSNR results of different T  for 10q =  ( 16.9064indexq = ) 
Image 7T =  8T =  9T =  10T =  11T =  12T =  13T =  JPEG 
Lena 31.53 31.57 31.57 31.53 31.46 31.36 31.23 30.41 

Baboon 23.74 23.78 23.81 23.82 23.81 23.79 23.76 23.43 
Barche 29.76 29.81 29.81 29.77 29.70 29.58 29.44 28.86 
Goldhill 29.39 29.38 29.31 29.23 29.12 28.98 28.84 28.65 
Peppers 31.24 31.28 31.29 31.30 31.24 31.16 31.06 30.14 
Barbara 26.25 26.32 26.38 26.43 26.46 26.47 26.47 25.70 

Cameraman 26.76 26.80 26.85 26.87 26.87 26.84 26.80 26.26 
Airplane 30.78 30.86 30.92 30.93 30.92 30.81 30.63 29.77 

 
 

Table 4. The PSNR results of different T  for 12q =  ( 14.1126indexq = ) 
Image 5T =  6T =  7T =  8T =  9T =  10T =  11T =  JPEG 
Lena 31.98 32.10 32.16 32.17 32.13 32.05 31.93 31.09 

Baboon 24.13 24.18 24.23 24.26 24.27 24.27 24.25 23.90 
Barche 30.23 30.35 30.41 30.43 30.39 30.31 30.18 29.53 
Goldhill 29.86 29.92 29.91 29.84 29.74 29.61 29.45 29.23 
Peppers 31.65 31.77 31.84 31.85 31.84 31.79 31.71 30.79 
Barbara 26.65 26.75 26.82 26.89 26.94 26.97 26.98 26.26 

Cameraman 27.27 27.35 27.41 27.45 27.47 27.48 27.46 26.92 
Airplane 31.31 31.45 31.55 31.62 31.63 31.58 31.48 30.50 
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Table 5. The PSNR results of different T  for 15q =  ( 11.3092indexq = ) 

Image 4T =  5T =  6T =  7T =  8T =  9T =  10T =  JPEG 
Lena 32.68 32.82 32.89 32.90 32.86 32.77 32.6 31.95 

Baboon 24.68 24.74 24.78 24.82 24.84 24.84 24.83 24.50 
Barche 30.94 31.08 31.16 31.20 31.17 31.09 30.95 30.36 
Goldhill 30.48 30.57 30.59 30.53 30.42 30.27 30.08 29.95 
Peppers 32.23 32.36 32.43 32.45 32.43 32.38 32.23 31.54 
Barbara 27.38 27.48 27.57 27.64 27.70 27.73 27.75 27.05 

Cameraman 27.93 28.01 28.09 28.14 28.16 28.17 28.16 27.65 
Airplane 32.11 32.28 32.41 32.47 32.48 32.43 32.29 31.44 

 
 

Table 6. The parameters for the eight test images 

Image 1a  1b  SSE R-square Adjusted 
R-square RMSE 

Lena 0.2786 3.844 0.6241 0.9752 0.967 0.4561 
Baboon 0.297 5.276 0.8662 0.9699 0.9599 0.5373 
Barche 0.269 4.235 0.2888 0.9876 0.9834 0.3103 

Goldhill 0.3397 1.624 0.6552 0.9824 0.9765 0.4673 
Peppers 0.3448 3.323 1.153 0.9703 0.9604 0.6201 
Barbara 0.3669 5.881 0.1516 0.9965 0.9953 0.2248 

Cameraman 0.3971 4.28 0.8645 0.983 0.9773 0.5368 
Airplane 0.269 5.235 0.2888 0.9876 0.9834 0.3103 

 

4.2 Image Deblocking Results 
Several JPEG-decoded images are used to test the performance of the proposed deblocking 
algorithm. Two other methods are used for comparisons with our method. The two deblocking 
methods are: the over-completed DCT dictionary and the over-completed learned K-SVD 
dictionary. The deblocking results for the JPEG-coded Lena, Barbara, Peppers, Baboon, 
Barche, and Fruits according to different compression factors are as shown in Table 7 and 
Table 8. 

From Table 7 and Table 8, our proposed method is better than the method of 
over-completed DCT dictionary and the over-completed learned K-SVD dictionary in terms of 
the PSNR, SSIM, PSNR-HVS-M, or FSIM. 

We also give deblocked results of the Monarch and Parrots in Fig. 12 and Fig. 13, 
respectively. The visual quality of the compressed image is greatly improved in the three 
deblocking methods. In Fig. 12 and Fig. 13, we add blue rectangle to show the image 
deblocking results for smooth regions. For the red rectangle, it indicates the image deblocking 
results for non-smooth regions. For the smooth regions, the blockness can be removed by three 
methods. For non-smooth regions, the detail information can be protected. However, our 
proposed method not only smooths the blocking, but also can protect the edge information 
better. Our proposed method can keep more information of the original images and our 
method produces more natural-looking images. For example, the feathers of parrot are more 
vividly as shown in Fig. 13(d). 
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Table 7. Performance evaluation results on test images (Lena, Barbara, and Peppers) 
 

Image Factor Metric JPEG Over-completed 
DCT 

K-SVD 
method 

Proposed 
without 
weights 

Proposed 

Lena 

q =5 

PSNR (dB) 27.32 28.75 28.89 28.74 28.62 
SSIM 0.7660 0.8252 0.8286 0.8258 0.8260 

PSNR-HVS-M 
(dB) 23.92 25.66 25.88 25.69 25.61 

FSIM 0.8614 0.9138 0.9143 0.9128 0.9131 

q =9 

PSNR (dB) 29.94 30.61 31.07 31.19 31.07 
SSIM 0.8590 0.8782 0.8835 0.8964 0.8962 

PSNR-HVS-M 28.14 28.47 29.17 29.93 29.85 
FSIM 0.9265 0.9404 0.9431 0.9496 0.9495 

q =11 

PSNR (dB) 30.77 31.01 31.55 31.96 31.85 
SSIM 0.8879 0.8897 0.8954 0.9160 0.9159 

PSNR-HVS-M 
(dB) 29.71 29.05 29.84 31.47 31.42 

FSIM 0.9440 0.9444 0.9472 0.9597 0.9597 

Barbara 

q =5 

PSNR (dB) 23.86 24.90 25.01 25.01 24.87 
SSIM 0.7681 0.8116 0.8156 0.8083 0.8092 

PSNR-HVS-M 
(dB) 22.88 24.60 24.87 24.57 24.50 

FSIM 0.8590 0.9145 0.9160 0.9114 0.9115 

q =9 

PSNR (dB) 25.41 26.17 26.46 26.40 26.26 
SSIM 0.8674 0.8717 0.8801 0.8882 0.8889 

PSNR-HVS-M 
(dB) 27.10 27.53 28.23 28.61 28.59 

FSIM 0.9255 0.9395 0.9430 0.9478 0.9480 

q =11 

PSNR (dB) 25.98 26.60 26.97 26.73 26.61 
SSIM 0.8924 0.8836 0.8928 0.9135 0.9131 

PSNR-HVS-M 
(dB) 28.81 28.30 29.17 30.41 30.32 

FSIM 0.9414 0.9437 0.9477 0.9579 0.9576 

Peppers 

q =5 

PSNR (dB) 27.18 28.81 29.01 28.87 29.46 
SSIM 0.7788 0.8510 0.8532 0.8519 0.8575 

PSNR-HVS-M 
(dB) 24.01 26.32 26.57 26.39 27.23 

FSIM 0.8564 0.9255 0.9260 0.9249 0.9295 

q =9 

PSNR (dB) 29.69 30.52 31.10 31.07 31.31 
SSIM 0.8678 0.9002 0.9044 0.9100 0.9115 

PSNR-HVS-M 
(dB) 28.24 29.08 29.91 30.48 30.97 

FSIM 0.9249 0.9478 0.9516 0.9558 0.9575 

q =11 

PSNR (dB) 30.47 30.90 31.59 31.70 31.63 
SSIM 0.8901 0.9091 0.9135 0.9223 0.9222 

PSNR-HVS-M 
(dB) 29.77 29.66 30.60 31.79 31.76 

FSIM 0.9428 0.9518 0.9555 0.9631 0.9631 

Average PSNR (dB) 27.85 28.70 29.07 29.07 29.08 
SSIM 0.8419 0.8689 0.8741 0.8814 0.8823 
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PSNR-HVS-M 
(dB) 26.95 27.63 28.25 28.82 28.92 

FSIM 0.9091 0.9357 0.9383 0.9426 0.9433 
 

Table 8. Performance evaluation results on test images (Baboon, Barche, and Fruits) 

Image Factor Metric JPEG Over-completed 
DCT 

K-SVD 
method 

Proposed 
without 
weights 

Proposed 

Baboon 

q =5 

PSNR (dB) 21.52 22.09 22.12 22.05 21.98 
SSIM 0.7328 0.7260 0.7317 0.7379 0.7393 

PSNR-HVS-M 
(dB) 20.95 21.99 22.09 22.02 21.91 

FSIM 0.8577 0.8671 0.8685 0.8730 0.8743 

q =9 

PSNR (dB) 23.14 23.40 23.52 23.50 23.45 
SSIM 0.8585 0.8115 0.8211 0.8638 0.8635 

PSNR-HVS-M 
(dB) 25.77 26.19 26.64 26.64 26.55 

FSIM 0.9219 0.9034 0.9082 0.9330 0.9329 

q =11 

PSNR (dB) 23.67 23.80 23.95 24.02 23.96 
SSIM 0.8880 0.8290 0.8391 0.8909 0.8907 

PSNR-HVS-M 
(dB) 27.70 26.04 26.61 28.51 28.44 

FSIM 0.9453 0.9112 0.9170 0.9472 0.9471 

Barche 

q =5 

PSNR (dB) 26.03 27.13 27.27 27.17 27.06 
SSIM 0.7801 0.8133 0.8186 0.8199 0.8201 

PSNR-HVS-M 
(dB) 23.33 24.67 24.92 24.84 24.73 

FSIM 0.8634 0.8966 0.8984 0.8989 0.8992 

q =9 

PSNR (dB) 28.43 28.76 29.21 29.48 29.37 
SSIM 0.8724 0.8650 0.8726 0.9010 0.9011 

PSNR-HVS-M 
(dB) 27.74 27.29 27.98 29.23 29.18 

FSIM 0.9326 0.9252 0.9296 0.9492 0.9494 

q =11 

PSNR (dB) 29.19 29.13 29.68 30.21 30.12 
SSIM 0.8899 0.8739 0.8823 0.9168 0.9170 

PSNR-HVS-M 
(dB) 29.39 27.86 28.68 30.80 30.79 

FSIM 0.9459 0.9271 0.9320 0.9578 0.9579 

Fruits 

q =5 

PSNR (dB) 27.19 28.52 28.77 28.62 28.55 
SSIM 0.7249 0.7937 0.7988 0.7926 0.7932 

PSNR-HVS-M 
(dB) 24.24 26.03 26.32 26.07 26.05 

FSIM 0.8270 0.8927 0.8949 0.8914 0.8920 

q =9 

PSNR (dB) 29.56 30.06 30.68 30.80 30.73 
SSIM 0.8332 0.8462 0.8547 0.8727 0.8728 

PSNR-HVS-M 
(dB) 28.13 28.34 29.07 29.94 29.92 

FSIM 0.9083 0.9180 0.9234 0.9357 0.9359 

q =11 
PSNR (dB) 30.28 30.41 31.12 31.44 31.38 

SSIM 0.8605 0.8563 0.8654 0.8889 0.8890 
PSNR-HVS-M 29.50 28.80 29.64 31.08 31.08 
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(dB) 
FSIM 0.9270 0.9220 0.9278 0.9447 0.9448 

Average 

PSNR (dB) 26.56 27.03 27.37 27.48 27.40 
SSIM 0.8267 0.8239 0.8316 0.8538 0.8541 

PSNR-HVS-M 
(dB) 26.31 26.36 26.88 27.68 27.63 

FSIM 0.9032 0.9070 0.9111 0.9257 0.9259 
 

  
(a)                                                                            (b) 

 
(c)                                                                           (d) 

Fig. 12. Deblocked results of Monarch: (a) the blocked image (PSNR: 26.85 dB, SSIM: 0.8372, 
PSNR-HVS-M: 23.23 dB, FSIM: 0.9315), (b) the over-completed DCT method (PSNR: 27.51 dB, 

SSIM: 0.8808, PSNR-HVS-M: 24.11 dB, FSIM: 0.9517), (c) K-SVD method (PSNR: 27.86 dB, SSIM: 
0.8834, PSNR-HVS-M: 24.24 dB, FSIM: 0.9562), and (d) the proposed method (PSNR: 27.71 dB, 

SSIM: 0.8845, PSNR-HVS-M: 24.00 dB, FSIM: 0.9582). 
 

  
(a)                                                                            (b) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017                                    1717 

 
(c)                                                                           (d) 

Fig. 13. Deblocked results of Parrots: (a) the blocked image (PSNR: 31.85 dB, SSIM: 0.8642, 
PSNR-HVS-M: 28.72 dB, FSIM: 0.9659), (b) the over-completed DCT method (PSNR: 32.01 dB, 

SSIM: 0.8858, PSNR-HVS-M: 28.90 dB, FSIM: 0.9606), (c) K-SVD method (PSNR: 32.32 dB, SSIM: 
0.8878, PSNR-HVS-M: 29.23 dB, FSIM: 0.9623), and (d) the proposed method (PSNR: 32.67 dB, 

SSIM: 0.8981, PSNR-HVS-M: 29.60 dB, FSIM: 0.9729). 
 

The computational complexity of image deblocking is an important issue for decoders. For 
image deblocking using spare representation method, the proper over-compeleted dictionary 
and spare coding are important. For spare coding, OMP is all adopted by three methods. For 
the over-completed dictionary, the over-completed DCT dictionary, K-SVD dictionary, and 
online dictionary are used. Therefore, to compare the computational complexity, we give the 
time of generating the over-completed dictionaries based on processing time in Table 9. The 
less time is, the better the method is. All of the test images are uncompressed images. Our 
proposed method has lower computational complexity. 

 
Table 9. Computation complexity based on processing time 

Image Size of dictionary 
Processing time (s) 

Over-completed 
DCT K-SVD method Proposed 

Lena 
64×256 4.89×10-3 73.57 19.43 
64×512 5.21×10-3 154.54 52.49 
64×1024 5.55×10-3 417.98 149.92 

Barbara 
64×256 4.97×10-3 73.88 16.72 
64×512 5.55×10-3 154.74 43.44 
64×1024 5.36×10-3 419.24 123.31 

Peppers 
64×256 4.91×10-3 72.87 19.72 
64×512 5.71×10-3 154.59 55.98 
64×1024 5.22×10-3 416.47 157.43 

5. Conclusion 
In this paper, we propose an effective three-step deblocking algorithm for JPEG-coded image 
via sparse sepresentation and adaptive residual threshold. The first step involves dictionary 
learning and the second step involves error threshold constraint for the sparse coding 
algorithm. First, we create a over-completed dictionary for sparse representation using online 
dictionary learning algorithm based on the blocking image. The obtained dictionay is then 
decomposed into blocking sub-dictionary and non-blocking sub-dictionary via the K-means 
algorithm and HOG feature descriptor, and the non-blocking sub-dictionary is used for image 
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deblocking. Second, an adaptive residual threshold for OMP is proposed and used for sparse 
coding by combining blind image blocking assessment. At last, to take advantage of HVS, the 
edge regions of the obtained deblocked image can be further modified by the edge regions of 
the compressed image. 

In comparison with state-of-the-art techniques for image deblocking, the proposed method 
does not need to know compression factor in advance, which means that it is a pure 
post-processing approach. Our experimental results show that the proposed method achieves 
better performance on image deblocking. However, compared with some other image 
deblocking methods, it will spend a longer time. Therefore, we can improve the efficiency by 
parallel computing based on graphic processing unit (GPU) in the future. 
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