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Abstract 
 

In this study, each pixel in an ear is used as a centroid to generate a cake. Subsequently the 
major axis length of this cake is computed and obtained. This obtained major axis length 
serves as a feature to recognize an ear. Later, the ear hole is used as a centroid and a 16-circle 
template is generated to extract the major axis lengths of the ear. The 16-circle template 
extracted signals are used to recognize an ear. In the next step, a ring-to-line mapping 
technique is used to map these major axis lengths to several straight-line signals. Next, the 
complex plane vector computing technique is used to determine the similarity of these major 
axis lengths, whereby a solution to the image-rotating problem is achieved. The 
aforementioned extracted signals are also compared to the ones that are extracted from its 
neighboring pixels, whereby solving the image-shifting problem. The algorithm developed in 
this study can precisely identify an ear image by solving the image rotation and image shifting 
problems. 
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1. Introduction 

This study uses the “moment technique” to determine the major axis length of a cake image. 
This major axis length is used to recognize an ear. A 16 extracting-circle template is generated 
to extract the ear features, which are the lengths of major axes. These extracted signals are part 
of a complex process, using an algorithm to solve the image rotation problem. This 16 
extracting-circle template is combined together. Moreover, these extracting-circles center on 
the ear hole area to extract the ear features. By comparing the extracting signals, which are 
extracted at different places, one can differentiate and identify different ears. This method is 
used to solve the image-shifting problem. 
Over the past twenty years, researchers have devoted much attention to identify objects, 
including the Gabor Orientation feature [8, 10, 18], feature segmentation [3], feature detection 
[1, 2, 4, 7, 11, 14, 16], feature selection [5, 6], feature recognition [15], illumination invariance 
[9, 11, 14], Gabor filter phase technique [8]. Previous research has establish ear models but 
with different degrees of variance. This variance is attributed to the fact that human beings 
have different ears. Subsequently, it is very hard to establish precise ear models. A 
contributing factor to this variance is that when capturing ear images the ears may be at 
different positions and poses, thus the image shifting and rotating issue arises. Previous 
methods have not fully resolved the image shifting and/or rotation problem, the new method 
proposed in this study solves these two problems. 
From past research, the SIFT technique is used to recognize an ear, as shown in Fig. 1.1. For 
employing this SIFT technique to recognize an ear, the feature points of an ear must be 
located. Subsequently, these feature points are connected. Next, these connection lines are 
used to identify an ear. Often it is very difficult to locate the feature points of the ear, as these 
points of an ear are very difficult to obtain. Sometimes, the SIFT technique is unable to 
establish a complete SIFT pattern. 
Figs 1.2 and 1.3 illustrate usage of the ear contour to recognize an ear.  For the ear and skin 
behind the ear, they have similar color. Subsequently it is very difficult to define the contour of 
the ear due to the cross blending of colors in the ear area. Fig. 1.3 illustrates how an ear 
contour can be used to determine the height and width of an ear. As mentioned earlier, it is 
difficult to fully locate the contour of the outer ear; subsequently the ear contour is not well 
defined so accurate to decide the length and width of an ear is impossible to obtain. 
Fig. 1.4 shows the 3D ear. 3D ear image possesses the depth information of an ear. 
Subsequently, from this depth information it is easier to locate the key feature points of an ear. 
With this information it is easier to employ the geometry comparison technique to recognize 
an ear. Also, as a different reference for comparison methods, the Fisher ear [11] does not give 
a good solution to image shifting and rotating problems. 
Fig. 1.5 shows a pair of pliers and a staple case with its major axis respectively. An object has 
its own unique major axis, which can serve as a critical feature to identify the object. As shown 
in this figure, the pliers have its own unique major axis length and the staple case has its own 
unique major axis length as well. These unique major axis lengths provide information to 
identify the pliers and the staple case with greater consistency and accuracy. Fig. 1.6 shows 
three pliers with three different poses. However, they are from the same source. The major axis 
lengths of these three pliers are identical. Although the orientations of them in the images are 
different, they have the same major axis lengths. Similarly, Fig. 1.7 shows three different 
staple cases, which are from the same source. For them, since they are from the same source, 
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the lengths of these staple cases are identical. This shows that although the objects are rotated, 
the major axis length is preserved maintaining consistency across images. This property is 
used to solve the image-rotating problem.  
When performing the ear recognition, especially when performing the pixel-by-pixel 
comparison, one individual pixel should posses its own unique salient feature; therefore, an 
ear can be recognized. As is common, the ear color in an ear image is always plain white. 
When comparing these plain white pixels, an ear cannot be recognized. Fig. 1.8 shows three 
different era images. The left ear image (a) is in the normal position, the center ear image (b) is 
obtained by rotating the left ear image (a) clockwise a little bit, and the right ear image (c) is 
obtained by rotating the center ear image (b) a little bit further. These three ears belong to one 
person and they need to be identified. Fig. 1.9 shows the same ears of Fig. 1.8 again. However, 
in this figure images (a), (b), and (c) contain one large white ring, respectively. Moreover, near 
the ear lobe each ear image has a black slant line cake. Fig. 1.10 shows three large rings. Each 
ring contains four black spots. These black spots represent the symbols of the black slant line 
cakes in Fig. 1.9. The major axis length of the black slant line cake of Fig. 1.9 is computed and 
the number is presented in Fig. 1.10, as 22, 8, 3… 10…. As the images (a), (b), and (c) of Fig. 
1.9 are rotated, the major axis lengths, 22, 8, 3… 10 in Fig. 1.10 are rotated. The summing 
result of the major axis lengths, 22, 8, 3… 10 in Fig. 1.10 is the same. This implies that the 
summing result of the major axis lengths of figures  (a), (b), and (c) in Fig. 1.9 is the same. 
This method is used to recognize an ear. Fig. 1.9 shows only one white circle resides in one 
image. Actually, in this study, for every pixel in an ear image, each pixel is used as a centroid 
to generate the aforementioned white circle. The small cakes with the black slant lines are part 
of this process of computing all contributing axes for an aggregate total to recognize an ear.  
The flow chart for this study is illustrated in Fig. 1.11. The remainder of this report consists of 
four sections. In Section 2, major axis length computing is presented. In Section 3, vector 
computing is presented. In Section 4, an ear signal is extracted from various locations and a 
signal comparison is performed. In Sections 5 and 6 conclusions for this study are presented. 

                                          
Fig. 1.1. SIFT.                                                                           Fig. 1.2. Ear edgeSIFT. 

                   
Fig. 1.3. Ear height and Width.      Fig. 1.4. Dears.                    Fig. 1.5. Object major axis length. 
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Fig. 1.6. Pilers with different orientations.           Fig. 1.7. Cases with different orientations. 

 

 
Fig. 1.8. Ear with different orientations. 

 

 
Fig. 1.9. Black slash cake areas to compute major axis length 

 

 
Fig. 1.10. The extracted major axis length, (a), (b), (c) are coming from the identical source. 
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Fig. 1.11. Processing steps. 

2. Major axis length computing 
Fig. 2.1 shows three ears again and they belong to the same person. If the left ear is in the 
normal position  (image a), one can rotate this ear (image a) clockwise to obtain the middle ear 
(image b). Furthermore, rotating the left ear (image a) a little bit more, the right ear (image c) 
can be obtained. As checking these three ear-images, one can see there is a white ring inside 
the ear-image. Moreover, near the ear lobe, there is a small black slash cake for computing 
major axis length. The length of the major axis of this small black slash cake is calculated and 
this length represents the feature of this small black slash cake. This length serves as a feature 
to recognize an ear. As mentioned earlier, all these three cakes are located near the ear lobes 
and the major axes of these three cakes are calculated. One can move the cakes to the top 
sections of the ears and the other major axis lengths can then be obtained. Similarly, these 
additional lengths obtained can be used to identify an ear. In this study, each point that is 
located on the circumference of the white circle serves as a centroid. Furthermore, this 
centroid is used to generate a cake. Following the previous discussion, the major axis length of 
each cake can be determined. As mentioned before, these major axis lengths are used to 
recognize an ear. After obtaining the major axis length, the length is saved in the position of 
the centroid of each cake itself. Therefore, the white circumference of the white circle contains 
the information of the lengths of the major axes. Subsequently, these signals are used to 
recognize an ear. The technique used to obtain the major axis of a black slash cake is described 
as follows. 

Equation 2.1 is used to compute the parameters pqm , wherein variables p  and q may vary 
different case, as 0, 1, or 2. Location ),( yx  represents the location of a pixel inside the 
aforementioned black slash cake, to which ),( yxb  represents the gray level of this pixel. 
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Location ),( cc yx  is the centroid of this cake, which is computed by equation 2.2, in which 
10m  and 00m are used to compute cx  and cy .  

The centroid of the black slash cake is defined as ( , )c cx y . Equation 2.3 is used to compute 
variables a , b , and c , wherein 'x  represents the horizontal distance of a pixel from its 

current position to its centroid ),( cc yx  and 'y , vertical distance. By further analysis, 
equation 2.4 can be derived. In equation 2.4, θ  represents the orientation of an 

aforementioned cake. By determining the values of θ , 'x , and 'y , then variables minx  and 
maxy can be determined, as shown in equation 2.5. Subsequently, by equation 2.6, the major 

axis length of a cake can be determined. This length is used as a feature to recognize an ear. 
Fig. 2.2 shows the white circle again.  This white circle contains the major axis lengths. For 
easy processing, this white circle can be mapped to a straight line, as shown in the image on 
the right in Fig. 2.2. The line has a length of 128 pixels. The left figure of Fig. 2.3 uses the 
symbols (0)F , (1)F , (2)F ,  , (127)F  to represent the lengths of the major axes of 

different cakes. As the same situation of Fig. 2.2, the signals (0)F , (1)F , (2)F ,  , 
(127)F  are mapped to a straight line. The result is shown on the right in Fig. 2.3.  

 
Fig. 2.1. Black slash cake areas to compute major axis length 
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Fig. 2.2. Ring-signal to line signal: radius 28. 

 

 
Fig. 2.3. Ring to line signals. 

3. Vector computation 
Fig. 3.1 shows the image extracting process. Image (a) shows the original 1224-by-1632 
image, taken with the Nikon 8400 camera. The techniques used to extract the essential part of 
the image are as follows: Sobel operator, three by three cross medium filter, and edge 
searching and thinning operator. Image (b) shows the 1224-pixels-by-1224-pixels image, 
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which is obtained by using the aforementioned techniques. Furthermore, the ear hole of an ear 
is determined. Moreover, in this study, the whole ear following the ear hole is moved to the 
center of an ear image, as shown image (b). Image (b) is further processed to become a smaller 
image with 128-by-128 pixels, as show in figure (c). 
Fig. 3.2 shows again the three different ears, belonging to the same person. The left ear image 
(a) is in the normal position; the middle ear image (b) is obtained by rotating the left ear image 
(a) a little bit clockwise.  The right ear image (c) is obtained by rotating the middle ear image 
(b) a little bit further in a clockwise direction. These three ears belong to the same person and 
the rotation invariant transform technique is used to classify them. This rotation invariant 
transform technique is described in the follows. 
Fig. 3.3 shows one ring in counter-clock-wise positions contain signals (0)F , (1)F , (2)F , 
 , (127)F . For this ring, there are 128 signals residing in it. Each two adjacent signals 
mapped to the circle centroid from an angle. For example, signals (0)F , (127)F and the 
circle Centroid can generate an angle (0)  (127)F Centroid F∠ . There are 128 signals in 
this ring, thus the angle of (0)  (127)F Centroid F∠  is (360 /128) . In Fig. 3.3, if signal 

(0)F resides at ((360 /128) 0)⋅  position, (1)F should be at ((360 /128) 1)⋅  position. 
Similarly, (2)F should be at ((360 /128) 2)⋅  position and (127)F should be at 
((360 /128) 127)⋅  position. For efficient processing result, the circle signal in the left is 
mapped to the line signal on the right hand side. After these circle signals are placed in one 
straight line, one can determine signal (0)F  places on the top of the line and (127)F  at the 
bottom. These signals are the major axis lengths, as computed and obtained in the previous 
section. Fig. 3.4 shows another ring, which also contain the same signals of Fig. 3.3, as signals 

(0)F , (1)F , (2)F ,  , (127)F . However, these signals are shifted when rotating 
clockwise to different positions, with signals (44)F , (43)F , (42)F , and (41)F on the right 
side of the circle. Furthermore, (42)F  is shifted at ((360 /128) 0)⋅  angle position. These 
signals are also placed on a straight line, as shown in the right picture in Fig. 3.4, with signal 

(42)F  on the top and (41)F  at the bottom. Fig. 3.5 shows another ring, which contains the 
same signals as Figs. 3.3 and 3.4. In this case, the signals are also rotated clockwise a little bit 
further, with signals (86)F , (85)F , (84)F , and (83)F on the right hand side. In this figure 

(84)F is on the ((360 /128) 0)⋅  angle position. These signals can also be placed on one 
straight line, with signal (84)F  on the top and (83)F , bottom. Equation 3.1 shows a vector 

with signal magnitude ( )F n emitting from the origin of the complex plane with angle 
θ∠ , 

which can be denoted as ( ) jF n e θ , which can be also denoted as follows. 
( ) ( ) cos ( ) sinjF n e F n F nθ θ θ= ⋅ + ⋅  . 

It represents the horizontal vector adding the vertical vector. Equation 3.1 serves as the rule to 

generate various vectors. Equation 3.2 shows |||| 0Vector  equal to absolute value of vector 

(0) 0 (1) 0 (2) 0 (127) 0F F F F∠ + ∠ + ∠ + + ∠   

 . For short denotation, |||| 0Vector  is 

denoted as 0|| ||V . As in equation 3.1, when 0θ = , cos cos 0 ,  cos 0 1θ = =  

 and 
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sin sin 0 ,  sin 0 0θ = =  

; thus 0( ) ( )jF n e F n= . Therefore, in this case the following result 
can be obtained. 

0|| || (0) (1) (2) (127)V F F F F= + + + +  

Equation 3.3 shows |||| 1Vector equal to absolute value of vector 
(0) ( 0) (1) ( 1) (2) ( 2) (127) ( 127)F F F Fφ φ φ φ∠ ⋅ + ∠ ⋅ + ∠ ⋅ + + ∠ ⋅   

 , where φ is equal 

360 /128 . Equation 3.4 shows |||| 2Vector equal to absolute value of vector 
(0) ( 0 2) (1) ( 1 2) (127) ( 127 2)F F Fφ φ φ∠ ⋅ ⋅ + ∠ ⋅ ⋅ + + ∠ ⋅ ⋅  

 . In equation 3.5, it shows 

again that |||| 0Vector  equal to absolute value of vector 
(0) 0 (1) 0 (2) 0 (127) 0F F F F∠ + ∠ + ∠ + + ∠   

 .  
As the previous discussion, the following result is obtained. 

0|| || (0) (1) (2) (127)Vector F F F F= + + + +  
For equations 3.5, 3.6 and 3.7, if signals (0)F , (1)F , (2)F ,  , (127)F  are derived from 

the identical source, the computed results of |||| 0Vector  have the same value. As the case of 
the ears shown in left, center, and right images in Fig. 3.2, the ears are recognized to belong to 
the same person. Therefore, the signals (0)F , (1)F , (2)F ,  , (127)F  are the same. Thus, 

the computed results of |||| 0Vector  would be the same. This methodology can be used to 
identify the ears. In a similar case, equations 3.8-3.10 can compute the same result of 

|||| 1Vector , if signals (0)F , (1)F , (2)F ,  , (127)F  come from the same source. 
Equations 3.11-3.13 also compute the same result. Equation 3.14 is the summarized result of 
equations 3.2-3.13, which is used to identify different ears. In this equation, the variable 
factor varies from 0 to 127 and for each factor case the variable m also varies from 0 to 127. 

The reason for variables factor and m having a variance range from 0 to 127 is because the 
signals residing in the circles in the left images in Figs. (3.3-3.5) contain 128 points. 
 

 
Fig. 3.1. The extracted imges. 
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Fig. 3.2. Ear rotated to different positions. 

 

 
Fig. 3.3. Ring to line signals, normal position. 

 

 
 

Fig. 3.4. Ring to line signals, normal position, clockwise rotated. 
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Fig. 3.5. Ring to line signals, normal position, one more clockwise rotated. 
 

(3.1)
( ) ( ) cos ( ) sinF n F n F nθ θ θ∠ = ⋅ + ⋅  

( ) ( )HorizontalVector VerticalVectorF n F n= +
 

 

0|| || || (0) 0 (1) 0 (127) 0 ||V F F F= ∠ + ∠ + + ∠  
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General terms for figure 3.3
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(   3.3)For figure

(   3.4)For figure

(   3.5)For figure

0For  vector || ||V  
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where factor varies from 0 to 127 and m also varies from 0 to 127.
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4. Managing image-shifting problem and comparing signals 
Fig. 4.1 shows the ring signals are mapping to straight-line signals. In this white circle it 
contains the lengths of major axes, which are obtained by using the aforementioned 
technology. In this figure, the ring radius of the white ring is 28 pixels in length. The image 
frame of Fig. 4.1 is a 128-pixels-by-128-pixels frame. The centroid of this 
128-pixels-by-128-pixels frame is located at (64,64). The circle centroid of the white circle of 
Fig. 4.1 is located at (64,64). As mentioned earlier, the major axis lengths contained in this 
white circle are mapped and a straight line is generated, as shown in the left side of Fig. 4.1. 
The length of the straight line is 128 pixels. This mapped line signals are used to identify 
different ears. If more major axis lengths are obtained, more identifiers can be generated for 
comparison to identify an ear. Subsequently, one can obtain more accurate identification 
results. To obtain more major axis lengths extra extracting circles are added to extract the 
major axis length. For this process, in total there are 16 circles used to extract major axis 
lengths, as shown in Figs. (4.2-4.5). For each circle, the radius is 13, 16, 19, 22,  , 58, 
respectively, which represent the pixel lengths. 
To achieve ear recognition, the image-shifting problem must be solved. To accomplish this, all 
16 circles are combined to generate a template. Furthermore, this 16-circle template is 
positioned at multiple locations around the ear to extract the major axis lengths. The extract 
signals are shown in the right hand side, represented as strips in Figs. (4.2-4.5). These strips 
are called bands. Each ear generates its own unique bands. Each ear has a 16-circle template at 
different locations; this 16-circle template generates different bands. For two ears, 
band-to-band comparisons are made to locate the maximum match of two bands and to 
identify each ear. Fig. 4.2 depicts the use of location (54,54) as the centroid to extract the 
major axis length. Fig. 4.3 shows by centroid (54,74) to carry out this procedure; Fig. 4.4, 
centroid  (74,74); Fig. 4.5, centroid  (74, 54).  
For the right line in Fig. 4.1, this straight line is processed by the rotation invariant transform 
or vector manipulation technique to obtain the recognition data, as discussed in the previous 
section. Each band is composed of 16 individual lines as shown in Figs. (4.2-4.5). Each 
individual line is used and processed by the same procedure shown in Fig. 4.1 to obtain 
recognition data. The 128-pixels-by-128-pixels frames are used for this study to obtain ear 
recognition-data. The centroid of this 128-pixels-by-128-pixels frame is located at (64,64) 
position. The ear is moving to the centroid position of this 128-pixels-by-128-pixels frame. 
The ear hole is located exactly at the (64,64) position. As mentioned earlier, the 16-circle 
template is used to extract the major axis lengths. For managing this shifting-problem, the 
locations (64,64), (63,63), (63,65), (65,65), (65,63), (62,64), (64,66), (66,64), and (64,62) are 
used as the centroids to extract the major axis lengths, as shown in Fig. 4.6. In total, there are 
nine different locations to serve as the centroids to extract the major axis lengths. The 
extracted results are similar to other results shown on the right images in Figs. (4.2-4.5). For 
more efficient processing result, these nine bands are put together to generate a larger band, as 
shown in Fig. 4.7. The corresponding image results are shown in the bottom of Fig. 4.8. In 
Fig. 4.6 for each centroid, the extract strips are identified as strip0, strip1… strip8, 
respectively. For Fig. 4.7, the band extracted from centroid at location (64,64) is saved at 
positions (0) 0-15. The number 0 represents the 0th band and 0-15 represents the 0th column to 
15th columns for the combined larger band. The previous nine-centroid extracted signals are 
saved at positions (0) 0-15, (1) 16-31, (2) 32-47,  , (8) 128-143, respectively, as shown in 
Fig. 4.7. After this step, the rotation invariant transform technique is applied to extracted 
signals to obtain the comparison data, as shown at the bottom of Fig. 4.8. The left figure of 
Fig. 4.9 shows the symbol of strip 0 of ear one; the right figure shows all of the strips. This 
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figure shows strip 0 of ear one comparing with all of the strips in ear two. By this comparison, 
the maximum match can be obtained. By this method, the algorithm can judge whether ear one 
and ear two is coming from the same source.  
To determine the maximum match for recognition for the two images, each strip of one ear is 
compared with the entire nine strip of another ear. For example, strip 0 of ear one is compared 
to strips 0, 1, 2,  , and 8 of ear two; strip 1 of ear one is compared with strips 0, 1, 2,  , and 
8 of ear two; strip 8 of object one is compared to strips 0, 1, 2,  , and 8 of ear two, as shown 
in Fig. 4.10. After completing these steps, the minimum-subtracted-result, which representing 
the maximum matching, can be obtained. Finally, they are recorded in a table. The actual 
images of subtracted-results are shown in Fig. 4.11. 
 

 
Fig. 4.1. Ring-signal to line signal: radius 28. 

 

 
Fig. 4.2. Location (54,54) as centroid to generate comparison signals. 

 

 
Fig. 4.3. Location (54,74) as centroid to generate comparison signals. 

 

 
Fig. 4.4. Location (74,74) as centroid to generate comparison signals. 
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Fig. 4.5. Location (74,54) as centroid to generate comparison signals. 

 

 
Fig. 4.6. Centroid locations to generate various strips. 

 

 
Fig. 4.7. Various centroids generate various vertical bands. 

 

 
Fig. 4.8. Various centroids generate various vertical comparison strips. 
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Fig. 4.9. Strop 0 of ear one comparing with strips 0, 1, 2,… , 8 of ear two. 

 

 
Fig. 4.10. Vertical strip subtractions. 
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Fig. 4.11. Vertical comparison results. 

5. Results 
Fig. 5.1 shows the original ear images. In this study, three ear-images were taken for each 
person and 40 people participated in this test. Therefore, there are a total of 120 ear-images 
available for comparison. In this study, the 15 ear-images which belonging to five different 
persons were designated as a group and these 15 ear-images are tested to verify the accuracy of 
the system. Five persons are assigned together as a group and there are 40 persons joining in 
this study; therefore, totally there are eight different groups. As previously mentioned, three 
different ear-images are taken for one person. Five persons are assigned in one group; 
therefore, there are 15 ear-images for test per group. One ear-image is compared with the other 
14 ear-images. In total, there are 105 comparisons in one group, wherein one ear was 
compared with 14 others. Of the 105 comparisons conducted altogether, 15 were run for 
genuine comparisons, and the other 90 being imposters. In table 5.1, the data inside the bold 
rectangular boxes represent comparisons of identical sources; the others, represent different 
sources. Table 5.2 and Fig. 5.2 summarize the results listed in table 5.1 for eight different 
groups encompassing 120 genuine and 720 imposter tests. In table 5.2, the subtracted values of 
imposter comparisons are 21198155~10977696; whereas, identical, 8709516~4338999; the 
tolerance gap between the two is 2268180; the error rates for both tests are zeros. 
 

 
Fig. 5.1. Original 128-by-128 images. 

 
Table 5.1. Comparison data of original images. 
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Table 5.2. Range of subtraction values. 

 
 

 
Fig. 5.2. Original Response characteristics of genuine and imposter comparisons: 

120 different ears; 40 comparisons; 9838556 as threshold. 

6. Conclusions 
In the previous technique, outlines of ears are located and these are used to determine the 
heights and widths of the ears, as shown in Fig. 6.1. However, the ears may be hidden behind 
the hair. Additionally, the ear and the skin behind the ear have the same skin color. Therefore, 
there is difficulty to distinguish between the ear-line and the adjacent skin behind the ear 
location. Thus, these types of interferences may cause difficulty to obtain an image of the full 
ear outline. This study does not extract the outer ear outline. Instead, the ear hole is used as a 
centroid and a 16-circle template are used to extract the major axis lengths of the ear. The 
16-circle template extracted signals are used for ear recognition. Alternatively, as a 
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comparison, as shown in Fig. 6.2, the 3D ear extraction technique is a good method to 
recognize an ear. The 3D-ear contains ample object depth information. Furthermore, it is 
easier to obtain this depth information. Fig. 6.3 shows one can obtain the position of highest 
tip of the ear edge. The vectors from ear holes to these highest tips can be established. 
Furthermore, the positions of the inner lowest valleys of the ears and the left isolated ear balls 
can be located as well. The vectors from the inner lowest valleys of the ears to the left isolated 
ear balls can be established. One can use these vector features to recognize an ear. 

                                                   
Fig. 6.1. Ear height and width.                                                 Fig. 6.2. 3 D ears. 

 

 
Fig. 6.3. Image depth to establish SIFT vectors. 
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