
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, Dec. 2016                                          5964 
Copyright ⓒ2016 KSII 

 Performance Improvement of Iterative 
Demodulation and Decoding for Spatially 

Coupling Data Transmission by Joint 
Sparse Graph  

 
Zhengxuan Liu1,2 , Guixia Kang1,2 , Zhongwei Si1 and Ningbo Zhang1,2  

1 Beijing University of Posts and Telecommunications 
2 Science and Technology on Information Transmission and Dissemination in Communication Networks Lab,  

Beijing, PR China  
[E-mail: liuzhengxuan@bupt.edu.cn, gxkang@bupt.edu.cn] 

*Corresponding author: Guixia Kang 
 

Received May 29, 2016; revised September 22, 2016; accepted November 17, 2016;  
published December 31, 2016 

 

 

Abstract 
 

Both low-density parity-check (LDPC) codes and the multiple access technique of spatially 
coupling data transmission (SCDT) can be expressed in bipartite graphs. To improve the 
performance of iterative demodulation and decoding for SCDT, a novel joint sparse graph 
(JSG) with SCDT and LDPC codes is constructed. Based on the JSG, an approach for iterative 
joint demodulation and decoding by belief propagation (BP) is presented as an exploration of 
the flooding schedule, and based on BP, density evolution equations are derived to analyze the 
performance of the iterative receiver. To accelerate the convergence speed and reduce the 
complexity of joint demodulation and decoding, a novel serial schedule is proposed. 
Numerical results show that the joint demodulation and decoding for SCDT based on JSG can 
significantly improve the system’s performance, while roughly half of the iterations can be 
saved by using the proposed serial schedule. 
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1. Introduction 

With the rapid development of mobile Internet technology and the Internet of Things, 
wireless communication now urgently needs spectral efficiency and sum capacity significant 
improvement. As the IMT-2020 Promotion Group proposed in the 2014 white paper “5G 
Vision and Requirements” [1], the future mobile communication system (5G) will supply the 
need for greater capacity by at least 1,000 times and improve spectral efficiency compared to 
4G by 5–15 times. Recently, non-orthogonal multiple access (NOMA) technology has 
attracted the attention of researchers around the world. NOMA schemes can be divided into 
two categories—power-domain multiplexing and code-domain multiplexing—and the 
corresponding schemes include power-domain NOMA, sparse code multiple access, 
multi-user shared access, pattern division multiple access, and multiple access with 
low-density spreading, among other things, as summarized in [3]. These NOMA technologies 
were surveyed in [2]–[3], which formulated that NOMA could significantly improve spectral 
efficiency and system capacity compared to orthogonal multiple access used in 4G.  

Low-density parity-check (LDPC) convolutional codes or so-called spatially coupled 
LDPC (SC–LDPC) codes introduced by Felström and Zigangirov [4] are the convolutional 
counterparts of LDPC block codes (LDPC–BC). Kudekar et al. [5] have proven that the belief 
propagation (BP) decoding threshold of an SC–LDPC code over the binary erasure channel 
could achieve the maximum a posteriori decoding threshold of the corresponding LDPC–BC, 
which they termed threshold saturation via spatial coupling [5]. Moreover, they confirmed 
that threshold saturation existed in all binary-input memory-less output-symmetric channels in 
[6]. Recently, the spatially coupled technique was successfully applied to the CDMA 
multiple-access channel [7]–[11], compressed sensing [12]–[13], the Slepian–Wolf coding 
problem [14], models in statistical physics [15], and in solutions to many other problems in 
communications and computer science. 

To improve spectrum efficiency, research [7]–[11] has shown that the spatially coupled 
technique applied to multiple access channels could improve spectrum efficiency, since the 
achievable transmission rate for spatially coupling data transmission (SCDT) approaches the 
capacity of the additive white Gaussian noise (AWGN) channel by iterative bit estimation and 
interference cancellation, as shown in [7]–[8]. In [10]–[11], the performance of the BP 
receiver was improved to match the performance of individual optimal detection via spatially 
coupled sparse spreading. However, the demodulation complexity of [7]–[8] significantly 
increases along with the number of access datastreams. In [7] and [9], demodulation and 
decoding were performed separately, whereas [10]–[11] considered only iterative 
demodulation using BP or the Gaussian approximation (GA) BP-based algorithm. By contrast, 
this paper seeks to perform iterative demodulation and decoding simultaneously at the 
receiver. 

Both SCDT and LDPC codes can be represented by bipartite graphs, which motivated us to 
combine SCDT with LDPC codes in order to construct a joint sparse graph (JSG). The 
constructed JSG includes variable nodes, channel nodes, and check nodes corresponding to 
encoded bits, received symbols, and parity-check equations of the LDPC code (i.e., assuming 
LDPC coding), respectively. Based on the entire sparse graph, the demodulation or decoding 
can use not only the knowledge of channels, but also parity-check information. Therefore, the 
joint demodulation and decoding for spatially coupling data transmission based on JSG 
(referred to as JSG–SCDT) might outperform the separated demodulation and decoding for 
SCDT (referred as to SDD–SCDT), since the demodulation and decoding of SDD–SCDT uses 
only the messages of the channel or parity-check.  
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In our previous work [16], the approach for iterative joint demodulation and decoding by 
BP was presented based on the graphical model by exploring the flooding schedule. 
Furthermore, a new serial schedule algorithm was proposed to accelerate the convergence 
speed and reduce the complexity. In [16], we analyzed the convergence behavior of different 
schedule schemes by using extrinsic information transfer (EXIT) charts. However, the 
threshold for the JSG–SCDT system can hardly be obtained by using EXIT charts. In order to 
obtain its threshold and show the evolution of the noise and interference power at different 
instances, in this paper density evolution (DE) is applied in the large sparse system limit, and 
the corresponding coupled DE equations are derived. Ultimately, more numerical results are 
presented to evaluate the proposed system performance from the different perspectives based 
on the derived DE equations. 

In a related effort, the JSG was constructed by combining the multiple accesses of 
low-density signature-orthogonal frequency division multiplexing (LDS–OFDM) and LDPC 
codes in [17], which proposed design guidelines for JSG through an EXIT chart. The chief 
difference between this paper and [17] is that the multiple access of spatial coupling is applied 
in this paper instead of LDS–OFDM. The numerical results show that JSG–SCDT can bring 
about a 1-dB performance improvement compared with the uncoupled structure applied in 
[17]. In addition, the performance of iterative joint demodulation and decoding for the 
JSG–SCDT is analyzed by DE instead of with an EXIT chart. The spectral efficiency of 
JSG–SCDT can be analyzed easily by using the DE equation derived. In [23], a serial schedule 
for the iterative multi-user detection was proposed to decrease the number of detection 
iterations. However, few iterations are reduced for JSG–SCDT when only the messages of 
channel nodes are updated sequentially. Therefore, we proposed a novel serial schedule in 
which both channel nodes and check nodes were updated sequentially at the same time in 
order to accelerate the convergence speed of joint demodulation and decoding in [16]. To the 
best of our knowledge, the novel serial schedule applied in JSG–SCDT has never been 
considered before [16].  

Throughout this paper, let notation p  denote the probability density function (PDF), [ ]E x  
and [ ]V x  denote the mean and variance of a random variable x, respectively, and the 
superscript T  denote the transpose of a vector or matrix. 

The rest of this paper is organized as follows. Section 2 outlines system model, after which 
Section 3 presents the iterative joint demodulation and decoding by using the flooding 
schedule. Section 4 offers a performance analysis of JSG–SCDT and SDD–SCDT by applying 
DE, and Section 5 presents the proposed serial schedule and its algorithm. The performance 
evaluation of JSG–SCDT is provided by numerical simulation in Section 6. Lastly, Section 7 
concludes the paper. 

2. System Model 
We consider that the SCDT is modulated by a superposition of L independent datastreams, 
which may be initiated by single or multiple users. The L-modulated streams add up with time 
to offset length t so that the spatially coupled datastreams are constructed. 

Fig. 1 shows the transmitter block diagram of the SCDT system model. First, the binary 
information streams are encoded by LDPC codes. For notation brevity and simplicity, binary 
phase shift keying (BPSK) is used as the modulated scheme, after which the modulated 
symbols are divided into L datastreams, each with M symbols spread out by a spatially coupled  
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Fig. 1. Block diagram for spatially coupling data transmission, in which R = 3 and K = 6. 

 
incidence matrix H . H is constructed by an R/K multiple convolutional permutor (R/K MCP) 
[7], in which R and K correspond to the spreading length and maximum superposition 
datastreams, respectively. This method is similar to that used to construct SC–LDPC codes 
[18]. The R/K MCP contains R permutation matrices in each row and K permutation matrices 
in each column, except for a few columns at both ends. Fig. 1 shows a 3/6 MCP in the dashed 
box, in which the spreading length is R = 3, and the maximum superposition datastreams are K 
= 6. The size of each permutation matrix is M M× , represented by a blank square in the 
diagram. To prevent confusion and assure easy understanding in mathematical expressions, 
we use N to replace column M and define the ensemble of H  as ( ), , ,HC R K M N . Each row 
of R/K MCP multiplies a pseudo-random signature bit by bit before superposition in order to 
ensure that the modulated streams are uncorrelated. The maximal time length is denoted by T 
and the length of time offset by t N= , which corresponds to the column length of the 
permutation matrix. In this paper, the modulation load of the SCDT system is denoted 
by /K R=β , as defined in [7]. Ultimately, the output sequence is multiplied by the power 
normalizing amplitude /P K  and transmitted over the AWGN channel. Without loss of 
generality, we assume 1P = . 
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Fig. 2. The receiver of joint sparse graph for spatially coupling data transmission.  



5968                                                                          Liu et al.: Performance Improvement of Iterative Demodulation and Decoding 
for Spatially Coupling Data Transmission by Joint Sparse Graph 

Since both the SCDT and LDPC codes can be represented by a factor graph, a JSG can be 
constructed for SCDT and LDPC codes. Thus, the joint iterative demodulation and decoding 
may be implemented on the JSG at the receiver. Fig. 2 shows the receiver of JSG–SCDT, 
which is similar to that depicted in Fig. 1 in [17]. In the figure, ,m lv , ,n ts  and ,j lc  denote the 
m-th variable node of the l-th stream, the n-th channel node during time t, and the j-th check 
node of the l-th stream, respectively, in which { }0, , 1m M∈ = -m , 

{ }0, , 1l L∈ = -l , { }0, , 1n N∈ = -N , { }0, , 1t T∈ = - , and { }0, , 1j J∈ = -J . 
In the figure, the variable node, channel node, and check node corresponding to the data 
symbol and receiving the signal and parity-check equation are represented by a circle, hexagon, 
and square, respectively. At the receiver, the single graph labelled SCDT represents the 
spatially coupled incidence matrix H, whereas the other single graph labelled LDPC represents 
the parity-check matrices of the LDPC codes. Since the channel nodes and check nodes can be 
connected by variable nodes through edges, the receiver becomes a JSG labelled as such in Fig. 
2. Note that fewer edges connect to the channel nodes at the both ends in the SCDT graph, 
which implies that less interference is induced by other datastreams on those channel nodes, 
which makes them obtain more reliable information. By extension, that reliable information 
can spread to the center of the JSG. Therefore, the channel nodes at the center of the JSG can 
also obtain reliable information. This dynamic is a remarkable advertage of SCDT over the 
conventional spreading sturcture applied in [17]. It is also noteworthy that the receiver of 
JSG–SCDT differs from that of the turbo-structure in that the demodulation and decdoing are 
performed by outer and inner iterations, respectively. For the receiver of JSG–SCDT, 
demodulation and decoding are implemented at the same time on the JSG in each iteration. 
Hence, the JSG–SCDT is based on a JSG that combines coupling data transmission and coding 
techniques. 

Let ,n ty  denote the received signal at n point during time t. Accordingly, the received signal 

,0, 1,( , , , , )n t
T

t N t
Ny y yt -= ∈y    during time t can be formulated by 

, , , ,1
t tt m l m l

ml
b

K∈∈
= +∑ ∑y s z

ml
 (1) 

 in which the vector 2
1 1~ ( , )N z Nt σ× ×0 Iz N denotes the AWGN vector with variance 2

zσ . The 
N-dimensional vector , , 0, , , 1, , ,( , , )T

t m l t m l N t m ls s -=s   represents the spreading sequence of the 

m-th data symbol for the l-th stream during time t, while }{, 1, 1m lb ∈ - +  denotes the m-th 

BPSK data symbol for the l-th stream. Let 0 1( , , )T
T -=Y y y , ( )0, 1,, ,

T
l l M lb b -=b  , 

( )0 1, , T
L-=B b b , , ,0, , 1,( , , )t l t l t M l-=S s s , and 0 1( , , )T

T -=Z z z . The system (1) can also 
be formulated as 

 1
K

= +Y HB Z   (2) 

in which 
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and the blank spaces of H correspond to zeros.  

3. Iterative Joint Demodulation and Decoding 
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Fig. 3. Messages passing in the joint sparse graph for spatially coupling data transmission. 

 

3.1 Messages Passing in the Joint Sparse Graph 
The messages passing via different types of nodes on one JSG for the JSG–SCDT is depicted 
in Fig. 3. In our proposal, there is an edge connecting the variable node and channel node if the 
corresponding element is non-zero in spreading matrix H. Similarly, there is an edge 
connecting the variable node and check node if the former satisfies the parity-check equation. 
The dashed lines in Fig. 3 represent the possible variable nodes connected to check or channel 
nodes. The number of edges connected to the channel node equals the number of superposition 
symbols at one point during time t, whereas the number of edges connected to the check node 
equals its degree in the parity-check matrix. Let 

( )iL
•→•

 denote the log likelihood ratio (LLR) 

delivered from one node to the other in iteration i, meaning that 
( )

, ,

i

n t m ls vL →  (
( )

j,l ,

i

m lc vL → ) denotes 

the LLR delivered from channel node ,n ts  (check node ,j lc ) to variable node ,m lv  in iteration i, 

and 
( 1)

, ,

i

m l n tv sL -

→  (
( 1)

, ,

i

m l j lv cL -

→ ) denotes the LLR delivered from variable node ,m lv  to channel node 

,n ts  (check node ,j lc  ) in iteration i-1. As the figure shows, the message of the variable node 
( 1)

, ,

i

m l n tv sL -

→  (
( 1)

, ,

i

m l j lv cL -

→ ) sent to the channel node or check node includes the messages of the check 
and channel nodes in iteration i. By contrast, the message of the check and channel nodes are 
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updated in iteration i by using the updated message from the variable node in the last iteration. 
Therefore, the demodulation or decoding of JSG–SCDT can use not only the knowledge of 
channels, but also parity-check information on one JSG, which indicates that the method can 
improve system performance and accelerate convergence speed.  

In graphical models, the BP algorithm is feasible for calculating the marginal distribution 
for each node and can compute the exact marginal posterior probabilities if there are no cycles 
in the graph [19]. However, it usually contains cycles in single graphs such as LDPC codes and 
SCDT. For LDPC coding, it is necessary to design the degree distribution carefully so that the 
short cycles are avoided in the graph. The design of the degree distribution to achieve more 
gains and avoid cycles is a promising future direction, but it is beyond the scope of this paper. 
For the SCDT, if the ( ), , ,HC R K M N -ensemble is constructed carefully, then it might have 
the crucial asymptotic cycle-free (ACF) property in the large-system limit, in which R and K 
tend toward infinity, whereas /K R=β  is kept constant after taking L →∞ . Following the 
instructions of [20]–[21], we let the superposition datastreams K grow as slowly as 

( )( )1/ 4tO L with L, with the probability that ,m lb  is involved in a cycle of length shorter than t  

and approaches zero as K R= β is kept constant after taking L →∞ . Note that the system is 
sparse even though K →∞ , since the large-system limit is taken first. In that way, the 
constructed ( ), , ,HC R K M N -ensemble satisfies the ACF property. In this paper, the 
large-system limit with K R= β , L →∞  is defined as the large sparse system limit. Since the 

( ), , ,HC R K M N -ensemble satisfies the ACF property, there are no cycles with finite length in 
the large sparse system limit [11]. Therefore, the BP receiver is guaranteed to converge in the 
infinite iteration limit after taking the large sparse system limit in the iterative joint 
demodulation and decoding. Note that the two limits do not commute with each other. 

3.2 Messages Updated in the Flooding Schedule for JSG–SCDT 
The mathematical expressions of messages updated for various nodes are given and described 
as follows. Let ∂ , β , ψ andϕ  denote the set corresponding to various nodes and ( ) \ (*)∂ •  
denote the set of •  nodes excluding the * node. For instance, ( ),n t∂ and ( ), \ ( , )n t m l∂  
denote the set of variable nodes connected to channel node ,n ts  and the set of variable nodes 
connected to channel node ,n ts , excluding ,m lv , respectively. In (4), [ , ]n tB  and [ , ]n tH  denote 
the vector stacking of symbols transmitted and their corresponding signature vector at n point 
during time t, respectively. The messages updated among various nodes via edges by applying 
flooding schedule for the JSG–SCDT are described as follows. 
 
A. Initialization 

Assuming no a priori probabilities available, 
 

(0) (0)

, , , ,
0, 0, , , , , .

m l n t m l j lv s v c m l n t jL L→ →= = ∀ ∀ ∀ ∀ ∀    (3) 

 
B. Updating of Channel Nodes and Check Nodes 

The LLR of the channel nodes is updated by 
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The LLR of the check nodes is updated by 
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  (5) 

C. Updating of Variable Nodes 
Since the LLR of variable nodes not only receives channel nodes messages, but also 

includes check node information on one JSG, the LLR delivered to the channel node from the 
variable node is given by 

 
( )

, , , ,, ,

( ) ( )

( , ) ( , )\( , ) ( , ) ( , )

.
i

m l n t m l m ln t j l

i i
v s s v c v

n t m l n t j l m l

L LL
β ϕ

→ → →
∈ ∈

= +∑ ∑
 









  (6) 

The LLR delivered to the check node from the variable node is given by 
 

, , , ,, ,

( ) ( ) ( )

( , ) ( , ) ( , ) ( , )\( , )

.
m l j l m l m ln t j l

i i i
v c s v c v

n t m l j l m l j l

L LL
β ϕ

→ → →
∈ ∈

= +∑ ∑
 









   (7) 

D. Estimation and Syndrome Computing 
The posteriori probability of the transmitted symbol ,m lv  is given by 
 

, , ,, ,

( ) ( )

( , ) ( , ) ( , ) ( , )

,
m l m l m ln t j l

I I
v s v c v

n t m l j l m l

L LL
β ϕ

→ →
∈ ∈

= +∑ ∑
 









  (8) 

in which I denotes the maximum number of iterations. A hard decision based on the LLR 
message can be made by 

,
,

, arg max .ˆ
m l

m l

v
v

m l Lv =  

The iterative joint demodulation and decoding process ends when the result of syndrome 
computing for each user equals 0, even if the maximum number of iteration has not been 
reached, which indicates that the number of iterations can be reduced. 

4. Density Evolution 

4.1 DE of Joint Demodulation and Decoding 
The asymptotic PDF of LLRs delivered from the decoder can be analyzed with the GA of the 
LLRs [22], whereas the PDF of LLRs emitted from the demodulator can be analyzed not only 
with the exact BP algorithm, but also with the GA BP-based algorithm [11]. We follow [11] to 
present the DE of iterative demodulation for the JSG–SCDT. The equivalent channel between 

,m lb  and the corresponding output in iteration i  is given by 
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 ( ) ( ) ( )( ) ( ) ( )
, , , , ,, , ,i i i

m l m l m l m l m lp b b p b b p b d= =∫ H H     (9) 

in which { }:t t= ∈y  . The horizontal line represents the expectation with respect to H. We 
prove that the equivalent channel (9) for the BP receiver in iteration i converges to a scalar 
AWGN channel in the large sparse system limit. The scalar AWGN channel is given by 
 ( ) ( )

. , , ,i i
m l m l m lz b w= +   (10) 

in which ( ) 1
,

( )(0,( ) )i
m l

i
lw sir -

−N , in which ( )i
lsir  will be defined. Theorem 1 and coupled 

equations are given as follows. 
Theorem 1: Suppose that H is picked up from the ( ), , ,HC R K M N -ensemble and that the 
equivalent channel (9) for the BP joint demodulation and decoding based on JSG in iteration i 
converges to the equivalent channel for the scalar AWGN channel (10) in the large sparse 
system limit. DE equations are given by the coupled equations: 

 ( ) ( )( ) ,
2

i iv
l u

i
l

dsirsir = + r   (11) 

 
1

2 ( 1)
[ ( 1) ]

0

2 1( ) ( )
tK

i
t k t R

k
zi sir

K

-
-
+ - +

=

= + ∑ βzσ σ   (12) 

with (0) 0lsir = for all l∈l  and ( )1 0t R- + =β  when 1t <= . In (11) and (12) 

 
1

( )
2

0 ( / )

1 1 ,
( )

R
i

l
r r l

sir
K iβσ

-

= +  

= ∑    (13) 

 ( )0

1( ) 1 ( 1) ( 1)1 [1 ( ( 1) )] ,cdi i i
u u v ud -- - -= Φ - -Φ + -r r r    (14) 

 ( )
,

( ) ( ) 2
,[( E[ ]) ].

m l

i i
l m lsir b b= E -z     (15) 

In (11)–(15), ( )i
lsir , 2 ( )t iσ , ( )i

ur , and 
0

( )i
ur  denote the signal-to-interference ratio (SIR) of the 

l-th stream from the BP demodulation, the interference and noise variance during time t , the 
mean of the output LLR u  of a check node, and the output LLR 0u  of the output bit associated 
with the variable node in iteration i, respectively. The number of superposition datastreams at 
one point during time t is denoted by tK , [ ],tK K∈ β  for all t∈ . In (13),     denotes the 
bottom integer function. Following [22], we derive (14), in which ( )xΦ is the function defined 
in [22] and

0

( ) ( )
,2i i

u l m lsir b= r . The degrees of the variable and check nodes are denoted by 

vd and cd , respectively.  In (15), 
,

( )E[ ]
m l

ib  denotes the posterior mean estimator of ,m lb  in 
iteration i and is given by 
 

,

,

( ) ( ) ( ) ( )
, , . .

1
E[ ] ( ) tanh( ).

m l

m l

i i i i
m l m l m l l m l

b
b b p b z sir z

=±

= =∑    (16) 

Proof: See the Appendix. 
Theorem 1 implies that the problem of estimating each data symbol ,m lb  using BP in 

iterations i for the JSG–SCDT is asymptotically equivalent to estimating the same symbol 
through a scalar Gaussian channel with SIR equal to ( )i

lsir . 
Remark 1: If an ensemble used has the ACF property in the large sparse system limit, then [11, 
Theorem 2] has proven that the equivalent channel for the BP demodulation with GA 
converges with the asymptotic equivalent channel for the exact BP demodulation. Since the 
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( ), , ,HC R K M N -ensemble has a similar property with the ensemble defined in [11] in the 
large sparse system limit, the exact BP demodulation is applied to prove Theorem 1. 

4.2 DE of Separated Demodulation and Decoding 
In the SDD–SCDT scheme, since coding makes no essential change in the analysis of iterative 
receivers, we focus on the iterative demodulation by the BP receiver. We prove that equivalent 
channel (9) also equals channel (10) in the large sparse system limit. However, the noise 
variance of channel (10) equals ( ) 1( )i

lsir
-

, meaning that ( )i
lsir


 and Theorem 2 are presented as 
follows.  
Theorem 2: Suppose that H is picked up from the ( ), , ,HC R K M N -ensemble. The equivalent 
channel (9) for the BP demodulation of the SDD–SCDT in iteration i converges to the 
equivalent channel for the scalar AWGN channel (10) with the noise variance ( ) 1( )i

lsir
-

 in the 
large sparse system limit. DE equations are written as the coupled equations 

 
1

( )
2

0 ( / )

1 1 ,
( )

R
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l
r r l

sir
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-

= +  

= ∑




βσ
 (17) 

 ( )
1

2 2 ( 1)
[ ( 1) ]

0

1( ) .
tK

i
t z k t R

k
i sir

K

-
-
+ - +

=

= + ∑




βσ σ z  (18) 

Proof: The proof of Theorem 2 is included in the proof of Theorem 1. 
As a comparison of expressions (11)–(17) shows, the SIR of JSG–SCDT includes not only 

the SIR of BP demodulation, but also the SIR of BP decoding. That circumstance indicates 
that the performance and convergence speed of the JSG–SCDT might outperform the 
SDD–SCDT. To futher accelerate the convergence speed of JSG–SCDT, in the next section 
we propose a novel serial schedule to update all channel and check node messages 
sequentially.  

5. Serial Schedule 
In subsection 3.2, the flooding schedule is applied to update all channel and check node 
messages in parallel. For the flooding schedule, the messages of all channel and check nodes 
are updated at the same time, after which the messages of all variable nodes are updated 
simultaneously. All updated messages have to be stored in the current iteration so that they are 
used in the next iteration, which implies that the new updated messages cannot be used at once 
during the message-passing process. Therefore, the convergence speed is slow, and the 
detection performance is limited. In addition, all updated messages have to be stored in the 
current iteration. Thus, more large memory registers are needed to store the hardware 
implementation in practice, which increases the hardware cost.  

The message-passing schedule is a key factor that influences convergence speed and system 
performance [23]. The authors in [23] proposed a schedule algorithm by which new updated 
messages of channel nodes can be joined into the BP process immediately. However, the 
convergence speed accelerated is rather limited by using the algorithm proposed in [23] for 
JSG–SCDT. The messages of check nodes can also be updated by using a similar schedule due 
to BP decoding. Thus, we proposed a novel serial schedule by which both channel and check 
nodes update their messages sequentially on one JSG.  
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In the serial schedule, 
, ,

( 1)
m l n t

i
v sL -

→ and
, ,

( 1)
m l j l

i
v cL -

→  are computed by
,

( )
m l

i
vL , 

, ,

( 1)
n t m l

i
s vL -

→ and
,

( )
m l

i
vL ,

, ,

( 1)
j l m l

i
c vL -

→ , respectively, on the fly, in which
,

( )
m l

i
vL  denotes the LLR of the 

transmitted symbol ,m lv in iteration i. For instance, the message of the channel node is updated 
in the serial schedule as  

 
, , , , ,

( 1) ( ) ( 1) .
m l n t m l n t m l

i i i
v s v s vL L L- -

→ →= -  (19) 

Substituting (19) into (4), the new updated message
, ,

( )
n t m l

i
s vL → of the channel node is obtained. 

The message of the transmitted symbol is updated by applying the new message of the channel 
node according to (20). 

 
, , , , , ,

( ) ( ) ( 1) ( )new old

m l m l n t m l n t m l

i i i i
v v s v s vL L L L-

→ →= - +  (20) 
The message of the check node is updated similarly. The detailed procedures of the novel 
serial schedule are presented in Algorithm 1. 
 
Algorithm 1: The serial schedule 
1: Initialization:         
2: 

, , , , ,

(1) (0) (0)0, 0, 0, , , , , .
m l n t m l j l m lv s v c v m l n t jL L L→ →= = = ∀ ∀ ∀ ∀ ∀  

3: For i=1, i I≤ ,i++ do 
4:     // Updating of channel nodes in the serial schedule 
5:       For all ,m lv , ,n ts  do 
6: 

, , , , ,

( 1) ( ) ( 1) ;
m l n t m l n t m l

i i i
v s v s vL L L- -

→ →= -   

7:  Updating 
, ,

( )
n t m l

i
s vL → by using (4); 

8: 
, , , , , ,

( ) ( ) ( 1) ( ) ;
m l m l n t m l n t m l

i i i i
v v s v s vL L L L-

→ →= - +  
9:        End for 
10:    // Updating of check nodes in the serial schedule 
11:      For all ,m lv , ,j lc do 
12:           

, , , , ,

( 1) ( ) ( 1) ;
m l j l m l j l m l

i i i
v c v c vL L L- -

→ →= -  

13:           Updating 
, ,

( )
j l m l

i
c vL → by using (5) 

14:          
, , , , , ,

( ) ( ) ( 1) ( ) ;
m l m l j l m l j l m l

i i i i
v v c v c vL L L L-

→ →= - +  
15:      End for 
16: End for 
17: Return 

,
,

(I)
, arg max .ˆ

m l
m l

v
v

m l Lv =  

 
Compared with the flooding schedule, more new updated messages are used in the serial 

schedule. For instance, lines 5–15 in Algorithm 1 show that the new updated information of 
the channel and check nodes can join message-passing immediately, which makes both other 
channel and check nodes use fresh messages in the current iteration. Thus, the proposed serial 
schedule can be more efficient in terms of convergence speed and system performance. Due to 
the faster convergence speed that reduces the number of iterations needed, receiver complexity 
is less than that of the flooding schedule. Moreover, according to Algorithm 1, more large 
memory registers are not needed to store 

, ,

( )
m l n t

i
v sL → and 

, ,

( )
m l j l

i
v cL → , which can reduce hardware 
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costs. Note that the flooding schedule has inherent advantages for hardware implementation; 
for instance, the parallelization of the algorithm for high speeds can be implemented. For the 
serial schedule, such a dynamic causes longer processing delays than in the flooding schedule. 
To solve that problem, so-called window decoding, which is used to decode spatially coupled 
LDPC codes, is an efficient, low-complexity, and low-delay technique that requires less 
memory. Since spatially coupling data transmission also has the spatially coupled feature and 
the messages are updated in a pipelined manner for the serial schedule, joint demodulation and 
decoding may be implemented by using window decoding to reduce decoding latency, which 
is hereby left for future investigations. 

6. Performance Evaluation 

For simplicity’s sake, a half-rate (3, 6)-regular LDPC code and ( )3,6,100,100HC -ensemble is 
adopted in all numerical results except special statements. The flooding schedule is applied to 
analyze the performance of the JSG–SCDT except in subsection 6.3 and Fig. 9.  
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Fig. 4. Interference and noise variance 2 ( )t iσ  versus t T  for the joint sparse graph for spatially 

coupling data transmission, 36L = ; solid lines denote the 2 ( )t iσ for 2 0.2157z =σ , whereas the red 
dashed line shows 2 ( )t iσ  for 2 0.2157z =σ  and 510i = . 

 

6.1 Density Evolution Analysis 

Fig. 4 shows the evolution of 2 ( )t iσ  based on Theorem 1. Clearly, there is less interference 
at boundaries t/T=0 and t/T=1 than at the other positions in the first few iterations. However, 
the interference of other positions decreases dramatically as i  increases; the interference at 
the center t/T=0.5 is approximately equal to 2

zσ  after a certain number of iterations, which 
implies that the inter-stream interference has been eliminated completely. When 2 0.2158z ≥σ , 
by contrast, 2 ( )t iσ  tends toward a value distant from 2

zσ  at the center t/T=0.5 after enough 
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iterations (i.e., 510i = ). This dynamic implies that the system is interference limited for 
2 0.2158z ≥σ , and therefore, the decoding threshold is between 0.2157 and 0.2158. 
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Fig. 5. The normalization ( )i

lsir  versus number of iterations at the center 1 0.5L = , 

36L = , 2 0.0312z =σ .The solid and dashed-dotted lines denote the normalization of the 
signal-to-interference ratio (SIR) of the joint sparse graph for spatially coupling data transmission 

(SCDT) and the demodulation of the separated demodulation and decoding for SCDT. 
 
Fig. 5 depicts the convergence behavior of SIRs for the JSG–SCDT and BP demodulation 

for the SDD–SCDT, in which SIRs are calculated based on Theorems 1 and 2, respectively. 
The SIRs of the JSG–SCDT converge in iteration 13, whereas the BP demodulation of the 
SDD–SCDT needs 33 iterations, because the messages of channels and decoding are included 
in the BP receiver of the JSG–SCDT, whereas the BP demodulation of the SDD–SCDT uses 
only the information of channels. As such, it needs fewer iterations to converge for 
JSG–SCDT. Note that convergence means that the interference among datastreams has been 
canceled completely. In fact, the iteration has been terminated before 13 iterations for 
JSG–SCDT due to syndrome computing in practical systems, as verified in subsection 6.3. 
 
Table 1. Decoding thresholds for the joint sparse graph (JSG) for spatially coupling data transmission 

(SCDT), separated demodulation and decoding for SCDT, and the JSG for conventional structure 
(CONV), in which 3R = and 6K = . 

Schemes SDD–SCDT JSG–CONV JSG–SCDT 
L 36 36 18 36 72 108 

2
zσ  0.0649 0.1323 0.2158 0.2157 0.2157 0.2157 

aβ   1.8 2 1.636 1.8 1.895 1.929 

 
Table 1 lists the decoding thresholds of finite-sized systems for the JSG–SCDT, 

SDD–SCDT, and JSG–CONV, the last of which is a conventional structure (i.e., without 
spatial coupling) based on the JSG. The thresholds of the JSG–SCDT and JSG–CONV can be 
estimated by Theorem 1 numerically. Let aβ denote the actual modulation load. Due to the 
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influence of the rate of loss on both ends for SCDT, aβ  is <2 for the SCDT. Therefore, the 
decoding threshold of the JSG–SCDT for L = 18 is larger than for the others. When the 
datastreams L are set to 36, 72, and 108 for the JSG–SCDT, the decoding threshold for all are 
identical, meaning that L = 36 has nearly eliminated the influence of the rate of loss. It is well 
known that the LLR message 0u  from the channel is a Gaussian distribution with mean 22 / GAσ , 
in which 2

GAσ  calculated by GA [22] is the decoding threshold of LDPC codes. Thus, the 
decoding threshold of SDD–SCDT can be obtained by ( )( ) 2E 1 /I

l GAsir =


σ based on Theorem 2. 
Clearly, both spatial coupling and joint demodulation and decoding based on the JSG can 
significantly improve the decoding threshold compared with a conventional structure and 
SDD, respectively. 
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Fig. 6. Spectral efficiency versus signal-to-noise ratio (in dB) for different modulation loads. 

6.2 Spectral Efficiency Analysis 
Spectral efficiency for the JSG–SCDT versus signal-to-noise ratio (SNR) for higher 
modulation loads is plotted in Fig. 6. Datastreams L  are set to be large enough to reduce the 
influence of the rate of loss. The curve with stars corresponds to 2=β , 3, and 4, in which 

3R =  and 6K = , 9, and 12. The curve with diamonds plots spectral efficiency achieved 
by 5R =  and 10K = , 15, and 20, and the AWGN’s Shannon capacity is represented by the 
solid black curve. Only 1.7 dB of distance separates the Shannon capacity when β = 2, and the 
gap between the curve with 3R = or 5R =  and Shannon capacity becomes larger 
as β increases, which indicates that the lower the modulation load, the closer the JSG operates 
toward Shannon capacity. This dynamic is due to interference among datastreams, which 
increases as the superposition datastreams increase for higher modulation loads. However, 
when the modulation load is high, the gap can be reduced by increasing the repeat number R . 
For instance, compared to ( 3R = , 12K = ), ( 5R = , 20K = ) can induce a 3.8-dB 
improvement in performance when β =4, and there is roughly only 3 dB of distance from the 
Shannon capacity. That circumstance implies that increasing R  can effectively combat 
interference among datasteams. By contrast, compared to the Shannon capacity, Fig. 6 shows 
that there are nearly identical gaps when 3R = and 5R = for β =2, meaning that the smaller R  
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is enough to achieve better performance when β is low. Otherwise, the larger R is necessary. 
Similar phenomena are observed in [24] as well. 
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Fig. 7. Average number of iterations at different signal-to-noise ratios for different schedules,  

in which I = 20. 

6.3 Convergence Speed 
To gain insight into the convergence speed for different message schedule schemes of the 
JSG–SCDT, the average number of iterations required to correctly detect a symbol (i.e., the 
result of syndrome computing equals 0) at different SNRs is provided in Fig. 7 when the 
maximum number of iterations is 20. As shown in the figure, when Eb/N0 = 13 dB, the 
symbols have been detected correctly after an average 6.6, 5.1, and 3.1 iterations due to 
syndrome computing for the flooding schedule, serial schedule in [23], and serial schedule, 
respectively, even though the interference among datastreams has not been canceled 
completely, as discussed in subsection 6.1. The average number of iterations required is nearly 
identical for the three schedules at Eb/N0 = 5 dB given the greater noise variance. The 
iterations required to correctly detect symbols keep nearly constant when Eb/N0 > 13 dB, 
since noise variance 2 0zσ → as SNR increases. Compared to the flooding schedule, at most 
22% of iterations can be reduced by using the serial schedule proposed in [23]. Thus, the 
convergence speed accelerated is rather limited by using the algorithm proposed in [23] for 
JSG–SCDT. However, roughly more than half of the iterations can be spared by exploring the 
proposed serial schedule when Eb/N0 > 6 dB.  

6.4 Performance Comparison 
Fig. 8 shows the bit error rate (BER) and block error rate (BLER) results for different schemes 
with modulation loads of about 200% over the AWGN channel. Each datastream is modulated 
by using quadrature phase-shift keying. The BER and BLER curves of the JSG–CONV are 
given to clearly show the improved performance due to spatial coupling. As the figure shows, 
JSG–SCDT achieves the best performance by exploiting the advantages of both JSG and 
spatial coupling. The JSG–SCDT brings about 1- and 5-dB improvements in performance, 
with BER close to 510-  over the JSG–CONV and SDD–SCDT, respectively. By comparison, 
the BER and BLER curves of turbo-structured joint demodulation and decoding based on JSG 
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for SCDT are plotted in Fig. 8. Turbo-structured joint demodulation and decoding involves the 
exchange of information between the detector and the decoder in a turbo manner, as applied in 
[25]. Five outer–inner turbo iterations are set between the detector and decoder, and 10 
demodulation iterations and 10 decoding iterations are performed, while the maximization 
number of iterations of JSG–SCDT is set to 20. The symbol can be detected correctly at Eb/N0 
= 7 dB when I = 20, as shown in the previous subsection. As the figure illustrates, although the 
complexity of JSG–SCDT is less than that of turbo-structured joint demodulation and 
decoding, the BER and BLER of JSG–SCD still outperform that of the turbo-structured 
receiver. Therefore, the JSG–SCDT can be regarded as an effective multiple access scheme to 
improve spectrum efficiency. 
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Fig. 8. Bit error rate (BER) and block error rate (BLER) versus Eb/N0 in dB for the joint sparse graph 
(JSG) for spatially coupling data transmission (SCDT), JSG for conventional structure (CONV), and 
separated demodulation and decoding (SDD) for SCDT, in which 36L = and 2=β ; vertical dashed 

lines show the decoding thresholds for the three schemes, as shown in Table 1. 
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Fig. 9. Comparison of the performance of different message schedule schemes. 
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To show the system performance of the three different message schedule schemes of 

JSG–SCDT, their BER are given in Fig.9 for brevity’s sake. Clearly, the proposed serial 
schedule always achieves the best performance under the same number of iteration, since fresh 
updated messages of channel and check nodes join the iterative process immediately, whereas 
those messages can be used only in the next iteration in the flooding schedule. For the serial 
schedule proposed in [23], only the fresh information of the channel node can be applied in the 
current iteration. Consequently, it is possible to obtain more reliable information and 
accelerate the convergence speed for the proposed serial schedule than for other schedules. As 
shown in the figure, when I = 10, the performance of the proposed serial schedule is improved 
significantly over that of the others. However, the performances of the three schedule schemes 
are almost the same at Eb/N0 = 7 dB when I = 20. This phenomenon indicates that the 
schedules converge at the same point, as observed in [23]. Also, the performance of the 
proposed serial schedule at I = 10 is nearly the same as that of the flooding schedule at I = 20. 
Therefore, roughly half of the iterations can be reduced to attain the nearly same performance.  

7. Conclusion 
In this paper, a JSG–SCDT scheme has been proposed in order to enhance the spectrum 
efficiency and performance of iterative demodulation and decoding. Based on the JSG, the 
approach for iterative joint demodulation and decoding by BP has been presented by exploring 
the flooding schedule. The performance of the iterative joint demodulation and decoding of 
the JSG–SCDT and the iterative demodulation of the SDD–SCDT based on BP has been 
analyzed by DE in the large sparse system limit. Furthermore, the corresponding coupled 
equations about DE have been derived. Theory analysis and simulation results verify that the 
JSG–SCDT has a better convergence speed and higher decoding threshold than the 
SDD–SCDT and turbo-structured receiver. To further accelerate convergence speed and 
reduce the complexity of joint demodulation and decoding, a novel serial schedule has been 
proposed. Numerical results show that JSG–SCDT can yield an improvement in performance 
by about 5 dB over SDD–SCDT in a finite-sized system, and about half of the iterations can be 
spared under similar system performance conditions by using the proposed serial schedule, 
which can save half of the demodulation and decoding complexity. 

Appendix 
Assuming BPSK modulation, evaluating the evolution of marginal posterior probability is 
equivalent to tracing the evolution of the PDF of the LLR for the BP receiver [11]. For the BP 
demodulation of JSG–SCDT, the exact BP is applied to trace the evolution of the PDF of the 
channel node’s LLR, whereas the GA is used to trace the evolution of the PDF of the check 
node’s LLR for decoding JSG–SCDT.  

We consider that the scalar Gaussian channel Z X N= + , in which , ,Z X N are random 
variables and ( )1~ 0,N -γN , }{ 1, 1X ∈ - + , and γ  denotes the SNR. Let the LLRs 

( ) ( 1)
ln

( 1)
x

p Z x
x

p Z x
L Z

∈

 = = 
= -   

 be a random vector of a dimension equal to the cardinality 

of . For any channel X Z→ , if the LLR vector is Gaussian distributed, then its mean and 
variance can be expressed by 
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The channel must be statistically equivalent to the scalar Gaussian channel Z X N= +  [20]. 
Therefore, we give two steps to prove Theorem 1. 

First, we prove that the LLR (8) vector is Gaussian distributed. For regular LDPC codes, the 
output LLR 

,,
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m lj l

i
c vL →





 of a check node is Gaussian, and the output LLRs of all the check nodes 

are independent and identically distributed [22]. Therefore,
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is Gaussian 

because the sum of independent Gaussian random variables is also Gaussian. The ACF 
property of H guarantees that incoming LLRs from the channel are independent random 
variables in the large system limit. Thus, 
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 β

converges in law to a Gaussian 

distribution using the central limit theorem. Therefore, the LLR (8) is Gaussian distributed 
because the sum of two Gaussian distributions that are independent is Gaussian as well. 

Second, we prove that the mean and variance of the LLR of the variable node could be 
expressed by using (21). As proven in [11], the equivalent channel for BP demodulation with 
GA converges to the asymptotic equivalent channel for true BP demodulation. Therefore, we 
derive the mean and variance of the channel node LLR by using the exact BP demodulation 
following [11] and [20] and prove that the mean and variance of the channel node LLR 
converge to 
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in the large sparse system limit, in which 
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and ( )1 0t R- + =β  when 1t ≤ , tK denotes the number of superposition datastreams at one 
instant during time t , and [ ],tK K∈ β  for all t∈ . The ( )i

lz  are denoted by  
 

,

( ) ( ) 2
,[( ( )) ],

m l

i i
l m lb b= E -E









z    (25) 

in which 
,

( )E[ ]
m l

ib  denotes the posterior mean estimator of ,m lb  in iteration i . 
The LLR of check node of regular LDPC codes is calculated by GA [22] and given by 
 ( )0

1( ) 1 ( 1)1 [1 ( ( 1) )] ,cdi i
u u v ud -- -= Φ - -Φ + -r r r    (26) 

in which the function ( )Φ ⋅  is defined in [22], and 
0ur  denotes the mean of LLR 0u , which is 

from the channel. Since the LLR from the channel is 
,,

( )

( , ) ( , )
m ln t

i
s v

n t m l
L →

∈
∑







 β

 for the JSG–SCDT and 

variable in each iteration. With a slight abuse of notation, 
0ur  is denoted by

0

( )i
ur  and 
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in the large sparse system limit. Consequently, the mean and variance of LLR (8) converge to 

 
, , ,, ,

, , ,, ,

( ) ( ) ( ) ( )
,

( , ) ( , ) ( , ) ( , )

( ) ( ) ( ) ( )

( , ) ( , ) ( , ) ( , )

[ ] [ ] [ ] 2 ,

[ ] [ ] [ ] 4

m l m l m ln t j l

m l m l m ln t j l

i i i i
v s v c v l m l

n t m l j l m l

i i i i
v s v c v l

n t m l j l m l

L L sir b

V V L V L sir

L

L

→ →
∈ ∈

→ →
∈ ∈

E = E + E →



= + →


∑ ∑

∑ ∑

 



 















β ϕ

β ϕ

  (28) 

with 

 ( ) ( ) ( ) .
2

i i iv
l l u

dsir sir= + r    (29) 

Thus, the mean and variance (28) of the variable node LLR can be expressed by using (21), 
respectively.  
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