
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 11, Nov. 2016 5547
Copyright ⓒ2016 KSII

Improving JPEG-LS Performance
Using Location Information

Jae Hyeon Woo1, Hyoung Joong Kim1

1Graduate School of Information Security
Korea University Seoul 136-701, Korea
1[e-mail: {bull0330, khj-}@korea.ac.kr]

*Corresponding author: Hyoung Joong Kim

Received July 11, 2016; revised September 2, 2016; accepted October 2, 2016;
published November 30, 2016

Abstract

JPEG-LS is an international standard for lossless or near-lossless image-compression
algorithms. In this paper, a simple method is proposed to improve the performance of the
lossless JPEG-LS algorithm. With respect to JPEG-LS and its supplementary explanation,
Golomb-Rice (GR) coding is mainly used for entropy coding, but it is not used for long
codewords. The proposed method replaces a set of long codewords with a set of shorter
location map information. This paper shows how efficiently the location map guarantees
reversibility and enhances the compression rate in terms of performance. Experiments have
also been conducted to verify the efficiency of the proposed method.

Keywords: JPEG-LS, Lossless compression, Golomb code, Golomb-Rice, Location map

http://dx.doi.org/10.3837/tiis.2016.11.019 ISSN : 1976-7277

5548 Woo et al. : Improving JPEG-LS Performance Using Location Information

1. Introduction

The JPEG-LS algorithm [1] is a lossless or near-lossless compression standard for still
images. Most of the recent compression algorithms accepted the Modeling and Coding [2]
concept to achieve an efficient compression. JPEG-LS uses the two-sided geometric
distribution (TSGD) model [3] of the prediction error that is based on the median edge detector
(MED) [4], and encodes this model by Golomb-Rice (GR) coding [5]–[6]. As a lossless
compression algorithm, it performs quite effectively and is superior to most of the other
algorithms including JPEG2000 [7]–[10]. A group of authors tried to improve the
performance of JPEG-LS by introducing novel prediction methods. Baligar et al. [7] proposed
a linear prediction method that minimizes the squared error and exploits quadtree coding. Bedi
et al. [8] proposed a prediction method that detects the diagonal edges in addition to the
vertical and horizontal edges. While the compression performances of both studies [7]-[8]
exceed that of JPEG-LS, the computational complexities of their algorithms are far greater [9].
Kademi et al. [10] paradoxically showed the superiority of JPEG-LS. Kim et al. [11] proposed
hierarchical average and copy prediction (HACP) scheme and showed the upper bound of
significant bit truncatuon (SBT) coding. Combinations of multiple predictions [12]–[13] are
also used to improve the compression rates. Masmoudi et al. [14] proposed a block-based
lossless image compression for which finite-mixture models and adaptive arithmetic coding
are used. Zhao et al. [15] and Starosolski [16] showed that the context-based adaptive lossless
image codec (CALIC) [17] provides high compression rates within reasonable time frames,
while JPEG-LS is effective enough and very fast. As a result, the JPEG-LS algorithm is still
considered excellent in terms of the compression rate and the compression time.

Mobasseri et al. [18] proposed a method for the embedding of data into the JPEG bitstream,
whereby Huffman-code mapping is used, and the data embedding is performed according to a
reversible mapping of the unused codewords; notably, only a fraction of the JPEG codewords
are actually used. Later, Qian and Zhang [19] improved their method, whereby the most
important contribution of their methods from [18] and [19] is a reversible data hiding
capability for the improvement of the compression rate; this reversibility is used in this paper
for the replacement of long codewords. Ding et al. [20] proposed a modified Golomb coding
for an asymmetric TSGD.

Even though JPEG-LS is almost perfect as a lossless algorithm, its performance can still be
improved. The goal of this paper is the improvement of the JPEG-LS performance through a
slight modification of the long codewords. JPEG-LS accepted the GR code as a main
encoding alogrithm, but this GR code can sometimes produce excessively long codewords. A
number of techniques can be used to remedy the long codeword artifact of the GR code; that is,
the JPEG-LS algorithm modifies these long GR codewords into a fixed-length code (the
authors call this modification JPEG-LS GR), while an additional improvement is proposed in
this paper. The GR artifact can also be resolved by utilizing the location map. The location
map is a tool for the book-keeping of the side information that assures the reversibility of data
hiding schemes [21]–[23]. It is mostly used to avoid underflow, overflow or decoding errors at
the decoding stage.

This paper shows that the location map can be used for lossless data compression;
moreover, it shows that long codewords can be replaced with shorter codewords. The
contribution of this paper consists of three methods that reduce the size of the symbol length in

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 11, November 2016 5549

bits, as follows; replacing the fixed-length prefixes with location information, reducing the
location map itself using a variable-length information, and reducing the suffix.

This paper is organized as follows. Section 2 briefly summarizes the concepts of GR coding
and JPEG-LS GR coding. Section 3 revisits the concept of the location map, and includes an
explanation of the application of location information for JPEG-LS GR coding; a simple
method for the reduction of the location map size is also presented; along with a demonstration
of improvements of the JPEG-LS GR method for specific cases. Section 4 presents an analysis
of the experiment results, whereby the performances of the JPEG-LS GR method and the
proposed method are compared. Section 5 concludes the paper.

2. Golomb-Rice coding vs. JPEG-LS coding
When an integer N is divided by another integer m, a quotient q and a remainder r are

derived so that the number N can be represented as N = q m + r. As long as m is given, the GR
code in the JPEG-LS is represented by [unary quotient q] + [one bit for a separator “1”] +
[binary remainder r]. JPEG-LS does not encode the pixel value itself, but encodes the
prediction error through the GR coding. The integer notation is defined here as follows: ND is
the digit expression (either in 8 bits or 16 bits), NB is the binary expression of ND, and NU is the
unary expression. For example, when ND is 3(10) for an 8-bit depth image, NB is 00000011(2) and
NU is 000(1), and they are the same representations. Note that NU has three zeros since ND is 3.
Similarly, when a given prediction error in a decimal number is ND = 73(10), its binary
representation in 8-bit format is expressed as NB = 01001001(2). Let a divisor be m = 2k, for
example, where k = 2, q is the first bits of NB, which is q = 010010(2) = 18(10) =
000000000000000000(1); and r is the last k bits of NB, which is r = 01(2). In this case, the
corresponding GR code is represented by the following format:

NGR = 000000000000000000|1|01(2)

The output NGR is of a pseudo-binary form. Namely, it looks like a binary sequence, but it is
actually a combination of binary symbols. The GR code starts with 18 leading zeros that are
equivalent to the unary representation of the quotient. The first “1” that separates the quotient
and the remainder with two red bars is a separator. The last part of “01” is just the remainder r
in binary format.

Another given number 73(10) can be represented in a different form depending on the k
value. Let k be 1 so that q = 0100100(2) = 36(10) =
000000000000000000000000000000000000(1) and r = 1(2). As a result, its GR code is
obtained according to the following format:

NGR = 000000000000000000000000000000000000|1|1(2)

In this case, the total length of the GR code is 38 bits, which seems excessively long; therefore,
this lengthy GR code NGR is not used whenever q 23(10), but a shorter code NLS is used in a
different format as follows:

NLS = 00000000000000000000000|1|01001000(2)

where the eight LSB bits are represented as ND 1 = 72(10) = 01001000(2). Now, 32 bits (i.e.,
[23 bits of leading zeros] + [1-bit separator “1”] + [8-bits of ND 1]) are needed for NLS rather

5550 Woo et al. : Improving JPEG-LS Performance Using Location Information

than 38 bits for NGR. This representation mostly shortens the length of the GR code.
To achieve consistency with the GR code, 23 zeros are leading both the separator and the

eight bits of ND 1 itself for the pixels quantized with 8-bit depth; then, maximally 32 bits are
needed in any case. A gain by the JPEG-LS GR code is obtained when the quotient is large
enough, and the gain of the JPEG-LS GR code is six bits, which is six bits less than the GR
code in this example.

Such a gain, however, does not always occur with the use of JPEG-LS GR coding. For
example, a given number 47(10) can be represented as follows:

NB = 00101111(2)

For k = 1, its GR code is represented with 23 leading zeros, as follows:

NGR = 00000000000000000000000|1|1(2)

However, the JPEG-LS GR code should be used whenever q 23. The JPEG-LS GR code is,
therefore, represented as follows:

NLS = 00000000000000000000000|1|00101110(2)

It is obvious that the JPEG-LS GR code needs 32 bits while the GR code needs only 25 bits.
Even though the JPEG-LS GR code is not always superior to the GR code, the former code is
used in the JPEG-LS algorithm. The length of the JPEG-LS GR code that includes a prefix, a
separator, and a suffix is always 32 bits. A combination of the [prefix and separator] of the
JPEG-LS GR code is called the replaceable JPEG-LS GR prefix or replaceable prefix for short
in this paper. This replaceable prefix consists of 24 bits that comprise 23 leading zeros plus the
separator “1”. The 8-bit suffix is called intact suffix in this paper. If the prefixes are replaceable,
their associated suffixes are intact suffixes.

Notably, most images are quantized with eight bits per pixel and eight bits per color (such
as red, green, and blue); however, some accurate images are quantized with 16 bits per pixel
and 16 bits per color. In this case, the JPEG-LS GR code consists of a 47-bit prefix, a 1-bit
separator, and a 16-bit suffix; therefore, the replaceable JPEG-LS GR prefix is 48 bits for the
16-bit-depth images.

3. Proposed Method
Both the run and regular modes are used for JPEG-LS. The run mode encodes the run

length, which is the count of the same continuous values. Either GR or JPEG-LS GR code is
used for each codeword when the regular mode is utilized, and this regular mode is the sole
focus of this paper.

In this section, three contributions are introduced. First, the replacement of the replaceable
JPEG-LS GR prefix with location information can reduce the codeword size. Second, the size
of the location information itself can be reduced. Third, the intact suffix code size can also be
reduced.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 11, November 2016 5551

3.1 Use of Location Information & Occurrence Gain
Location information is a kind of side information to guarantee reversibility. The encoder

and decoder can perform the same job if they share the same location information. If the
encoder modifies the pixel values, the modification can cause an overflow or underflow error.
Obviously, in that case, the encoder skips the pixel to avoide the causing of an error, and the
pixel should be marked in the location map. The decoder also skips the decoding when it
encounters the marked position. A set of the marked position information is called the location
map.

The first contribution of this paper is the replacement of the replaceable prefixes. This
paper identifies the possibility that the JPEG-LS GR codeword can still be shortened using a
simple method; that is, the location information is used instead of the replaceable JPEG-LS
GR prefix. Even though the replaceable prefix is removed, the intact suffix is not altered. The
position information of the replaceable prefix will be used here instead of the lengthy
JPEG-LS GR code.

The location map consists of the simple (row, col) coordinates of such JPEG-LS GR code
in this paper. The map of each row and column are of an 8-bit length in the 256 256 images,
while a 9-bit length applies for the 512 512 images. For the 256 256 images, the coding
gains for each replaceable prefix are therefore 8 () bits for the 8-bit-pixel
depth, and 32 () bits for the 16-bit depth. For the 512 512 images, the coding
gains for each prefix are 6 () bits for the 8-bit depth and 30 bits for the 16-bit
depth. This location information is subsequent to the total number information of these
locations at the beginning of the bitstream.

Table 1. Example of the JPEG-LS codewords for a 512 512 image

Position ND k Prefix Separator Suffix
(0, 0) 33 2 00000000 1 01

(197, 256) 84 1 00000000000000000000000 1 01010011

(339, 211) 111 2 00000000000000000000000 1 01101110

(480, 290) 239 3 00000000000000000000000 1 11101110

(480, 394) 139 0 00000000000000000000000 1 10001010

(511, 511)

At a position (row, col) = (339, 211) of the 512 512 image in Table 1, for example, the

JPEG-LS GR code is 00000000000000000000000|1|01101110(2), and a replaceable prefix
000000000000000000000001(2) is encountered. This prefix is removed during the proposed
encoding and only the intact suffix of 01101110(2) (i.e., ND 1) remains. After removing the
replaceable prefix, its position information of 101010011011010011(2), which is equivalent to
(339, 211), is recorded at the header of the bitstream and a coding gain of six bits is obtained.
The replaceable prefixes are underlined in Table 1.

Let H and W be the height and width of the image, respectively. As long as the value
 is smaller than 24 for the 8-bit depth, or less than 48 for the 16-bit depth,

the replacement with the location map results in a coding gain; such a gain is called occurrence

5552 Woo et al. : Improving JPEG-LS Performance Using Location Information

gain in this paper. Of course, the number of replaceable prefixes should be delivered to the
decoder as a part of the side information.

3.2 Map Gain
The second contribution is a possible reduction of the location information itself. The

position information of the first replaceable prefix is marked as it is because the reference
information regarding the position is not available; however, for the rest of the replaceable
prefixes, the information regarding the previous position is available. The available
information can be exploited for the attainment of further gain. In the example in Table 1, four
replaceable prefixes appear where the positions are (197, 256), (339, 211), (480, 290) and (480,
394); here, the row positions {197, 339, 480, and 480} are in an ascending order. For the first
position (197, 256) for a 512 512 image, 18 (i.e., 9 plus 9) bits are needed to record
011000101100000000(2). The next position (339, 211) is 101010011011010011(2); here,
because of the fact that 339 256, it is obvious that 339 is located in the second half (bottom
part) of the image, and the subsequent row positions that are larger than 256 indicate that they
are located in the second half. As a result, these rows are all marked as 1xxxxxxxx(2). Because
both the encoder and the decoder recognize this fact, it is not necessary to encode the first bit
of “1”, and only the 8-bit xxxxxxxx(2) is needed without the “1” in this case; therefore, only the
17 (i.e., 8 plus 9) bits of 11100000100100010(2) are recorded as the location information of
(480, 290).

If a replaceable prefix is in the second half of the image, one bit of gain can be attained in
the recording of the next piece of location information; similarly, if an i-th replaceable prefix is
placed in the fourth quarter, two bits of gain can be attained in the recording of the position of
the (i+1)-th prefix.

The column information in the same row can also be reduced by using a similar method
because the columns of the same row are of an ascending order; therefore, the location
information of (480, 394) in Table 1 is 1110000010001010(2) in 16 (i.e., 8 plus 8) bits
according to a referencing of the position information of (480, 290).

This type of gain is called map gain in this paper. Of course, the replaceable prefix
positions occur randomly; therefore, such a gain is not always achieved.

3.3 K3 (or K10) Gain
The third contribution is a size reduction of the intact suffix. When the replaceable prefix

is encountered for a pixel that is quantized by eight bits, the manifestation of the leading 23
zeros means that this sample is encoded by the JPEG-LS GR method, whereby the value of the
quotient q 23 and the suffix value is ND 1; that is, the replaceable prefix does not occur
whenever q . By utilizing this fact, the divisor information k can be exploited to reduce
the size of the intact suffix. With respect to k = 3 regarding the 8-bit pixel values, for example,
the value range of the first five bits of any q is from 0 to 31; as a result, NB ranges from
00000xxx(2) to 11111xxx(2), where xxx(2) stands for three bits of “don’t care” binary numbers
(i.e., remainders).

Regarding the quotient part, numbers from 0 to 22 do not appear when q 23, and, in this
case, numbers from 23 to 31 appear when is 3; that is, only nine numbers are actually used.
Thus, quotient values from 23 to 31 can therefore be reassigned to other values from 0 to 8,
respectively. Table 2 shows the reassigned number representation.

A modified quotient of 0 is equivalent to the unmodified quotient value of 23, a modified
quotient of 1 is equivalent to the unmodified quotient value 24, and so on. Only four bits are
consequently needed to represent the nine numbers from 0 to 8 (0000(2) to 1000(2)), rather than

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 11, November 2016 5553

the use of five bits to represent numbers from 23 to 31 (10111(2) to 11111(2)); moreover, one
more bit can be saved here. Three bits are assigned to represent the numbers from 0 to 6, and
four bits are assigned to represent 7 and 8.

Table 2. q representation method with K3 gain in 8-bit image

Unmodified q Bit expression Modified q Recorded bits
23 10111 0 000
24 11000 1 001
25 11001 2 010
26 11010 3 011
27 11011 4 100
28 11100 5 101
29 11101 6 110
30 11110 7 1110
31 11111 8 1111

NB is used rather than NB 1 to record the suffix in this case. The intact suffix of position

(480, 290), for example, is 11101110(2) in Table 1. The original NB = 11101110(2) + 1 =
11101111(2) can be split into two parts. If k is 3, then the unmodified-quotient part is 11101(2)
and the remainder part is 111(2). The unmodified-quotient part of 11101(2) (i.e., 29(10)) is
modified to 110(2) (i.e., 6(10)) by the subtraction of 23. Through this modification, the intact
suffix is changed to 110111(2), which requires six bits rather than eight bits, and saves two bits.
This type of gain is called K3 gain in this paper.

The same number of bits can be saved for the values that are quantized by a 16-bit depth
with k = 10. Then, the NB ranges from 000000xxxxxxxxxx(2) to 111111xxxxxxxxxx(2) in normal
case. Similarly, only 17 numbers from 101111xxxxxxxxxx(2) to 111111xxxxxxxxxx(2) are
actually replaceable since the replaceable prefix does not occur whenever q . As a result,
the assignment of six bits is not required, but five or four bits are enough. Two bits can be
saved by assigning short binary numbers from 0000(2) to 1110(2) (for the unmodified 47(10) to
61(10), respectively) or one bit can be saved by assinging 11110(2) and 11111(2) (for the
unmodified 62(10) and 63(10)), respectively) (See Table 3). This gain is called K10 gain in this
paper.

Table 3. q representation method with K10 gain in 16-bit image

Unmodified q Bit expression Modified q Recorded bits
47 101111 0 0000
48 110000 1 0001
49 110001 2 0010
… … … …
59 111011 12 1100
60 111100 13 1101
61 111101 14 1110
62 111110 15 11110
63 111111 16 11111

5554 Woo et al. : Improving JPEG-LS Performance Using Location Information

4. Experiment Results
The performance of the proposed method was compared with that of the JPEG-LS

algorithm (see Tables 4 to 8). A variety of uncompressed images ([24]-[25], Figs. 1 and 2) are
used for the comparison; here, a few images do not have a replaceable prefix, while most of the
images have a sufficient number of replaceable prefixes.

In the experiments, 12 gray-scale images of a 256 256 size and 12 gray-scale 512 512
images, all quantized by eight bits, are used; in addition, 8 color images of varying sizes that
have been quantized by eight bits are used (see Fig. 1). The images quantized by 16 bits are
shown in Fig. 2, and include 15 gray-scale images and 14 color images.

Before the compressed bitstream is recorded, the overhead representing the number of
location information is first recorded.

For the lena (256 256) image with an 8-bit pixel depth, the replaceable prefixes occur 20
times, and 160 bits (i.e., 20 8) can be reduced purely by the occurrence gain. For the
recording of the 20 occurrences, five bits are needed to represent the number 20(10) or 10100(2),
and this number of bits, five, is expressed as 0101(2). The entirety of the overhead information
is therefore expressed with nine bits as 0101|10100(2) and this overhead header is preserved at
the beginning of the binary stream for this image.

Among the nine bits in the overhead header, the first four bits are used to represent the
following number of bits representing the number of replaceable prefixes; therefore, the
leading four bits can represent numbers from 0 (0000(2)) to 15 (1111(2)). The maximum number
of overhead bits is 19 (four bits of leading “1111” plus 15 bits to represent the number of
replaceable prefixes).

The exact output bitstream size of JPEG-LS depends on two kinds of zero padding. The
first type pads a number of zeros at the end to make the bitstream size a multiple of eight; for
example, when the actual output bitstream is 00000000110(2) (11 bits), five zeros are padded to
make 16 bits in total and the output is then 0000000011000000(2). The second type of zero
padding occurs whenever the consecutive eight bits are all “1”. For the bit stream
11111111110(2), where the first eight bits are all “1”, one zero is inserted as a delimiter and
four zeros are padded to make 1111111101100000(2). Such a zero-padding rule is briefly stated
to calculate the exact number of the output bits of the JPEG-LS algorithm.

For the lena image (256 256), the original GR and JPEG-LS GR output stream size
without any padding is 299,901 bits, and 123 bits are added through the padding process to
make 300,024 bits; notably, since 300,024 is a multiple of eight, the first type of zero padding
is not necessary. In the pure output bit string of 299,901 bits, 123 cases of 11111111(2) occurs,
and the same number of zero bits are inserted as a second type of zero padding.

In the proposed method of this paper, nine bits of overhead header (i.e., “0101|10100(2)”)
are added to the pure JPEG-LS output of 299,901 bits; alternatively, 160 bits are reduced by
the occurrence gain due to the 20 replaceable prefixes. In addition, six bits are reduced by the
map gain; moreover, two bits are reduced by the K3 gain. The modified JPEG-LS output size
is therefore 299,742 bits (i.e.,). Regarding the 299,742 bits,
since there are 122 consecutive eight “1”s, 122 zeros are inserted. As a result, the final output
size of the modified JPEG-LS is 299,864 () bits, which is the final result
of the lena image because it is a multiple of eight, and this is slightly more favorable than that
of the original JPEG-LS. In Table 4, 5 and 7, the numbers in the upper rows of the occurrence
gain and the K3 gain (or K10 gain) are shown in bits, while the numbers in parenthesis in the
lower rows indicate the number of occurrences of such gain.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 11, November 2016 5555

Fig. 1. 8-bit small size images. (http://links.uwaterloo.ca/Repository.html)

5556 Woo et al. : Improving JPEG-LS Performance Using Location Information

Fig. 2. 16-bit large size images. (http://imagecompression.info/test_images)

For a few images, replaceable prefixes are not encountered; however, some images have a

large number of replaceable prefixes. The artificial image (2,048 3,072) that has been
quantized by 16 bits (see Table 7) has 452,775 bits of occurrence gain meaning that the
artificial image has 18,111 replaceable prefixes. Since the image size is 2,048 3,072, 23 bits
are needed to mark the positions; therefore, the apparent occurrence gain is 25 bits (i.e.,

, where the replaceable prefix takes 48 bits for the 16-bit depth images). In this case,
19 bits are required as an overhead header to represent the 18,111 replaceable prefixes (i.e., the
mandatory four bits to represent 15, and the next 15 bits to represent 18,111); therefore, the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 11, November 2016 5557

overhead header is represented as 1111|100011010111111(2), which needs 19 bits in total.
Notably, the artificial image is a synthetic image and not a natural one.

For the cameraman (256 256) image, 107 replaceable prefixes are encountered, and this
means that 856 bits can be reduced; moreover, 32 bits are reduced due to the map gain, and 12
bits are reduced due to the K3 gain. As a result, the output size of the JPEG-LS and the
proposed method are 282,488 bits and 281,576 bits, respectively. For the France image
(496 672), 289 replaceable prefixes are found, while 112 bits and 33 bits are reduced as the
map and K3 gains, respectively.

The clegg color image (880 814) in Table 6 has 7,872 bits of occurrence gain for the red
channel, 6,832 bits for the green channel, and 8,456 bits for the blue channel, since the image
has 1,968, 1,708, and 2,114 replaceable prefixes, respectively. For the red color, 7,872 bits,
1,669 bits, and 536 bits are the occurrence gain, map gain, and K3 gain, respectively. For the
images quantized with 16 bits, the K10 gain is a counterpart of the K3 gain, as shown in
Tables 7 and 8.

Table 4. Result of 8-bit Gray Images I.
Image

(H W)
occurrence

gain
map
gain

K3
gain

output bits
Original JPEG-LS Proposed

bird
(256 256)

8 bits z
(1)

0 bits z

0 bits z
 524,288 227,272 227,264

bridge
(256 256)

152 bits z
(19)

0 bits z

0 bits z
 524,288 379,264 379,128

cameraman
(256 256)

856 bits z
(107)

32 bits z

22 bits z
(12) 524,288 282,488 281,576

circles
(256 256)

24 bits z
(3)

0 bits z

0 bits z
 524,288 9,784 9,768

corsses
(256 256)

48 bits z
(6)

2 bits z

0 bits z
 524,288 25,048 25,008

goldhill
(256 256)

64 bits z
(8)

2 bits z

2 bits z
(1) 524,288 345,896 345,840

horiz
(256 256)

56 bits z
(7)

4 bits z

0 bits z
 524,288 5,928 5,880

lena
(256 256)

160 bits z
(20)

6 bits z

2 bits z
(1) 524,288 300,024 299,864

montage
(256 256)

504 bits z
(63)

34 bits z

6 bits z
(3) 524,288 178,240 177,712

slope
(256 256)

648 bits z
(81)

49 bits z

8 bits z
(4) 524,288 102,760 102,064

squares
(256 256)

24 bits z
(3)

0 bits z

0 bits z
 524,288 4,840 4,824

text
(256 256)

184 bits z
(23)

11 bits z

0 bits z
 524,288 106,728 106,536

5558 Woo et al. : Improving JPEG-LS Performance Using Location Information

Table 5. Result of 8-bit Gray Images II.
Image

(H W)
occurrence

gain
map
gain

K3
gain

output bits
Original JPEG-LS Proposed

barb
(512 512)

132 bits z
(22)

11 bits z

0 bits z
 2,097,152 1,240,584 1,240,448

boat
(512 512)

84 bits z
(14)

2 bits z

2 bits z
(1) 2,097,152 1,113,832 1,113,752

France
(496 672)

1,445 bits z
(289)

112 bits z

65 bits z
(33) 2,666,496 470,664 469,048

frog
(498)

60 bits z
(12)

3 bits z

2 bits z
(1) 2,474,064 1,870,432 1,870,368

goldhill
(512 512)

24 bits z
(4)

1 bits z

0 bits z
 2,097,152 1,234,912 1,234,896

lena
(512 512)

72 bits z
(12)

6 bits z

0 bits z
 2,097,152 1,112,240 1,112,176

library
(352 464)

624 bits z
(104)

50 bits z

37 bits z
(20) 1,306,624 832,936 832,240

mandrill
(512 512)

492 bits z
(82)

0 bits z

6 bits z
(3) 2,097,152 1,582,216 1,581,728

mountain
(480 640)

885 bits z
(177)

99 bits z

68 bits z
(39) 2,457,600 1,972,616 1,971,592

peppers
(512 512)

126 bits z
(21)

6 bits z

2 bits z
(1) 2,097,152 1,176,472 1,176,344

washsat
(512 512)

36 bits z
(6)

1 bits z

0 bits z
 2,097,152 1,082,256 1,082,232

zelda
(512 512)

6 bits z
(1)

0 bits z

0 bits z
 2,097,152 1,049,760 1,049,752

Table 6. Result of 8-bit Color Images.
Image

(H W) C occurrence
gain

map
gain

K3
gain

output bits
Original JPEG-LS Proposed

clegg
(880 814)

R 7,872 1,669 965 5,730,560 1,703,848 1,693,352
G 6,832 1,045 515 5,730,560 1,794,640 1,786,264
B 8,456 1,479 988 5,730,560 1,783,608 1,772,808

frymire
(1105 1118)

R 4,268 64 1,185 9,883,120 2,431,024 2,425,608
G 4,224 172 993 9,883,120 2,609,960 2,604,648
B 3,818 108 906 9,883,120 2,459,416 2,454,648

lena
(512 512)

R 18 0 0 2,097,152 1,060,280 1,060,272
G 102 6 0 2,097,152 1,207,568 1,207,472
B 192 0 8 2,097,152 1,284,120 1,283,944

monarch
(512 768)

R 530 61 6 3,145,728 1,469,288 1,468,712
G 445 45 14 3,145,728 1,469,056 1,468,576
B 415 38 12 3,145,728 1,510,704 1,510,240

peppers
(512 512)

R 114 7 1 2,097,152 1,034,904 1,034,784
G 108 16 2 2,097,152 1,019,296 1,019,176
B 150 16 2 2,097,152 1,029,288 1,029,120

sail
(512 768)

R 110 3 4 3,145,728 2,060,152 2,060,040
G 100 0 0 3,145,728 2,042,296 2,042,208
B 95 5 0 3,145,728 2,050,112 2,050,024

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 11, November 2016 5559

serrano
(794 629)

R 2,972 247 235 3,995,408 826,480 823,072
G 3,104 319 304 3,995,408 867,944 864,240
B 2,204 254 269 3,995,408 665,408 662,680

tulips
(512 768)

R 155 9 0 3,145,728 1,578,680 1,578,520
G 125 8 0 3,145,728 1,656,520 1,656,400
B 160 15 2 3,145,728 1,701,432 1,701,272

Table 7. Result of 16-bit Gray Images.
Image

(H W)
occurrence

gain
map
gain

K10
gain

output bits
Original JPEG-LS Proposed

artificial
(2048 3072)

452,775
(18,111)

22,765

6
(3) 100,663,296 27,167,728 26,692,336

big_building
(5412 7216)

5,060
(230)

0

0
 624,847,872 451,339,088 451,334,028

big_tree
(4550 6088)

198
(9)

18

0
 443,206,400 324,584,184 324,583,986

bridge
(4049 2749)

120
(5)

12

0
 178,091,216 135,643,808 135,643,688

cathedral
(3008 2000)

1,225
(49)

84

2
(1) 96,256,000 69,526,592 69,525,296

deer
(2641 4043)

240
(10)

0

0
 170,841,008 136,309,472 136,309,240

fireworks
(2352 3136)

4,464
(186)

101

0
 118,013,952 60,353,296 60,348,744

flower_foveon
(1512 2268)

1,375
(55)

20

0
 54,867,456 33,892,768 33,891,376

hdr
(2048 3072)

550
(22)

28

0
 100,663,296 62,900,288 62,899,720

leaves_iso_200
(2000 3008)

3,350
(134)

125

4
(2) 96,256,000 70,434,464 70,431,000

leaves_iso_1600
(2000 3008)

3,075
(123)

168

4
(2) 96,256,000 74,955,104 74,951,864

nightshot_iso_100
(2352 3136)

648
(27)

9

0
 118,013,952 72,684,152 72,683,504

nightshot_iso_1600
(2352 3136)

2,808
(117)

60

0
 118,013,952 88,672,408 88,669,552

spider_web
(2848 4256)

575
(25)

12

0
 193,937,408 111,630,984 111,630,400

zone_plate
(2000 3000)

1,675
(67)

30

56
(30) 96,000,000 95,673,640 95,671,872

5560 Woo et al. : Improving JPEG-LS Performance Using Location Information

Table 8. Result of 16-bit Color Images.
Image

(H W) C occurrence
gain

map
gain

K10
gain

output bits
Original JPEG-LS Proposed

artificial
(2048 3072)

R 440,400 22,646 14 100,663,296 27,622,520 27,159,592
G 455,325 22,522 5 100,663,296 26,097,064 25,619,352
B 392,650 23,018 6 100,663,296 22,666,056 22,250,512

big_building
(5412 7216)

R 1,210 0 0 624,847,872 471,972,608 471,971,398
G 7,568 2 0 624,847,872 446,166,904 446,159,336
B 990 6 2 624,847,872 457,438,424 457,437,434

big_tree
(4550 6088)

R 198 0 2 443,206,400 338,047,656 338,047,458
G 1,254 6 0 443,206,400 316,958,648 316,957,394
B 176 0 7 443,206,400 356,661,248 356,661,072

bridge
(4049 2749)

R 1,056 37 0 178,091,216 137,191,176 137,190,088
G 48 3 0 178,091,216 139,260,144 139,260,096
B 0 0 0 178,091,216 141,927,112 141,927,120

cathedral
(3008 2000)

R 2,125 172 6 96,256,000 72,049,384 72,047,096
G 2,450 204 0 96,256,000 65,756,096 65,753,448
B 3,025 352 0 96,256,000 69,606,856 69,603,488

deer
(2641 4043)

R 72 0 0 170,841,008 136,085,256 136,085,192
G 0 0 0 170,841,008 143,742,960 143,742,968
B 0 0 0 170,841,008 147,174,488 147,174,496

fireworks
(2352 3136)

R 3,864 63 0 118,013,952 65,342,088 65,338,176
G 2,424 0 4 118,013,952 50,603,008 50,600,600
B 7,104 27 0 118,013,952 30,611,824 30,604,712

flower_foveon
(1512 2268)

R 50 0 0 54,867,456 34,634,848 34,634,800
G 1,025 18 0 54,867,456 25,886,872 25,885,840
B 0 0 0 54,867,456 34,599,072 34,599,072

hdr
(2048 3072)

R 300 22 0 100,663,296 64,317,448 64,317,136
G 250 15 0 100,663,296 64,468,512 64,468,256
B 175 11 2 100,663,296 66,914,480 66,914,288

leaves_iso_200
(2000 3008)

R 2,550 118 15 96,256,000 71,013,008 71,010,336
G 5,150 251 2 96,256,000 70,067,784 70,062,400
B 1,700 58 8 96,256,000 69,239,256 69,237,488

leaves_iso_1600
(2000 3008)

R 425 11 9 96,256,000 76,392,784 76,392,352
G 4,025 235 6 96,256,000 74,091,952 74,087,696
B 450 13 2 96,256,000 73,353,248 73,352,800

nightshot_iso_100
(2352 3136)

R 1,080 9 0 118,013,952 74,671,984 74,670,904
G 1,056 18 0 118,013,952 71,826,064 71,825,000
B 1,944 48 0 118,013,952 60,798,592 60,796,608

nightshot_iso_1600
(2352 3136)

R 72 0 0 118,013,952 90,512,384 90,512,320
G 2,928 9 0 118,013,952 86,662,496 86,659,568
B 2,712 3 0 118,013,952 80,695,226 80,668,410

spider_web
(2848 4256)

R 115 0 0 193,937,408 114,490,864 114,490,752
G 529 8 0 193,937,408 111,667,024 111,666,496
B 207 2 0 193,937,408 114,798,856 114,798,656

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 11, November 2016 5561

5. Conclusion and Discussion
In this paper, a new lossless compression method is proposed. When the codeword length

is longer than the position information, the codeword can be replaced with a shorter piece of
position information. JPEG-LS reference software uses either 24-bit or 48-bit replaceable
prefixes to avoid the long codewords of the GR code; however, it is obvious that they are still
long, and that replaceable prefixes of less than 24 bits or 48 bits can be used to enhance the
compression rate. Future work includes the employment of various lengths of the replaceable
prefix to maximize the performance. In this paper, the potential of the location information is
manifested resulting in additional gains.

6. Acknowledgement
This work was supported in part by a National Research Foundation of Korea (NRF) grant

funded by the Korean Government (MEST) (NRF-2015R1A2A2A01004587), and Korea
University.

References
[1] M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image compression

algorithm: Principles and standardization into JPEG-LS,” IEEE Transactions on Image Processing,
vol. 9, no. 8, pp. 1309–1324, Aug. 2000. Article (CrossRef Link)

[2] J. Rissanen and G. G. Langdon, Jr, “Universal modeling and coding,” IEEE Transactions on
Information Theory, vol. 27, pp. 12–23, Jan. 1981. Article (CrossRef Link)

[3] N. Merhav, G. Seroussi, and M.J. Weinberger, “Optimal Prefix Codes for Sources with
Two-Sided Geometric Distributions,” IEEE Transactions on Information Theory, vol. 46, no. 1, pp.
120-135, Jan. 2000. Article (CrossRef Link)

[4] S. A. Martucci, “Reversible compression of HDTV images using median adaptive prediction and
arithmetic coding,” in Proc. of IEEE International Symposium on Circuits and Systems,
pp.1310-1313, 1990. Article (CrossRef Link)

[5] S. W. Golomb, “Run Length Encodings,” IEEE Transactions on Information Theory, vol. 12, pp.
399-401, 1966. Article (CrossRef Link)

[6] R. F. Rice, “Practical Universal Noiseless Coding,” in Proc. of SPIE 0207, Applications of Digital
Image Processing III, 247, 1979. Article (CrossRef Link)

[7] V. P. Baligar, L. M. Patnaik, and G. R. Nagabhushana, “High compression and low order linear
predictor for lossless coding of grayscale images,” Image and Vision Computing, vol. 21, pp.
543–550, 2003. Article (CrossRef Link)

[8] S. Bedi, E. A. Edirisinghe, and G. Grecos, “Improvements to the JPEG-LS prediction scheme,”
Image and Vision Computing, vol. 22, pp. 9–14, Sep. 2004. Article (CrossRef Link)

[9] K. Horvath, H. Stögner, and G. Weinhandel, “Experimental study on lossless compression of
biometric iris data,” in Proc. of the 7th International Symposium on Image and Signal Processing
and Analysis, pp. 379–384, Sep. 2011. Article (CrossRef Link)

[10] A. Khademi and S Krishnan, “Comparison of JPEG 2000 and other lossless compression schemes
for digital mammograms,” in Proc. of 27th Annual International Conference of the Engineering in
Medicine and Biology Society, pp. 3771–3774, Jan. 2006. Article (CrossRef Link)

[11] J. Kim and C. M. Kyung, “A lossless embedded compression using significant bit truncation for
HD video coding,” IEEE Transactions on Circuits and Systems for video technology, vol. 20, no. 6,
Jun. 2010. Article (CrossRef Link)

[12] G. Deng, H. Ye, and L. Cahill, “Adaptive techniques for lossless data compression,” in Proc. of
the Australia and New Zealand Conference on Intelligent Information Systems, pp. 345–350, 2001.
Article (CrossRef Link)

http://dx.doi.org/10.1109/83.855427
http://dx.doi.org/10.1109/TIT.1981.1056282
http://dx.doi.org/10.1109/18.817513
http://dx.doi.org/10.1109/ISCAS.1990.112371
http://dx.doi.org/10.1109/TIT.1966.1053907
http://dx.doi.org/10.1117/12.958253
http://dx.doi.org/10.1016/S0262-8856(03)00034-9
http://dx.doi.org/10.1016/S0262-8856(03)00139-2
http://dx.doi.org/10.1109/ISPA.2009.5297682
http://dx.doi.org/10.1109/IEMBS.2005.1617305
http://dx.doi.org/10.1109/TCSVT.2010.2045923
http://dx.doi.org/10.1109/ANZIIS.2001.974102

5562 Woo et al. : Improving JPEG-LS Performance Using Location Information

[13] A. Martchenko and G. Deng, “Bayesian predictor combination for lossless image compression,”
IEEE Transactions on Image Processing, vol.22, pp.5263–5270, 2013. Article (CrossRef Link)

[14] A. Masmoudi, W. Puech, and A. Masmoudi, “An improved lossless image compression based
arithmetic coding using mixture of non-parametric distributions,” Multimedia Tools and
Applications, vol. 74, no. 23, pp. 10605–10619, 2015. Article (CrossRef Link)

[15] S. Zhao, Y. Xu, H. Li, and H. Yang, “A comparison of lossless compression methods for
palmprint images,” Journal of Software, vol. 7, no. 3, pp.594–598, Mar. 2012.
Article (CrossRef Link)

[16] T. Starosolski, “Simple fast and adaptive lossless image compression algorithm,” Software:
Practice and Experience, vol. 37, no. 1, pp. 65–91, Jan. 2007. Article (CrossRef Link)

[17] X. Wu and N. Memon, “Context-based, adaptive, lossless image codec,” IEEE Transactions on
Communications, vol. 45, no. 4, pp. 437–444, Apr. 1997. Article (CrossRef Link)

[18] B. G. Mobasseri, R. J. Berger, M. P. Marcinak, and Y. J. NaikRaikar, “Data embedding in JPEG
bitstream by code mapping,” IEEE Transactions on Image Processing, vol. 19, no. 4, pp. 958–966,
Apr. 2010. Article (CrossRef Link)

[19] Z. Qian and X. Zhang, “Lossless data hiding in JPEG bitstream,” Journal of Systems and Software,
vol. 85, no. 2, pp. 309–313, Feb. 2012. Article (CrossRef Link)

[20] J. J. Ding, W. Y. Wei, and G. C. Pan, “Modified Golomb coding algorithm for asymmetric
two-sided geometric distribution data,” in Proc. of The 20th European Signal Processing
Conference, pp.1548–1552, 2012. Article (CrossRef Link)

[21] J. Tian, “Reversible data embedding using a difference expansion,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 13, no. 8, pp. 890–896, Aug. 2003.
Article (CrossRef Link)

[22] Z. Ni, Y.-Q. Shi, and N. Ansari, “Reversible data hiding,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 16, no. 3, pp. 354–362, Mar. 2006. Article (CrossRef Link)

[23] H .J. Kim, V. Sachnev, Y. Q. Shi, J. Nam, and H. G. Choo, “A novel difference expansion
transform for reversible data embedding,” IEEE Transactions on Information Forensics and
Security, vol. 3, no. 3, pp. 1147–1156, Sep. 2008. Article (CrossRef Link)

[24] http://links.uwaterloo.ca/Repository.html
[25] http://imagecompression.info/test_images
[26] http://www.stat.columbia.edu/~jakulin/jpeg-ls/mirror.htm
[27] http://kr.mathworks.com/matlabcentral/fileexchange/53039-jpegls-codec

Jae Hyeon Woo received a B.S. degree in Mechanical Engineering and a M.S. degree
in Electrical and Computer Engineering from Seoul National University, Seoul, Korea, in
1996, 2002, respectively. He joined Multimedia Security Laboratory at the Center of
Information Security and Technology (CIST), Graduate School of Information
Management and Security, Korea University, Seoul, Korea in 2007, where he is currently
pursuing Ph.D. His research interests include multimedia security, reversible and robust
watermarking, steganography, phychology, and big-data.

Hyoung Joong Kim received his B.S., M.S., and Ph.D. degrees from Seoul National
University, Seoul, Korea, in 1978, 1986, and 1989,respectively. He joined the faculty of
the Department of Control and Instrumentation Engineering, Kangwon National
University, Korea, in 1989. He is currently a Professor of the Graduate School of
Information Management and Security, Korea University, Korea since 2006. His research
interests include parallel and distributed computing, multimedia computing, multimedia
security, and big-data.

http://dx.doi.org/10.1109/TIP.2013.2284067
http://dx.doi.org/10.1007/s11042-014-2195-8
http://dx.doi.org/10.4304/jsw.7.3.594-598
http://dx.doi.org/10.1002/spe.746
http://dx.doi.org/10.1109/26.585919
http://dx.doi.org/10.1109/TIP.2009.2035227
http://dx.doi.org/10.1016/j.jss.2011.08.015
http://dx.doi.org/10.5281/zenodo.43049
http://dx.doi.org/10.1109/TCSVT.2003.815962
http://dx.doi.org/10.1109/TCSVT.2006.869964
http://dx.doi.org/10.1109/TIFS.2008.924600

