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Abstract 

 
Energy efficiency of resource-constrained wireless sensor networks is critical in 
applications such as real-time monitoring/surveillance. To improve the energy efficiency 
and reduce the energy consumption, the time series data can be compressed before 
transmission. However, most of the compression algorithms for time series data were 
developed only for single variate scenarios, while in practice there are often multiple 
sensor nodes in one application and the collected data is actually multivariate time series. 
In this paper, we propose to compress the time series data by the Lasso (least absolute 
shrinkage and selection operator) approximation. We show that, our approach can be 
naturally extended for compressing the multivariate time series data. Our extension is 
novel since it constructs an optimal projection of the original multivariates where the best 
energy efficiency can be realized. The two algorithms are named by ULasso (Univariate 
Lasso) and MLasso (Multivariate Lasso), for which we also provide practical guidance 
for parameter selection. Finally, empirically evaluation is implemented with several 
publicly available real-world data sets from different application domains. We quantify 
the algorithm performance by measuring the approximation error, compression ratio, and 
computation complexity. The results show that ULasso and MLasso are superior to or at 
least equivalent to compression performance of LTC and PLAMlis. Particularly, MLasso 
can significantly reduce the smooth multivariate time series data, without breaking the 
major trends and important changes of the sensor network system. 
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1. Introduction 

Nowadays, real-time monitoring and surveillance supported by large-scale wireless 
sensor networks (WSNs) are frequently employed in commercial applications, such as 
environmental monitoring [23], remote patient monitoring in healthcare [9], animal 
behavior classification [7], and structural health monitoring for infrastructures [10]. For 
the best of application performance, high speed and continuous sensor sampling are 
needed, which will generate large volume of raw sensor data. Accordingly, transmitting 
and storing the sensor data are very energy expensive. For example, if all the sampled 
data need to be transmitted to the base station, battery used by the remote wireless sensor 
node will be drained quickly. Indeed, Kimura and Latifi [8] concluded that approximately 
80% of power consumed in each sensor node is used for data transmission; Barr and 
Asanovic [4] showed that the energy consumed for transmitting a single bit of 
information is approximately the same as that required by the processing unit for 
executing a thousand of computing operations. In sum, the resource-constraints imply 
significant challenges to the operating and managing of large-scale WSNs in commercial 
applications.  

There are several strategies developed to reduce energy consumption and prolong the 
lifetime of sensor nodes, such as battery replenishment, reducing the sampling rate, and 
data compression [6]. In many real physical environments, replenishment of batteries can 
be even more expensive and impractical. Lower sampling rate can shrink the data volume 
for transmitting and storing, but the reduced data often lose informative details of the 
monitored system. A much higher sampling rate will be necessary for the best of data 
quality and application performance. On the other hand, the data compression is more 
promising in improving the energy efficiency and reduce the energy consumption of 
WSNs. The reason is that, data compression algorithms can allow some level of 
inaccuracy in the recovered signal as long as major trends and important changes are 
preserved [22]. Using data compression method means that we can trade some energy for 
computing the compression to reduce much more energy for data transmission and 
storage.  

There have been some well-known solutions to compress time series sensor data. 
However, most of them are presented and test on single variate sensor data such as 
temperature, relative humidity, etc. In many practical and complicated scenarios the 
WSNs are deployed to collect multi-dimensional time series. For example, 
three-dimensional moving acceleration data is collected to monitor the motion states and 
three-dimension magnetometer is used to measure the direction of magnetic field. 
Moreover, the EEG (Electrocardiography) heart or brain data can be of over one hundred 
of dimensions. Although the WSNs with capturing multi-dimensional data are more 
common, few literature works have discussed the compression of the multivariate time 
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series sensor data. Therefore, this paper proposes novel data compression algorithms 
suitable for both univariate and multivariate systems. Major contributions of this work are 
highlighted as follows:  
• We develop efficient algorithms which perform lossy compression on both 

univariate and multivariate time series data. Our algorithms (ULasso and MLasso) 
are based on Lasso approximation. In particular, our multivariate extension (MLasso) 
can construct the optimal projection of the original multivariates where the best 
energy efficiency can be realized.  

• In addition to the theoretical formulation of ULasso and MLasso, we also develop 
efficiency solvers which can compute the optimal compression with much less 
running time. We also provide practical guidance on selecting important parameters 
in our algorithms.  

• We demonstrate the superiority of our algorithms in comparison with the 
state-of-the-art competing algorithms on several publicly available real-world data 
sets from different application domains. The experimental results show that our 
algorithms perform significantly better, particularly for smooth multivariate time 
series data sets, which are typical in applications of behavior monitoring.  

The remainder of this paper is structured as follows: Section 2 presents related work. 
And then we present univariate and multivariate lasso compression algorithms, as well as 
the implementation details in Section 3. Section 4 describes several real-world data set 
and their characteristic, then compares various methods for sensor data compression. 
Finally, Section 5 concludes the paper.  

2. Related work 
Energy efficiency is becoming more important for wireless sensors which aims at 
long-term and real-time continuous monitoring. Limited by the node processor 
computation and storage, many existing compression algorithms are not directly 
applicable for sensor nodes. Only specifically designed compression algorithms are 
suitable for tiny sensor nodes applications [29]. The dedicated data compression 
techniques for sensor nodes can be classified into two categories: (1) spatial compression 
techniques, and (2) temporal compression techniques.  

(1) Spatial compression techniques. This kind of techniques exploit distributed 
compression to reduce the transmission data on cooperative and dense network nodes 
[22,11]. This compression technique needs nodes collaborate with each other to carry out 
tasks. Specifically, the topology of the wireless sensor network of neighboring nodes 
needs to be considered. Many researchers discussed the distributed compression 
approaches, such as distributed source modeling (DSM) [17], distributed transform 
coding (DTC) [3], distributed source coding (DSC) [19], and compressed sensing (CS) 
[5], etc. A popular application of spatial compression techniques is image compression. 
This technique leverages the following observation, that is, one pixel often reveals similar 
information against its neighbors which exhibits high spatial correlation.  
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(2) Temporal compression techniques. Exploiting temporal correlation usually acts 
on a node and involves more traditional data compression techniques. Due to the limited 
resource, sensor nodes are usually not capable to communicate with each other,. Not like 
spatial distributed compression approaches, there few works focusing on temporal 
compression algorithms.  

Temporal compression techniques applied in a single node can also be classified into 
two categories: lossless and lossy compression algorithms, which are typically based on 
different principles. Lossless compression ensures the correctness of information by 
removing redundancy from data during compression and decompression process, which 
preserve the data accuracy [22]. On the contrary, lossy compression techniques 
emphasize the higher compression ratio which will discard some of the original 
information [22]. Obviously, with the higher compression ratio, lossy compression gets 
the less data quality.  

2.1. Lossless compression algorithm 
Several typical lossless compression techniques have been developed and discussed to 

apply in the sensors. For example, one well-known method adopted in sensor network is 
Sensor Lempel-Ziv-Welch (S-LZW) algorithm [3], which is dictionary-based lossless 
compression approach. Another efficient lossless compression approach is Lossless 
Entropy Compression(LEC) algorithm, which is based on traditional information 
encoding, requires very low computational power and achieves higher compression ratio 
[15]. For wireless sensors, the lossless compression techniques are not suitable due the 
resource limited environment.  

2.2. Lossy compression algorithm 
Lossy compression loosens the tolerable observation error margins to achieve the 

flexibility on trading off between reconstruction accuracy for higher compression ratio 
and less energy consumption, which can lengthen the lifetime of wireless sensors in turn. 
A very low-complexity Lightweight Temporal Compression(LTC) technique is presented 
by Schoellhammer, which introduce a small amount of error into each reading, bounded 
by a control knob [21,14]. LTC adopted by piecewise linear approximation approaches 
with the low-complexity are widely used in sensor network. Unfortunately it performs 
poorly if the sensor readings fluctuate frequently, even when the fluctuations follow some 
fixed patterns over time and can only be used for temporal data compression [1]. Based 
on piecewise linear approximation scheme, Piecewise Linear Approximation with 
Minimum Number of Line Segments (PLAMLiS) algorithm exploits the optimal 
minimum number of segments to approximate the given time series such that the 
difference between any approximation value and its actual value is less than the given 
error bound ε [18].  

The above two well-known temporal lossy compression algorithms use piecewise 
linear to represent time series, and the piecewise linear technique seems suitable for 
varying slowly and gradually signals like temperature. However, the LTC and PLAMlis 
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are not effective to handle higher dimensional or multivariate time series. For multivariate 
or multi-dimensional temporal data, the feasible solution for existing lossy compression 
techniques is that separate multivariate or multi-dimensional data into several 
one-dimension arrays to compress, which is obviously not effective and efficient enough. 
In this paper, we provide compression method for both univariate and multivariate time 
series in sensor networks. 

3. The compression algorithm 

3.1. The univariate algorithm 
We start with the simple scenario where we have observed the one-dimensional 

reading 𝑦𝑦 = (𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑁𝑁)  and the corresponding time stamps 𝑡𝑡 = (𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑁𝑁) 
where 𝑡𝑡1 ≤ 𝑡𝑡2 ≤ ⋯ ≤ 𝑡𝑡𝑁𝑁. In other words, we observed the value 𝑦𝑦𝑖𝑖 at time 𝑡𝑡𝑖𝑖 from the 
sensor. For example, the sensor reading in y can be used to measure the blood pressure of 
a cow in the time window (𝑡𝑡1, 𝑡𝑡𝑁𝑁). It is often that the reading is constantly changing and 
subsequently all reading values in y and time stamps in t are stored in data base for 
modeling and analysis. Nonetheless, during some time period, the changes in the reading 
can be very insignificant. In the extreme case, suppose we have observed that the 
𝑦𝑦𝑝𝑝 = 𝑦𝑦𝑝𝑝+1 = ⋯ = 𝑦𝑦𝑞𝑞 for some 𝑝𝑝 < 𝑞𝑞. In this case, we could store in the data base the 
reading 𝑦𝑦 = (… ,𝑦𝑦𝑝𝑝,𝑦𝑦𝑞𝑞+1, … ) with corresponding time stamps 𝑡𝑡 = (… , 𝑡𝑡𝑝𝑝, 𝑡𝑡𝑞𝑞+1, … ) to 
reduce data storage. Note that, by identifying such ‘smooth’ time window (𝑡𝑡𝑝𝑝, 𝑡𝑡𝑞𝑞) we 
can save the storage space for |𝑝𝑝 − 𝑞𝑞|reading values and also time stamps. Moreover, by 
shrinking the storage space, we can also reduce the energy used to transmitting the data. 
As shown later in Section 4, the economic benefit of reducing the data transmission and 
storage can be very significant.  

In practice, the reading values may not be exactly constant but with slight perturbations 
in some time period, e.g., the time window (𝑡𝑡𝑝𝑝, 𝑡𝑡𝑞𝑞). To compress the time series data in 
these cases, we present an efficient algorithm based on Lasso regularization [13]. The 
Lasso regularization has been utilized in applications including image denoising [13], 
comparative genomic hybridization [24], prostate cancer analysis [25], and time-varying 
networks [2], where features can be ordered in some meaningful way.  

Specifically, to remove the slight perturbations in y, we compute a smoother 
approximation, x, by minimizing the regularized differences:  

𝐽𝐽(𝑥𝑥) = 1
2
∑ (𝑦𝑦𝑛𝑛 − 𝑥𝑥𝑛𝑛)2𝑁𝑁
𝑛𝑛=1 + 𝜆𝜆∑ |𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛|𝑁𝑁−1

𝑛𝑛=1      (1) 

Specifically, while we use the first term 1
2
∑ (𝑦𝑦𝑛𝑛 − 𝑥𝑥𝑛𝑛)2𝑁𝑁
𝑛𝑛=1  to minimize the 

differences between the actual reading y and approximation x, we use the second term 
(fused lasso) to encourage the piecewise constant in the approximation x. The degree of 
the regularization, λ, can control the smoothness of the approximation. The larger the 
value of λ is, the smoother the solution x will be.  
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3.2. The multivariate algorithm 
Now we continue to the general setting where our observation can be multivariate time 

series 𝑌𝑌 ∈ 𝑅𝑅𝐷𝐷×𝑁𝑁. As aforementioned for the univariate case, N is still the number of 
observations and the corresponding time stamps are t = (t1, t2, … , t𝑁𝑁) with 𝑡𝑡1 ≤ 𝑡𝑡2 ≤
⋯ ≤ 𝑡𝑡𝑁𝑁. However, now we have totally D readings at each time stamp. Specifically, by 
letting 𝑌𝑌𝑑𝑑∗ = 𝑌𝑌𝑑𝑑1,𝑌𝑌𝑑𝑑2, … ,𝑌𝑌𝑑𝑑𝑁𝑁 be the d-th row in the matrix Y, we observe D readings 
𝑌𝑌1𝑛𝑛,𝑌𝑌2𝑛𝑛, … ,𝑌𝑌𝐷𝐷𝑛𝑛 at the n-th time stamp t𝑛𝑛.  

To extend the univariate algorithm to suit the multivariate case, one straightforward 
formulation is as follows:  

  𝐽𝐽(𝑋𝑋) = ∑ 𝐽𝐽(𝑋𝑋𝑑𝑑∗)𝐷𝐷
𝑑𝑑=1                     (2) 

 
where 𝑋𝑋𝑑𝑑∗ is the d-th row in the solution matrix 𝑋𝑋∈𝑅𝑅𝐷𝐷×𝑁𝑁 and 𝐽𝐽(𝑋𝑋𝑑𝑑∗) is the univariate 
objective function:  
                    𝐽𝐽(𝑋𝑋𝑑𝑑∗) = 1

2
∑ (𝑌𝑌𝑑𝑑𝑑𝑑 − 𝑋𝑋𝑑𝑑𝑑𝑑)2𝑁𝑁
𝑑𝑑=1 + 𝜆𝜆∑ �𝑋𝑋𝑑𝑑,𝑑𝑑+1 −𝑋𝑋𝑑𝑑𝑑𝑑�𝑁𝑁−1

𝑑𝑑=1       (3) 
 
Therefore, it follows that  

𝐽𝐽(𝑋𝑋) = �𝐽𝐽(𝑋𝑋𝑑𝑑)
𝐷𝐷

𝑑𝑑=1

          = ��
1
2

(𝑌𝑌𝑑𝑑𝑑𝑑 − 𝑋𝑋𝑑𝑑𝑑𝑑)2 + λ ��𝑋𝑋𝑑𝑑,𝑑𝑑+1 −𝑋𝑋𝑑𝑑𝑑𝑑�
𝑁𝑁−1

𝑑𝑑=1
�

𝐷𝐷

𝑑𝑑=1

          =
1
2
�‖𝑌𝑌∗𝑛𝑛 − 𝑋𝑋∗𝑛𝑛‖2
𝑁𝑁

𝑛𝑛=1

+ 𝜆𝜆��𝑋𝑋∗,𝑛𝑛+1 − 𝑋𝑋∗𝑛𝑛�
𝑁𝑁−1

𝑛𝑛=1

          =
1
2
‖𝑋𝑋 − 𝑌𝑌‖𝐹𝐹2 + 𝜆𝜆��𝑋𝑋∗,𝑛𝑛+1 − 𝑋𝑋∗𝑛𝑛�

𝑁𝑁−1

𝑛𝑛=1

 

  
However, such a straightforward extension may fail to compress 𝑌𝑌 optimally. The 

reason is that, the optimal solution 𝑋𝑋 may be more smooth with some projections of the 
original multivariates. Therefore, to facilitate the optimal lasso compress with 
multivariate time series, we propose the objective function as follows:  

 
                   𝐽𝐽(𝑋𝑋,𝑉𝑉) = 1

2
‖𝑌𝑌𝑉𝑉 − 𝑋𝑋‖𝐹𝐹2 + 𝜆𝜆 ∑ �𝑋𝑋∗,𝑛𝑛+1 − 𝑋𝑋∗𝑛𝑛�𝑁𝑁−1

𝑛𝑛=1    (4) 
 

where 𝑉𝑉 is an orthogonal matrix such that 𝑉𝑉′𝑉𝑉 = 𝐼𝐼  where 𝐼𝐼 is the identify matrix. 
The optimal 𝑉𝑉 minimizing the function 𝐽𝐽(𝑋𝑋,𝑉𝑉) can be used to construct the optimal 
projection of the original multivariates where the best energy efficiency can be realized. 
In comparison with Equation 2, the new problem formulation in Equation 4 can better 
unify the compression of the multivariate sensor readings by finding the smooth 
approximation in the transformed space.  
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3.3. Learning Algorithm 
We use alternative algorithm to solve 𝑋𝑋 and 𝑉𝑉 iteratively. Particularly, we initialize 

the algorithm with 𝑉𝑉 = 𝐼𝐼, and then update 𝑋𝑋 with 𝑉𝑉 fixed and then update 𝑉𝑉 with 𝑋𝑋 
fixed. Such iteration is repeated until the objection function 𝐽𝐽(𝑋𝑋,𝑉𝑉) converges or the 
maximal number of iterations is reached.  

More specifically, when updating 𝑋𝑋, the problem is equivalent with the multiple 
univariate problems, where each dimension of 𝑋𝑋 can be computed independently. When 
updating 𝑉𝑉, the problem can be simplified to  

min
𝑉𝑉

1
2
‖𝑌𝑌𝑉𝑉 − 𝑋𝑋‖𝐹𝐹2  

                           subject to:   𝑉𝑉′𝑉𝑉 = 𝐼𝐼                        (5) 
  
To solve this problem, we use the updating procedure proposed in [26]. Specifically, with 
the current solution 𝑉𝑉, we compute its gradient 𝐺𝐺 = 𝑌𝑌′(𝑌𝑌𝑉𝑉 − 𝑋𝑋). Then, we define a 
skew-symmetric matrix 𝑆𝑆 = 𝐺𝐺𝑉𝑉′ − 𝑉𝑉𝐺𝐺′, and then compute the new solution:  

𝑉𝑉 ← �𝐼𝐼 +
𝜏𝜏
2
𝑆𝑆�

−1
(𝐼𝐼 −

𝜏𝜏
2
𝑆𝑆)𝑉𝑉 

                 
1( ) ( )

2 2
V I S I S Vτ τ−← + − ,

                      (6) 
where 𝜏𝜏 ≥ 0 is the learning rate. It can be shown that this updating procedure can 
decrease the objective function 1

2
‖𝑌𝑌𝑉𝑉 − 𝑋𝑋‖𝐹𝐹2  while satisfy the constraints 𝑉𝑉′𝑉𝑉 = 𝐼𝐼.  

4. Experimental results 
We evaluate the performance of our proposed algorithm with univariate and multivariate 
real-world data sets collected from sensor nodes deployed in WSNs.  

4.1. Experimental Data 
The first univariate data set is published by SensorScope HES-SO FishNet Deployment 

[20], which consists of temperature readings (FN_T) and relative humidity readings 
(FN_H). The range of the value in FN_T is relatively small compared to FN_H, and both 
of the time series of FN_T and FN_H are smooth. Another univariate data set is 
Microphone data (SC_M), which is collected by deploying sensor nodes at Strata Clara 
convention center1. SC_M contains lots of peaks and noises, and can be considered as 
discontinuous (non-smooth) signals.  

Besides, we use several multivariate data sets. The first multivariate data set is 
collected by the Mobile Health (MHealth) program which comes from the UCI machine 
learning repository [12]. The MHealth data set deals with human behavior analysis based 
on multi-modal body sensing, which comprises body motion and vital sign recordings 

1http://datasensinglab.com/data/ 
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collected by ten volunteers while performing several physical activities. Sensors placed 
on the volunteer’s chest, right wrist and left ankle to measure the motion experienced by 
diverse body parts, namely, acceleration, rate of turn and magnetic field orientation. From 
the MHealth program, we selected two-lead ECG (MH_ECG), three-axis acceleration of 
right wrist (MH_AR), three-axis acceleration of left ankle (MH_AL), and three-axis 
magnet data (MH_MG). The second multivariate data set is published by CRAWDAD2. 
This data set is mainly three-axis acceleration readings (CJ_A), which is collected 
through different drivers’ mobile phones to record the motions of their vehicles. The third 
multivariate data set (CM_A) is collected to monitor cows’ behavior, which aims at 
detecting whether these cows are in the estrus [27]. CM_A is generated from 
three-dimensional accelerator. Table 1 illustrates the detailed information about the data 
sets utilized in our experiments. In WSNs, the statistical characteristics of measured data 
can affect the performance of compression algorithms. Therefore, to validate our 
proposed compression algorithm, we select these data sets generated in different 
scenarios. We can see from Table 1 in which the data sets we employed in our 
experiments are quite different in terms of statistical characteristics.  

 
Table 1. Basic information of the data sets. 

Data  #Samples  Sampling interval  #Dimensions  Time   
FN_T  14721  2 minute  1  2007/08/06 - 2007/09/02   
FN_H  14721  2 minute  1  2007/08/06 - 2007/09/02   
SC_M  2887  4-9 second  1  2013/2/27 - 2013/3/1   
CJ_A  16060  0.0625 second  3  2012-11-03   

CM_A  2073600  0.1 second  3  2011/12/8 - 2011/12/31   
MH_ECG  483840  0.02 second  2  2014/12/07   
MH_AR  483840  0.02 second  3  2014/12/07   
MH_AL  483840  0.02 second  3  2014/12/07   
MH_MG  483840  0.02 second  3  2014/12/07  

 

4.2. Evaluation Metrics 

4.2.1. Compression Ratio (CR) 
The data compression ratio is often defined as the ratio of the compressed size to the 

original size, or the ratio of the saving size relative to the uncompressed size. Here we 
define the compression ratio as follows,  

 
                   𝐶𝐶𝑅𝑅 = 100 × �1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝_𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠

𝑐𝑐𝑜𝑜𝑖𝑖𝑜𝑜_𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠
�                         (7) 

 
where the 𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑐𝑐𝑜𝑜𝑠𝑠𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  represent the size of compressed data and the 
size of original sensor data respectively.  

2http://www.crawdad.org/jiit/accelerometer/20121103/ 
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4.2.2. Approximation Mean Error (AE) 
We compute the approximation error of each compression method with the following 

equation:  
                    𝐴𝐴𝐴𝐴 = 1

𝑁𝑁
‖𝑌𝑌𝑉𝑉 − 𝑋𝑋‖𝐹𝐹2                             (8) 

 
where 𝑌𝑌 is the original multivariate data, and 𝑋𝑋 is the compressed version. For the 

univariate compression algorithms (such as LTC, PLAMlis, and univariate LASSO), the 
transformation matrix 𝑉𝑉 = 𝐼𝐼 is the identify matrix. For our multivariate compression 
algorithm, the optimal 𝑉𝑉 is computed using Equation 4.  

4.2.3. Energy Consumption (EC) 
The total energy consumption of sensor node consists of two parts: energy 

consumption for compression and energy consumption for transmission. For compression, 
we take into account the number of operations processed by CPU, without considering 
the additional cost generated by other peripherals of micro-controller. For the energy 
consumption generated by transmission, we only consider the cost of transmitting and 
receiving data, which is often the main cost of data transmission. Subsequently, we have 
the following metric for energy consumption,  

 
                       𝐴𝐴𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑀𝑀 × 𝐴𝐴𝑐𝑐𝑝𝑝𝑡𝑡 + 𝑁𝑁 × 𝐴𝐴𝑏𝑏𝑖𝑖𝑡𝑡                   (9) 
 
Where 𝐴𝐴𝑏𝑏𝑖𝑖𝑡𝑡 is the energy consumed to transmit a data bit, 𝐴𝐴𝑐𝑐𝑝𝑝𝑡𝑡 is the cost of one 

CPU operation, and M is the number of operations needed for accomplishing the 
compression task.  

In our experiments, we estimate the energy consumption on the sensors equipped with 
Chipcon MSP430 MCU3 and Chipcon CC25004 radio transceiver. The MSP430 is 
powered by a current of 433.86𝜇𝜇𝐴𝐴 at 3.0V, and it has a clock rate of 5.33MHz. Thus, 
the energy consumption of MSP430 is 0.244nJ/clock. For CC2500, the current associated 
with the transmission activity is 21.2mA with a supply voltage of 3.0v at an effective data 
rate of 250kbps. Therefore, while transmitting data, the energy cost by CC2500 is 
254.4nJ/bit.  

4.2.4. Compression Time (C Time) 
For a wireless sensor node, to achieve better compression performance, i.e. higher 

compression ratio, the computation cost to operate such compression must be higher. 
Therefore, we use compression time to quantify the tradeoff between computational task 
and communication task. With the compression time, we can find the better compression 
strategies for saving energy consumption. Here, we define the compression time as the 
mean computation time of compressing one data bit.  

3http://www.ti.com/lit/ds/symlink/msp430fr5739.pdf 
4http://www.ti.com.cn/cn/lit/ds/symlink/cc2500.pdf 
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4.3. Baseline Algorithms 
To show the effectiveness of our algorithm, we compare our algorithm against the 

following state-of-the-art methods:  
• Lightweight Temporal Compression (LTC), is a low-complexity piecewise linear 

approximations lossy compression algorithm. It fits the consecutive measurements as 
a straight line within the desired error margin [16]. The greater compression ratio is 
obtained, while the larger error bound is given.  

• Piecewise Linear Approximation with Minimum number of Line Segments 
(PLAMLiS), takes an n-length sequence of measurements and finds the minimum 
number of line segments required to represent the sequence within an error bound 
[16]. 

LTC has a complexity of 𝑂𝑂(𝑑𝑑), and the optimal solution of PLAMLiS requires the 
time complexity of 𝑂𝑂(𝑑𝑑2 𝑙𝑙𝑐𝑐𝑜𝑜 𝑑𝑑), where n is the number of data items.  

4.4. Experimental Settings 
Before demonstrating the evaluation results, we need to present some experimental 

settings first.  

4.4.1. The degree of regularization  𝝀𝝀 
In Section 3, we present the proposed algorithms, i.e. ULasso and MLasso. Both of 

Ulasso and MLasso are determined by the degree of regularization 𝜆𝜆, thus, we need to 
determine the value (or range) of  𝜆𝜆 for our evaluation.  

 

 
Fig. 1. Compression ratio coincide with the value of 𝝀𝝀. 

 
Unlike the other lossy compression algorithm using the error bound, lasso penalizes 

their successive differences with the parameter 𝜆𝜆, that ULasso and MLaso compression 
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algorithms give the flexibility of compression ratio by specifying the different value of 𝜆𝜆. 
Fig. 1 shows the compression benefit at different value of 𝜆𝜆 for ULasso. The results in 
Fig. 1 reveal that smooth signals like temperature and humidity can get the higher 
compression ratio applying ULasso. The smaller 𝜆𝜆  corresponds to the lower 
compression ratio, in other words, ULasso (with small 𝜆𝜆) emphasizes the minimization 
of difference between the actual reading and the approximation. Moreover, the 
compression ratio climbs up slowly and flatly when increasing 𝜆𝜆. Fig. 2 depicts the 
approximation of the temperature at different value of 𝜆𝜆. It can be seen that, bigger 𝜆𝜆 
leads to greater difference between the approximated value and the original value.  

 

 
Fig. 2. The performance of temperature compressed data at different value of 𝝀𝝀. 

 
Fig. 3 shows the picture of Approximation Mean Error (AE) against 𝜆𝜆. The value of 

AE increases with the grown up of 𝜆𝜆, but the gradients on different data sets vary. 

 
Fig. 3. The relationship between compression ratio and the value of AE. 
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For the smooth data, the AE of humidity grows much more quickly than temperature. 

The reason is that, the variance of humidity time series is most high in the univariate data 
sets (see Table 2). The non-smooth data, like the microphone, shows the medium 
increasing lope as 𝜆𝜆 climbs up, since its variance is not as much high as humidity though 
it is non-smooth data.  
 

Table 2. Statistical characteristics of the experimental data sets. 
Data set  Axis  Std.  CV  Mean  Q1 Q3   

FN_T  2.64 0.17 15.31 13.48 17.16 
FN_H  9.88 0.12 84.20 77.39 91.68 
SC_M  4.21 0.78 5.38 2.00 7.00 

CM_A 
x 2.71 -0.08 -32.31 -34.00 -32.00 
y 8.90 9.01 0.99 -5.00 8.00 
z 5.02 1.42 4.00 1.00 6.00 

CJ_A 
x 1.19 0.23 5.25 4.86 5.74 
y 1.01 0.79 1.28 0.73 1.84 
z 0.78 0.10 7.98 7.62 8.35 

MH_ECG 1 0.50 -63.36 -0.01 -0.19 0.15 
2 0.64 -18.27 -0.04 -0.21 0.16 

MH_AR 
x 4.32 -1.03 -4.18 -6.27 -1.82 
y 6.29 -1.29 -4.87 -9.27 -0.06 
z 3.62 1.66 2.18 0.17 4.39 

MH_AL 
x 4.67 3.80 1.23 0.10 2.64 
y 4.06 -0.42 -9.67 -10.07 -9.03 
z 5.03 -3.05 -1.65 -3.29 0.65 

MH_MG 
x 48.90 109.77 0.45 -11.27 3.64 
y 52.40 -54.71 -0.96 -8.95 5.18 
z 36.95 -35.15 -1.05 -2.07 5.70 

 
So we select the 𝜆𝜆 by not only considering the compression ratio, but also the value of 

AE. The smaller 𝜆𝜆, i.e. the lower compression ratio and lower AE, let the output fit well 
to the original data. The larger AE results in bigger differences between the original 
reading and approximation value, eventually the approximation may totally distort the 
original data. Indeed, the 𝜆𝜆 is a key parameter on trading off the compression output 
performance and the compression ratio.  

4.4.2. The compression batch size 𝝀𝝀 
The constraint of using the lasso for compression is the computational cost, especially 
when the data scale is large. Here we explore the dependence of the compression ratio 
and computation complexity against the scale of compressed data, and discuss how to 
choose batch size N in one-time compression for reducing the computational complexity 
of algorithm, so it can be executed efficiently on a sensor node. Before giving the 
description of results, we define the original data length N for one-time compression 
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procedure as the batch size. From the lasso mathematical models, batch size N is a key 
parameter to determine the computational complexity. When new sampling point is 
coming and added to the lasso model, the iterative procedure should be updated to 
minimize the residual sum of squares to get the optimal solution, therefore the cost of 
computation procedure of Lasso models grows as the number of sampling data grows up. 
Increasing the length of batch size will increase the scale of model operation as well as 
the memory capacity required. All these will lead to more computation time, hence, much 
higher energy consumption. So the underlying idea of reducing the computation 
complexity of lasso model is to select a reasonable batch size of sampling data, and the 
compression procedure execute at the batch size scale. Fig. 4 shows the temperature data 
compression ratio corresponding to the given the batch size N. The result reveals that, 
when increasing N, the compression ratio varies among all these methods. When the 𝜆𝜆 is 
small, the ULasso compression ratio fluctuate greatly as the batch size increases. 
Particularly, at first, the compression ratio changes up and down many times at the 
downward trend as N increases, and finally, compression ratio will keep at the constant 
value. While 𝜆𝜆 is large, the ULasso compression ratio almost keep the stable value 
which unaffected by N values. That is to say, for the small 𝜆𝜆, we should carefully 
determine the batch size to obtain higher compression ratio and reduce computation time. 
The appropriate batch size N is also a key parameter for the compression performance of 
the ULasso and MLasso. 
 

 
Fig. 4. The compression ratio in different length of batch size. 

 

4.5. Evaluation on Proposed Algorithms 
For the lossy compression algorithms, e.g. LTC and PLAMlis, the error bound is the 

key factor impacting compression performance. The error bound is defined as the 
maximum acceptable difference between each individual raw reading by the sensor and 
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the recovered one after receiving the compressed representation [1]. The error bound can 
be conveniently specified as the proportion of sensor manufactured error (SME), 
therefore, we conduct experiments on lossy compression algorithms with specific SME 
(which is subjected to the hardware of sensors) instead of error bound. 
In the following, we report our evaluation results on our method compared to the baseline 
algorithms.  
 

 
Fig. 5. The compression ratio vs. the value of AE in univariate data sets. 

 

4.5.1. Compression Performance 
(1) Univariate data sets. 
As observed in Fig. 5, compared with LTC and PLAMlis, ULasso has the almost same 

compression ratio, but also has the high AE which performed poorly especially on 
smooth sensor data like temperature and humidity. LTC and PLAMlis represent time 
series with the piecewise linear, which constrains the endpoints of each segment to 
coincide with intermediate points. ULasso uses piecewise constant to represent each 
segment. For the continuous univariate time series signal with small changing, the 
ULasso algorithm performed poorly compared to LTC and PLAMlis in terms of 
compression ratio or energy consumption. However for the multivariate data, each 
variation contains respe ctively amplitude fluctuations and transitions. Have the LTC and 
PLAMlis the same advantage in multidimensional data? 
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Fig. 6. The compression ratio and the value of AE in multivariate data sets. 

 
(2) Multivariate data sets.  
To handle the multivariate data sets, LTC and PLAMlis algorithms need to divide the 

multivariate or multi-dimension original data into several single variation or 
one-dimensional arrays first, then compress them separately, and synthesize the results. 
While, MLasso algorithm is proposed to operate the multivariate sensor data as the whole 
to find the closest adjacent points in the multidimensional sequence. Fig. 6 plots the 
approximation mean error and compression ratio of LTC, PLAMlis and MLasso 
algorithms based on six real-world sensor data sets. For LTC and PLAMlis in Fig. 6, the 
approximation mean error values compared with compression ratio increasing sharply 
from left to right. However the approximation mean error kept the smooth and slower 
increasing with the compression ratio using the MLasso. Moreover as shown, MLasso 
provides the lower approximation mean error at the same compression ratio compared 
with LTC and PLAMlis. For example, MLass with CR = 60.0% resulted in approximately 
mean error is 0.62, while LTC with CR = 61.6% and PLAMlis with CR = 59.8% resulted 
in approximation mean error respectively is 1.31 and 1.25 on the MH AL data set. The 
approximation mean error results present that MLasso compression technique performs 
better than LTC and PLAMlis in multivariate data set. From the results, Mlasso may not 
get the highest CR, but at the same CRMLasso has the lowest AE. In other words, the 
higher CR, the difference of AE between these algorithms is much larger. The reason is 
that these multivariate data sets, such as ECG signal which contains two variations of 
electrical activity of the heart, and acceleration which consists of three-axis movement 
data, are typically smooth data with higher temporal correlations. For these smooth data, 
LTC and PLAMlis can get higher compression ratio from each single variation, but each 
variation has different amplitude fluctuations that the synthesized results will bring more 
considerable error that produce larger approximation mean error. MLasso compress 
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multivariate data as the whole proves to be the best solution for different coordinate 
systems, which get the best compression performance, but it need more computational 
time. Experimental results give us conclusion that MLasso algorithm is particularly 
effective on the multivariate smooth data set, and obtain better compression performance 
than LTC and PLAMlis. And all of LTC, PLAMlis and MLasso perform poorly when 
applied to non-smooth data set. About the energy consumption analysis we will discuss in 
the next subsection. 

 
Fig. 7. The value of AE and the energy consumption in multivariate data sets. 

 

4.5.2. Energy consumption 
One purpose of performing compression on sensor node is energy saving, while 

running the compression algorithm could consume additional computation energy. In our 
experiments we assess the computation time and total energy consumption of each 
compression algorithms on various data sets. We only consider the energy consumption 
on transmission and computation which are the main cost of energy consumption on 
sensors. The computation consumption is estimated by computation time calculated by 
the actual system running time. And the transmission consumption uses theoretical 
calculation results. Lasso uses linear regression techniques to calculate a constant line 
segment fitting the original data with the minimum mean squared error. We record the 
computation time that is running on the selected batch size to reduce the computation 
complexity.  

Fig. 7 gives the energy consumption and AE comparison results handled by three 
compression algorithms on multivariate data sets. For the LTC and PLAMlis, the 
compression technique is the same as the univariate scenario just one by one compress 
every variation. So the time computation for every bit is almost the same as univariate. 
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However, to obtain the optimal value, MLasso has to do much time multi-dimension 
iteration operation, which will result in higher computation complexity. From these six 
multivariate data sets, MLasso spends several ten times computation time compared to 
LTC and PLAMlis, but Fig. 7 shows at the same AE, MLasso uses the least energy 
consumption. There is for the energy consumption on transmitting data by wireless sensor 
node is much higher than computation (transmitting one bit data will consume at least 
1042 times more power than compressing one bit data). Though MLasso cost more 
computation time, the higher compression ratio can tradeoff the high expenditure 
computational energy consumption to obtain the most saving of total energy consumption 
than other compression algorithms. For example, to transmit an original data bit will cost 
254.5nJ, after performing MLasso compression algorithm, the CJ A decline to 26.26 
nJ/bit, thus the total energy saving is 89.7%. All the five smooth multivariate data sets 
save total energy range from 96.39% to 51.27%. Even the non-smooth MH MG data can 
save 11.6% total energy. In summary, MLasso algorithm achieves good balance among 
accuracy, compression ratio, and energy consumption competitive against LTC and 
PLAMlis. 

4.6. Case Study: Accuracy of Target Detection (AD) 
 

Table 3. The accuracy of detection cow’s estrus  
Method  Accuracy (%)  CR (%)  Save energy (%)   

No compression  93.75  0  0   
LTC  87.50  76.06  76.00   

PLAMlis  90.63  64.03  63.83   
MLasso  89.06  91.50  90.87   

 
The purpose of real-world application with employing WSNs can be categorized into 

two groups: tracking and monitoring [22]. For example, the ZebraNet system is tracking, 
which is to record the position data in order to track long term animal migrations [28]. 
For the monitoring instance, collecting a cow’s moving accelerate data is to monitor the 
behavior of the cow, and to further determine its health or estrus states.  

There are also some other applications performing target detection. The sensor data 
collected from such scenario are based on high frequency sampling and multi-dimension 
spatio-temporal correlation, which is consequently hard to evaluate the quality of 
reconstructed compressed data. Approximation mean error can evaluate the distance 
between the original data and the recovered, However, in some specified applications, 
they mostly concern the magnitude and trend of continuous sensor data. Since the general 
shape and the trend of the physical phenomena evolving curve is the key factor. In this 
scenario, approximation mean error is not only means to evaluate compression 
performance. One of our test data set collects cows moving accelerator to classify various 
behavior, then detect cow estrus state. For this specified application scenario (target 
detection), we use the accuracy of target detection (after applying the compressed data) to 
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determine the performance of compression algorithm. Here, we compare the prediction 
accuracy using the compressed data, and the cow behavior detecting algorithm is 
proposed by this work [27]. Table 3 shows the accuracy of predicting the estrus time of 
cow by recovered compressed data and original data.  

The results shows that PLAMlis obtains the highest accuracy 90.63% in all 
compression algorithms closing the accuracy of original data 93.75%, but with lower 
compression ratio and larger total energy consumption. The MLasso gets the 89.06% 
accuracy, almost the same with PLAMlis. The compression ratio of MLasso is 91.50%, 
and the total energy consumption of one bit is 23.23 nJ, which can save 90.87% total 
energy. Actually, data are collected by accelerator sensors which, due to noise, produce 
different readings even when they are sampling an unchanging behavior. So, even if the 
sensor readings fluctuate frequently, the cow estrus detecting algorithm just needs catch 
the major trends and important changes in the sensor data. 

5. Conclusion 
In this paper, we proposed two compression algorithms, ULasso for univariate data and 
MLasso for multivariate data, which are purposely-designed for the wireless sensor nodes. 
Our method differs from existing compression techniques applied in WSN. We explored 
multivariate sensor data compression in different coordinate space by taking advantage of 
the structure and characteristic of sensor data to decrease the total energy consumption. 
Both ULasso and MLasso compression schemes exploit the high temporal correlation that 
typically exists in time series generated by sensors. To evaluate our method, we first 
investigated the performance of ULasso algorithm on three different real-world univariate 
sensor data, which consist of smooth and non-smooth signals. The experimental results 
show that ULasso obtains higher compression ratio and comparable energy consumption 
against baselines, but higher approximation error. Then, we assessed the MLasso 
algorithm by compressing six various multivariate data sets which are selected to 
represent smooth and non-smooth signals from various application domains. 
Experimental results demonstrate that MLasso achieves the higher compression ratio, 
lower approximation error and much more saving energy compared to the baselines. 
MLasso particularly suits to the high sampling rate, dense and smooth multivariate data. 
Although the computation complexity of MLasso is high, it can trade off compression 
efficiency and complexity so as to achieve considerable compression ratio and minimize 
the total power consumption. 
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