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Abstract 

 
Multi-index hashing (MIH) is the state-of-the-art method for indexing binary codes, as it di-
vides long codes into substrings and builds multiple hash tables. However, MIH is based on 
the dataset codes uniform distribution assumption, and will lose efficiency in dealing with 
non-uniformly distributed codes. Besides, there are lots of results sharing the same Hamming 
distance to a query, which makes the distance measure ambiguous. In this paper, we propose 
a data-oriented multi-index hashing method (DOMIH). We first compute the covariance ma-
trix of bits and learn adaptive projection vector for each binary substring. Instead of using 
substrings as direct indices into hash tables, we project them with corresponding projection 
vectors to generate new indices. With adaptive projection, the indices in each hash table are 
near uniformly distributed. Then with covariance matrix, we propose a ranking method for 
the binary codes. By assigning different bit-level weights to different bits, the returned bina-
ry codes are ranked at a finer-grained binary code level. Experiments conducted on reference 
large scale datasets show that compared to MIH the time performance of DOMIH can be 
improved by 36.9%–87.4%, and the search accuracy can be improved by 22.2%. To pinpoint 
the potential of DOMIH, we further use near-duplicate image retrieval as examples to show 
the applications and the good performance of our method. 
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1. Introduction 

Nearest neighbor (NN) search in large-scale dataset is a fundamental requirement in many 
applications, including image retrieval [1], object recognition [2] and computer vision [3]. 
Recently, many works represent visual content and feature descriptors in terms of compact 
binary codes [4-6], as they are storage efficient and comparisons require only a few machine 
instructions. With binary codes, a query in a dataset of millions of items can be accom-
plished in less than a second [7]. 

Although the distances between binary codes in the Hamming space can be calculated ef-
ficiently, linear search will lose its performance in front of large-scale dataset. This is be-
cause that the computing power of the processor is limited, while the size of dataset can be 
very huge. To improve the performance of NN search with binary codes, binary hashing has 
been proposed [4, 8] and is becoming increasingly popular. The binary hashing uses binary 
codes as direct indices (memory addresses) into a hash table. Then, the nearest neighbors can 
be found by exploring a set of hash table buckets within some Hamming ball around the que-
ry. With progressively increasing the search radius, exact nearest neighbors of the query can 
be found [8]. However binary hashing has a serious problem that is the number of hash 
buckets grows near-exponentially with the search radius. So it is efficient only when the 
length of codes is less than 32 bits [7]. When the codes are long and even with a small search 
radius, the number of buckets to examine will larger than the size of database. So it result in 
slower than linear scan.  

To improve the ability of binary hashing in dealing with long codes, Norouzi et al. [7] 
propose multi-index hashing (MIH) method. MIH divides the long codes into several disjoint 
but consecutive binary substrings and build multiple hash tables, one table for each substring. 
Given a query code, it is also divided into query substrings, and candidate neighbors are 
found by using query substrings as direct indices into their corresponding hash tables. Final-
ly, candidates are checked for validity using the entire binary code, to remove any non near-
est neighbors. For each table (substrings), the dimension of Hamming space and radius of the 
searching Hamming ball are only a fraction of that for the long code. Thus, MIH enormously 
reduces the number of buckets to be checked and improves the search efficiency.  

While favorable for simplicity and scalability, MIH has two shortcomings. First, it is 
based on the assumption that the codes in the dataset are distributed uniformly [7]. Actually, 
the codes are not uniformly distributed, especially for the multimedia data [1]. So, the time 
performance of MIH will be adversely affected when dealing with non-uniformly distributed 
datasets [7,11]. Second, as Hamming distance is discrete and bounded by the code length, in 
practice, there are a lot of data items sharing the same Hamming distance to the query and 
the ranking of these data items is ambiguous [13]. So it poses a critical issue for similarity 
search, where ranking is important. But, most existing binary hashing methods lack in 
providing a good ranking of results [14]. 
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Fig. 1. The framework of our method. We divide the long codes into several disjoint but consecutive 
substrings. But we project the substrings with learned projection vectors to generate indices in hash 
tables. The length of the codes is l, the number of substrings is m, and each substring has s bits. The 
vector v is the learned projection vector. For candidate results, we also propose a ranking method. By 
assigning different bit-level weights to different bits, the results are ranked to improve the search ac-
curacy.  

 

In this paper, we propose a data-oriented multi-index hashing (DOMIH) method to solve 
the aforementioned two problems. The framework of our method is illustrated in Fig. 1. We 
also divide the long codes into several disjoint but consecutive substrings in building multi-
ple hash tables. But our method has three major differences between MIH. Firstly, we build a 
training set to compute the correlations (covariance matrix) between bits of the codes and 
learn an adaptive projection vector (vector v) for each substring. Then, instead of using bina-
ry substrings as direct indices into a hash table, we project the substrings with corresponding 
projection vectors to generate new indices. With adaptive projection, the data items in each 
hash table of DOMIH are more near uniformly distributed than that in MIH. So it handles the 
“non-uniform distribution” problem to some extent. Finally, we propose a ranking method 
for the binary codes with the covariance matrix. By assigning different bit-level weights to 
different bits, the returned binary codes are ranked at a finer-grained binary code level. 

The training process is accomplished offline, and the calculation of projection for binary 
codes can be ignored, so DOMIH brings negligible computational overhead compared to 
MIH. As DOMIH generates more uniform codes distribution in each hash table than MIH 
and refines the ranking of results, it can obviously improve the search efficiency and accura-
cy. Experiments conducted on reference datasets show that compared to MIH the time per-
formance of DOMIH can be improved by 36.9%–87.4%, and the search accuracy can be im-
proved by 22.2%. 

The rest of this paper is organized as follows. Section 2 gives a review of previous works. 
Section 3 presents the proposed DOMIH method. Section 4 shows the experimental compar-
isons. In section 5, we give the conclusion and future work.  
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2. Literature Review 
Recently, many works represent visual content and feature descriptors in terms of compact 
binary codes [4-6], as they are storage efficient and comparisons require only a few machine 
instructions. Accordingly, many index structures designed for binary codes are proposed, 
and they can be classified into approximate nearest neighbor (ANN) search and exact search. 

For ANN search with binary codes, many algorithms [12, 15, 16, 17]designed for float-
ing-point vectors are not suitable [18]. Rublee et al. [6] choose locality sensitive hashing 
(LSH) as nearest neighbor search for binary codes. In LSH, points are stored in several hash 
tables and hashed in different buckets. Given a query descriptor, its matching buckets are 
retrieved and its elements compared using a brute force matching. For binary codes, the hash 
function is simply a subset of the signature bits: the buckets in the hash tables contain de-
scriptors with a common sub-signature. To assure high search accuracy, the method in [6] 
has to build many hash tables and it costs too much memory. So it has limited scalability. 
Zitnick uses min-hash  [21] as an efficient mean for finding similar neighbors  [22]. Min-hash 
has the property that the probability of two hashes being identical is equal to the Jaccard sim-
ilarity, and binary codes are good candidate for the min-hash algorithm. However, Min-hash 
has limited scalability as LSH. Esmaeili et al. propose Error Weighted Hashing (EWH) algo-
rithm  [23] for the Hamming space. EWH significantly reduces the number of candidate 
nearest neighbors by weighing them based on the difference between their hash vectors. 
Zhang et al. present an efficient query processing method for Hamming distance queries, 
which is called HmSearch  [24]. HmSearch is based on improved enumeration-based signa-
tures, enhanced filtering, and the hierarchical binary filtering-and-verification. Muja et al. 
[18] introduce a new algorithm for approximate matching of binary codes, based on priority 
search of multiple hierarchical clustering trees. However, as they randomly select cluster 
centers and use the entire codes for index building and searching, the efficiency is limited. 

Linear search [1] is an intuitive and typical exact search method. Given a query, the 
brute-force matching is performed to find the nearest neighbors. In the Hamming space, a 
query in a dataset of millions of items can be accomplished in less than a second [7]. How-
ever, using linear search for matching becomes a bottleneck  for large datasets. To improve 
the efficiency of nearest neighbor search with binary codes, binary hashing has been pro-
posed [8]. It uses binary codes as direct indices (addresses) into a hash table. Then, the near-
est neighbors can be found by exploring a set of buckets within the Hamming ball around the 
query. With gradually increasing the search radius, exact nearest neighbors can be found [8]. 
But it has a fatal problem that the number of buckets grows near-exponentially with the 
search radius. So it is efficient only when the length of codes is less than 32 bits [7]. When 
the codes are long and even with a small search radius, the number of buckets to explore will 
larger than the size of database. So it result in slower than linear search. To improve the abil-
ity of binary hashing in dealing with long codes, Norouzi et al. [7] propose MIH method, 
which divides the long codes into several disjoint but consecutive binary substrings and build 
multiple hash tables. Given a query, the candidate neighbors are found by searching query 
substrings in corresponding hash tables. MIH is based on the assumption that the codes in 
the dataset are distributed uniformly [7]. So, the time performance of MIH will be adversely 
affected when dealing with non-uniformly distributed datasets [11]. 

In most existing binary indexing methods, including the works discussed above, the re-
turned results are simply ranked based on the Hamming distance to the query. As Hamming 
distance metric gives each bit the same weight, it unable to distinguish between the relative 
importance of different bits and causes ambiguity for ranking [13]. One way to avoid this 
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ambiguity is assigning different bit-level weights to different bits. The weighted Hamming 
distance has been used for image retrieval, such as AnnoSearch [14] and Hamming distance 
weighting [19]. In AnnoSearch, each bit of the binary code is assigned with a bit-level 
weight; while in Hamming distance weighting, the aim is to weight the overall Hamming 
distance of local features for feature matching. In these works [14,19], only a single set of 
weights is used to measure either the importance of each bit in Hamming space, or to rescale 
the Hamming distance for better image matching. In [20], the authors propose a query-
sensitive ranking algorithm QsRank. For a query, QsRank assigns two weights to each bit 
and defines a score function to measure the confidence of the neighbors of a query mapped 
to a binary code. The returned codes are ranked based on their scores. Zhang et al. [13] pro-
pose a bit-level weighting method WhRank, which is not only data-dependent, but also que-
ry-dependent. Experimental comparisons demonstrate the performance of WhRank, but the 
query-dependent computation affects the query efficiency and the data-dependent procedure 
is based on the hash functions, which is not applicable for pure binary codes. 

3. DATA-ORIENTED MULTI-INDEX HASHING 
In this section, we first briefly explain the MIH [7] method. Then, the proposed DOMIH will 
be elaborated in detail. We also put forward an entropy based measurement to evaluate the 
distribution of data items in each hash table. Finally, the ranking method for binary codes is 
presented. 

3.1 Multi-Index Hashing 
Although the matching between binary codes in the Hamming space can be calculated with 
only a few XOR operations, which can be efficiently executed by the processor, linear search 
cannot handle large-scale dataset. Thus, many literatures [4, 7, 8] propose binary hashing 
method, which incorporates binary codes and hash tables[9].  

Binary hashing converts the NN search problem in Hamming space to the R-near neigh-
bor problem: 

                  ,  1, 2,..., ,i iH
q p r i N p D− ≤ = ∈  ,               (1) 

where q is the query item, D is the dataset, N is the size of D and 
H

• denotes the Ham-
ming distance. With progressively increasing r, it can find the R-near neighbor of q. To ac-
celerate the search speed, binary hashing builds a hash table and uses the binary codes as the 
direct indices (memory addresses) of the buckets. Then, the R-near neighbor problem can be 
solved by exploring a Hamming ball centered at q with radius r. Thus the number of buckets 
to be checked is: 

                                 
0

r
i
l

i
num C

=

= ∑ ,                                   (2) 

where l is the dimension of the binary codes. When the codes are long and even with a 
moderate value of r, the number of buckets to check will increase exponentially [7]. Some-
times this number will larger than the size of database. For example when l=256, r=5, the 
number of checked buckets is 1010num ≈ . In practice, the length of binary codes is often 
longer than or equal to 256 (such as ORB [6]), and the search radius is usually larger than 10 
[7], in order to achieve satisfactory retrieval performance. In this case, binary hashing is 
slower than linear scan. 
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To handle the above problem, MIH method [7] is proposed. The idea of MIH is very 
simple and clear. It divides the long code of l bits into m disjoint but consecutive binary sub-
strings, and the length of substrings is equal to l m   or l m   . Then, MIH builds m hash 
tables, one table for each substring. In query, the query code is also divided into substrings, 
and candidate neighbors are found by using query substrings as indices in corresponding 
hash tables. Finally, candidates are checked for validity using the entire binary code. The 
theoretical basis of MIH is: when two binary codes q and p differ by r bits or less, then in at 
least one of their m substrings they must differ by at most r m   bits: 

                1   . .  k k

H
k m s t q p r m∃ ≤ ≤ − ≤    ,                 (3) 

where kq is the k-th substring of q. In this way, MIH can significantly reduce the number of 
checked buckets compared to binary hashing. For example, if l=256, r=5 and m=2, then the 
total number of buckets to be checked is 2

1280
* i

i
m C

=∑ =16,512, which is much less than 1010 . 
So MIH has obvious advantage in indexing long codes. 

However, MIH is based on the assumption that the codes in the dataset are uniformly dis-
tributed [7]. Actually, the codes are not uniformly distributed, especially for the multimedia 
data [1, 11]. Besides, there are a lot of data items sharing the same Hamming distance to a 
query and the ranking of these data items is ambiguous. So MIH has these shortcomings:   
 For the candidate buckets in the multi-hash tables, if they have too many items, then 

there are too many candidate codes need checking for validity. So it costs much time for 
candidate codes checking.  

 For the candidate buckets in the multi-hash tables, if they have too few items, then in 
search process the value of r needs set to be large enough to ensure that enough exact 
near neighbors are found. So it costs much time for index lookup. 

 For the applications, such as image retrieval and computer vision, where ranking of data 
items is important, MIH cannot distinguish the binary codes sharing the same Hamming 
distance to the query. 

For these reasons, the efficiency of MIH depends on the distribution of database codes. 
To reach the optimal time performance, we should make the database items are evenly as-
signed to hash buckets. Besides, we also need to measure the distinctiveness of different bits 
for result ranking. 

3.2 Data-Oriented Multi-Index Hashing 
In MIH, the binary substrings are used as direct indices into multi-hash tables. As the 
database codes are not uniformly distributed, the substrings are also not uniformly 
distributed. Thus the data items in multi-hash tables are distributed unevenly. To deal with 
this problem, we propose DOMIH method, which is built on MIH but consists of two 
additional steps, as illustrated in Fig. 1. Firstly, a training set is built to compute the 
correlations between bits of the codes and learn an adaptive projection vector for each 
substring. Then, instead of using binary substrings as direct indices, we project the substrings 
with corresponding projection vectors to generate indices. With adaptive projection, the 
indices in each hash table of DOMIH are more approximately uniformly distributed than that 
in MIH. 

The non-uniform distribution of database codes is caused by the correlations between 
code bits [7, 11]. Principal component analysis (PCA) [10] is a statistical method that uses 
orthogonal transformation to convert a set of observations of possibly correlated variables 

http://en.wikipedia.org/wiki/Orthogonal_matrix
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into a set of values of linearly uncorrelated variables called principal components. The first 
principal component has the largest possible variance, which accounts for as much of the 
variability in the data as possible. Therefore, we use the first principal component of PCA for 
code bits decorrelation. The steps are as follows: 
1. Build a training set 1[ , , , ]i nT x x x=  for PCA learning, and ix is a l-dimensional binary col-

umn vector, which denotes a binary code. The training set has no elements in common 
with the base set. 

2. Compute mean value of T and the covariance matrix S : 

             
1

1 n

i
i

x
n

µ
=

= ∑ ,
, 1

( )( )
n

T
i j

i j
S x xµ µ

=

= − −∑ .              (4) 

3. For each substring, we first get its covariance matrix 'S , which is the submatrix of S .Then 
we execute the eigenvalue decomposition of matrix 'S and take the eigenvectorV , which is 
corresponding to the largest eigenvalue of 'S , as the adaptive projection vector for this 
substring. 

4. In index building and searching, instead of using binary substrings as direct indices, we 
project the substrings with corresponding projection vectors to generate new indices. Sup-
pose the substring of the code is 1[ , ,..., ]i dp p p p= , the indice is calculated as: 

                         
1

* *2
d

d i
i i

i
indice p v −

=

= ∑  ,                       (5) 

where v is the projection vector. 
As projection vectors contain data distribution information and are data-oriented, the 

multi-hash tables are also data-oriented. By using PCA to align the indices, we can assume 
an approximate uniform distribution of database codes. 

3.3 Distribution Evaluation  
To evaluate the distribution of data items in each hash table, we utilize an entropy based 
measurement. For a hash table h, suppose that the size of database is N, there are num_b 
buckets in this table and the number of codes in bucket i is ( )n i . The probability of codes 
assigned to bucket i is estimated as ( ) ( )p i n i N= . Then the entropy of hash table h is defined 
as: 

                       
_

1
( ) ( ( )*log( ( )))

num b

i
E h p i p i

=

= − ∑                   (6) 

Intuitively, higher ( )E h indicates better distribution of data items in hash table. With this 
measurement, we can quantize and compare the distribution of hash tables. 

3.4 Bit-level Weighted Ranking 
In this sub-section, we present the bit-level weighted ranking algorithm. In most binary in-
dexing algorithms, the distance between two data items is simply measured by the Hamming 
distance between their binary codes. This distance metric is somewhat ambiguous, since for 
a l-bits binary code p, there are d

lC different binary codes sharing the same distance d to p. 
For the applications, such as image retrieval and computer vision, where ranking of data 
items is important, it should rank the matching features sharing the same distance. But in 
most binary indexing algorithms, each bit takes the same weight and makes the same contri-
bution to distance calculation. 

http://en.wikipedia.org/wiki/Correlation_and_dependence
http://en.wikipedia.org/wiki/Variance
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With the covariance matrix S , we propose a simple but effective bit-level weighted rank-
ing algorithm. Suppose the elements in the main diagonal of S are 1 2( , ,..., )lλ λ λ , and l is the 
length of the binary code, then the weight for the i-th bit is defined as: 

                                 

1

i
i l

j
j

w
λ

λ
=

=

∑
                                          (7) 

We use the discriminating power of a bit to measure its bit-level weight. For example, for 
a query q and two data items 1p , 2p sharing the same Hamming distance d (=1) to q, where 1p
and 2p are different with q on bits 1k and 2k  respectively. If bit 1k is more discriminative than

2k , then 2p is considered to be more similar with q than 1p , as the bit-flipping on bit 1k  gives 
a higher confidence that 1p is not a neighbor of q than that on 2k . Thus, 

1kw should be larger 
than

2kw , which means the more discriminative a bit k is, the larger the associated weight kw

is. Essentially, the larger the value of iλ , the more discriminative of the i-th bit [10]. So we 
just use this property to distinguish different bits. This bit-level weighted ranking algorithm 
is intuitive, but it is effective, as illustrated by the experimental comparison. 

4. EXPERIMENTS 
In this section, experiments are conducted to evaluate the proposed DOMIH method. First, 
we investigate the influence of the size of training set, and compare the overall search per-
formance with the state-of-the-art methods on famous benchmark datasets. Then, the bit-
level weighted ranking algorithm is evaluated. Finally we use near-duplicate image retrieval 
as examples to show the applications of DOMIH and demonstrate the good performance of 
our method. 

4.1 Dataset and Evaluation Protocol  
The experiments are conducted on the famous ANN_SIFT1B dataset and the item is 128-D 
SIFT descriptor [12]. It contains a training set of 810 descriptors, a query set of 410
descriptors and a base set of 910 descriptors. We use the source code, minimal loss hashing, 
provided by Norouzi et al. [7] to create datasets of binary codes and each code has 128 bits. 
In experiments, the training set is used to learn the adaptive projection vectors. After 
learning is finished, the training data is removed and the base set and query set is used for 
experimental comparison. So the training set has no elements in common with the base set. 

For the comprehensive evaluation of our method, we compare the performances of the 
following approaches: 1) MIH [7], the standard multi-index hashing method; 2) DDMIH 
[11], data driven multi-index hashing method by separating the correlated bits into different 
inconsecutive segments; 3) DOMIH, our method proposed in this paper. The experimental 
environment is Intel Xeon E5-2620*2(2.00 GHz, 7.2GT/s, 15M cache, 6cores) and with 64 
GB memory. All the three methods have the same experimental setup, such as the hardware 
environment and the number of substrings.  
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Table 1. Recall @ 1000 near neighbors of DOMIH with different sizes of training set. The evalua-
tion is conducted on the database of 910 codes. 

size of 
training set 

310  410  510  610  710  810  

@1000recall NN  0.447 0.524 0.572 0.623 0.626 0.627 

4.2 Influence of the Size of Training Set 
When we build training set to learn the adaptive projection vectors, intuitively the larger size 
of training set the more accurate projection vectors can be obtained. However, lager training 
set will result in high computational overhead, even the learning process is executed offline. 
Table 1 shows the recall @ 1000 near neighbors of DOMIH with different sizes of training 
set. It is defined as follows: 

 
_1000 _1000@1000

_1000
DOMIH NN Linear NNrecall NN

Linear NN
∩

=  , (8) 

where _1000DOMIH NN is the raw 1000 near neighbors returned by DOMIH, without sorting 
with the full Hamming distance, and _1000Linear NN is the 1000 near neighbors returned by 
linear scan. For each query, we calculate its @1000recall NN , and then take the mean value 
over all queries. 

We enumerate the size of training set from 310  to 810 , and find that the performance is 
improved with larger size. However, the improvement is not significant when the size is too 
large. When the size of training set is 610 , the performance becomes stable. As computing 
covariance matrix costs much time, we select the 610 training set for efficiency concern. 

 
Table 2. Distribution of data items in the hash tables of MIH, DDMIH and DOMIH, which is 

quantized by entropy based measurement. The evaluation is conducted on the dataset of 910 items. 
 MIH DDMIH DOMIH 

Table  1 4.372 4.851 6.243 
Table  2 4.201 4.526 6.188 
Table  3 4.178 4.535 6.215 
Table  4 4.353 4.627 6.287 

4.3 Comparison of Search Efficiency 
To evaluate the efficiency of DOMIH, we first compare it to MIH and DDMIH in distribu-
tion of data items in hash tables, which is quantized by equation (6). Then, the search radii 
that are required to find 1000-NN on 1B 128-bit binary codes for these three methods are 
compared. Finally, the time costs with respect to database size N and the number of near 
neighbors R are illustrated. As there are 910 codes in the database, the length of the substring 
is 910

2log 32≈ [7]. So there are 128 32=4 hash tables. Table 2 shows the ( )E h value for each hash 
table of these methods. From Table 2, we can see that all the hash tables in DOMIH have 
larger entropy value than the other two methods. So the indices in each hash table of 
DOMIH are more approximatively uniformly distributed than that in MIH and DDMIH. 
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Fig. 2. Average search radii required to find 1000-NN on 1B 128-bit binary codes for DOMIH, MIH 

and DDMIH. 

To use the multi-index hashing in practice, one has to specify a Hamming search radius r. 
For many applications, the value of r is chosen such that queries will retrieve k near neigh-
bors on average. Nevertheless, a fixed radius for all queries would produce too many neigh-
bors for some queries, and too few for others. It is therefore more natural for many tasks to 
fix the number of required neighbors, i.e., k, and let the search radius depend on the query. 
Given a query, one can progressively increase the Hamming search radius per substring, un-
til a specified number of neighbors are found. Intuitively, smaller search radius means faster 
search speed, as it has less index query operation. 

Fig. 2 depicts the average search radii required to find 1000-NN on 1B 128-bit binary 
codes for DOMIH, MIH and DDMIH. From figure 2, we can see that our DOMIH has 
smaller search radii than MIH and DDMIH in all cases. This indicates the better search effi-
ciency of DOMIH. 

Fig. 3 shows the time costs of these methods with respect to different data size and dif-
ferent number of returned near neighbors. From Fig. 3, we get three major observations: 
 It is clear that the proposed DOMIH achieves the best efficiency. Compared to MIH, the 

time performance of DOMIH can be improved by 36.9%–87.4% on the 1B dataset.  
 Besides, DOMIH is always faster than DDMIH. This is because that our method can 

remove the correlations between bits much better. 
  From Fig. 3, we can also observe that, with the increasing of dataset ( 410 - 910 ) the time 

cost of DOMIH increases slower than the other two methods, especially for the large-
scale dataset. This reflects the good time performance of our method. 
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Fig. 3. Run-times per query for MIH, DDMIH and DOMIH with 100 (a) and 1000 (b)  
nearest neighbors on 1B 128-bit binary codes. 

4.4 Evaluation of Bit-level Weighted Ranking 
In this sub-section, we evaluate the proposed bit-level weighted ranking algorithm. As MIH 
solves exact nearest neighbor search in Hamming distance, we use Euclidean NN recall rate 
for k-NN search on binary mappings of 1B SIFT descriptors [7] as performance metric, 
which is defined as； 

             ..  @
.

Hamm NNEucli NN recall k
Eucli NN

= ,                        (9) 

where .Eucli NN is the result of the nearest neighbor search of SIFT descriptors in Euclidean 
distance, and .Hamm NN is the result of the nearest neighbor search of corresponding binary 
codes in Hamming distance. Note that the length of the binary code is 128-bit. Fig.  4 shows 
the .  @Eucli NN recall k of our DOMIH and MIH. We can clearly see that with bit-level 
weighted ranking, DOMIH always has higher recall rate than MIH. So our method is useful 
for the applications, such as image retrieval and computer vision, where ranking of matching 
features is important. 

Averagely, compared to MIH the .  @Eucli NN recall k of DOMIH can be improved by 
22.2% on the 1B dataset. 
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Fig. 4. Recall rates for1B dataset obtained by k-NN on 128-bit binary codes. 
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4.5 Near-duplicate Image Retrieval 
In this experiment we show an application of DOMIH in near-duplicate image retrieval, 
which plays an important role in many applications. The experiment is conducted on 
Ukbench dataset  [25], Holiday dataset  [19] and Oxford dataset  [26]. There are 10200, 1491 
and 5062 images in these sets, respectively. The images in these sets are modified through a 
serial of photometric and geometric transformations, such as blurring, cropping, adding noise, 
the changes of lighting, viewpoint, color and camera lens. They are the benchmark datasets 
for near-duplicate image retrieval evaluation. We also download 50 thousands images from 
Flickr1as distracting images. 

The near-duplicate image retrieval system is built upon the scheme proposed by  [6]. The 
local features are obtained by ORB  [6], and the feature sets of the database images are in-
dexed by MIH  [7], DDMIH  [11] and  DOMIH, respectively. Note that, we just compare the 
performance of different index structures. So the post-processing methods, such as geometric 
consistency constraint and spatial coherent verification  [27,  28], are not applied. The perfor-
mance metric applied in our experiment is mean average precision (mAP)  [19]. We compare 
the following three approaches: 1) ImR-MIH, retrieval system with the binary index struc-
ture proposed in  [7]; 2) ImR-DDMIH  [11], retrieval system with the binary index structure 
proposed in  [11]; and 3) ImR-DOMIH, retrieval system with the binary index structure pro-
posed in this paper.  

 

Table 3. Retrieval accuracy for three index structures on Ukbench  [25], Oxford  [26], and Holi-
day  [19] datasets. The performance metric applied is mean average precision. 

 Ukbench Oxford Holiday 
ImR-MIH 0.702 0.483 0.677 

ImR-
DDMIH 0.748 0.534 0.743 

ImR-
DOMIH 0.793 0.587 0.784 

 

Table 3 compares the retrieval accuracy of the above three systems. We can see that 
DOMIH significantly improves the search precision. Compared to ImR-DDMIH, our method 
achieves 6%, 10% and 5.5% improvements in mAP on the three sets respectively. Compared 
to the ImR-MIH, the search accuracy gain obtained by our method is obvious.  

 
Table 4. Search efficiency for three index structures on Ukbench  [25], Oxford  [26], and 

day  [19] datasets. The experimental environment is Intel Xeon E5-2620*2(2.00 GHz, 7.2GT/s, 15M 
cache, 6cores) and with 64 GB memory. 

 Ukbench Oxford Holiday 
ImR-MIH 21.3s 19.1s 16.4s 

ImR-
DDMIH 18.7s 16.5s 15.2s 

ImR-
DOMIH 15.2s 13.4s 12.8s 

1 http://www.flickr.com/ 
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Table 4 compares the retrieval efficiency of the above three systems. For efficiency concern, 
we resize the images and each image has about 500 features. For each query feature, we get 
its 100 nearest neighbors. We can see that DOMIH significantly improves the search speed. 
Compared to ImR-MIH, our method achieves 28.6%, 29.8% and 22% improvements in 
search efficiency on the three sets respectively.  

5. CONCLUSION 
We have introduced a data-oriented multi-index hashing method to solve the problems of the 
state-of-the-art methods: efficiency losing in handling non-uniformly distributed codes and 
without ranking for accurate search. By taking advantage of the statistics of the dataset, we 
first learn adaptive projection vector for each binary substring and project substrings with 
corresponding projection vectors to generate new indices. With adaptive projection, the indi-
ces in each hash table are near uniformly distributed. Then, by assigning different bit-level 
weights to different bits, the returned binary codes are ranked at a finer-grained binary code 
level. Experiments conducted on famous datasets show the obvious performance improve-
ment of our method.  
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