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Abstract 
 

Data redundancy has high impact on Wireless Sensor Network’s (WSN) performance and 
reliability. Spatial and temporal similarity is an inherent property of sensory data. By reducing 
this spatio-temporal data redundancy, substantial amount of nodal energy and bandwidth can 
be conserved. Most of the data gathering approaches use either temporal correlation or spatial 
correlation to minimize data redundancy. In Collective Prediction exploiting Spatio Temporal 
correlation (CoPeST), we exploit both the spatial and temporal correlation between sensory 
data. In the proposed work, the spatial redundancy of sensor data is reduced by similarity 
based sub clustering, where closely correlated sensor nodes are represented by a single 
representative node. The temporal redundancy is reduced by model based prediction approach, 
where only a subset of sensor data is transmitted and the rest is predicted. The proposed work 
reduces substantial amount of energy expensive communication, while maintaining the data 
within user define error threshold. Being a distributed approach, the proposed work is highly 
scalable. The work achieves up to 65% data reduction in a periodical data gathering system 
with an error tolerance of 0.6°C on collected data. 
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1. Introduction 

With the advancements in MEMS, chip integration and Radio frequency technologies, 
WSNs are applied to a variety of applications including environmental monitoring [1], 
military surveillance [2], industrial process controls [3], smart spaces and many more. WSN 
are intended for  distributed long term data gathering, while maintaining required accuracy.  In 
a WSN, each sensor node is a self contained system consists of sensing, computing and 
communicating elements. A major constraint of sensor nodes is their finite energy source. 
Wireless communication is a primary energy consuming functionality, where sensing can also 
play an important role depending on the particular type of sensing performed. On the other 
hand, the computation is the least energy consuming activity. One of the main objectives in 
deploying WSN is to achieve a resilient large scale data collection, while maintaining 
sufficiently high quality of the collected data. The amount of data transmitted from sensor 
nodes and the number of active sensor nodes at the time instant has high impact on the cost of 
the distributed monitoring process. In MICAZ mote, the energy costs for transmission and 
reception of one bit are 600nJ and 670nJ with 3.5nJ computation energy per clock cycle. 
Whereas in TELOSB mote, the energy costs of transmission, reception and computation are 
720nJ, 810nJ and 1.2nJ respectively [4]. This reveals that the communication cost is much 
higher than computation cost.  

In a periodic data collection approach [5], nodes sense the environment and transmit the 
data of interest continuously over time, only by which a finest data granularity can be obtained. 
On one hand, several environmental and habitat monitoring applications require periodic 
long-term data collection, as the gathered data make sense only if the data collection procedure 
lasts for months or even years continuously without interruption. On the other hand, sensor 
nodes are often energy constrained and deployed in harsh environments, hence data collection 
strategy must be energy conscious to prolong the network lifetime as much as possible. Due to 
the pervasive existence of Spatio-temporal correlation in the sampled data, huge portion is 
constituted by redundant data [6]. These redundant data do not have any informational value, 
but consumes the network resources substantially. By effectively modeling and exploiting 
spatial and temporal correlation,  huge amount of data transmission can be reduced. This 
motivates the need for a comprehensive spatio-temporal redundancy aware data gathering 
approach that achieves high energy efficiency without much compromising on the accuracy of 
collected data.  

The spatial correlation is high between the physically nearer sensors. If the sensor nodes 
are closer, similar their observations, hence the observations of a sensor node may be predicted 
from that of its neighboring sensor nodes with high confidence. The magnitude and trend 
similarity of data generated by these nodes confirms their close spatial correlation. Within the 
correlated network, only a subset of sensors may report the data and the rest can be 
approximated. The higher the sampling frequency of a sensor node, similar the consecutive 
data, hence the future readings of a sensor node can be predicted based on the recent previous 
readings from the same node. The temporal correlation can be used to estimate the trend of the 
signal, through which the future data can be predicted.  

In the proposed work, we attempted to exploit both spatial correlation and temporal 
correlation among the intra sensor and inter sensor data to reduce the communication expense 
without losing significant accuracy. The work groups the sensors with similar observations 
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inside a cluster into multiple sub clusters. A sub cluster is represented by its sub cluster head 
(SCH). The SCH node constructs a temporal correlation model using an adaptive filter based 
on the recent history of data.The model is communicated to the CH and other sub cluster 
members (SCMs). Based on the model, prediction takes place at CH, SCH and SCMs at every 
sampling instant. The SCH updates the trend changes by updating the filter coefficients 
appropriately. The sub cluster members transmit data only when the difference between the 
model predicted data and observed data exceeds the user defined threshold. This system can 
effectively reduce the communication cost of periodic reporting framework, while the 
user-defined accuracy is guaranteed for all sensor nodes. 

The proposed system has been evaluated on a synthetic data set with various correlation 
degrees. The work shows better efficiency in terms of energy. The accuracy of collected data 
is also shown to be good. The sub clusters have better balanced the nodal energy without 
compromising on data accuracy. The rest of the paper is organized as follows: Section 2 
briefly discusses the related works. Section 3 elaborates on the temporal and spatial correlation 
based data estimation. Section 4 evaluates the CoPeST by trace-driven simulations. Section 5 
concludes the paper. 

2. Related Work 
Energy efficient functionality is the key issue in the design of wireless sensor networks. 
Limited energy being a bottleneck for most of the WSN applications, numerous works have 
been done on energy conservation in WSN. Anatasi et al [7] have discussed key directions of 
energy conservation in WSN, where duty cycling, data driven and mobility based approaches 
are discussed. Data driven approaches aim at reducing redundant data transmissions, thus by 
conserving energy and preserving data integrity. The reduced data traffic results in nodal 
energy conservation, bandwidth conservation and data collision avoidance. 

The temporal correlation between consecutive data can be exploited to reduce the 
temporally redundant data through multiple approaches [8]. Data prediction reduces the 
communication overhead by estimating the temporal correlation and predicting the future data 
from recent data history. Several data prediction approaches, exploit temporal correlations 
between sensory data using linear regression methods [9], but suffers from reduced accuracy 
due to lack of adaptability towards dynamic variations in input signal. In [10], Auto 
Regressive Integrated Moving Average (ARIMA) based methods is used to predict the sensor 
data from previous values. ARIMA needs a great number of basic data, thus computationally 
expensive and is poor at predicting series with turning points. In [11], the prediction is 
executed using Principal Component Analysis (PCA) that necessitates the prior model 
definition. In Predicitve Storage architecture for WSN (PRESTO) [12], high tier proxies 
construct a model that captures correlations in the data observed at each low tier sensor. The 
remote sensors check the sensed data against this model and push data only when the observed 
data deviates from the values predicted by the model, thereby capturing anomalous trends. In 
PRESTO, the data models are reconstructed only periodically and the trend changes are not 
addressed immediately. In our proposed work, we use a model free prediction filter based on 
the Least Mean Square (LMS) algorithm [13] for exploiting temporal correlation. The 
proposed approach is computationally light weight and highly adaptive to the data dynamics.  

In [14], an energy efficient data gathering method is discussed, where the fraction of active 
sensors is regulated based on the spatial characteristics of the observed phenomenon. In [15], a 
linear model is proposed to capture the spatial correlation in sampling data from different 
sources. With this model, most sensor nodes can be put into sleeping mode, and their readings 
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can be estimated with definite accuracy by using the linear combination of data from working 
sensor nodes. However, in the real world, a lot of systems may not be linear. Furthermore, the 
method of choosing the right working nodes has not been discussed in [15]. An Adaptive 
Sampling Approach (ASAP) [16] creates sub clusters with correlated sensor nodes and selects 
a subset of samplers from sub cluster through which continuously collect the data. The 
non-sampler data are predicted using spatial correlation. ASAP uses probabilistic models 
validated only during forced sampling periods, thus does not guarantee the predicted data’s 
error bound. Anomalous trends between forced samples may go unnoticed, which is the 
common difficulty with most of the spatial data reduction schemes. The proposed work 
follows a model based push approach, where the spatial correlation is verified on every data 
collection round and the anomalies are corrected immediately.  

There are few data gathering approaches that utilize both spatial and temporal correlations 
between the sensor data to reduce the communication overhead. In [17], the authors have 
defined the theoretical framework for exploiting spatio temporal correlation. Here they 
suggested a correlation based MAC that reduces the number of representative nodes, while 
preserving measurement distortion at the low. The minimal reporting rate is also 
recommended to achieve required event detection reliability rate with minimum resource 
utilization. A tiny-model query system called Barbie-Q (BBQ)  [18] uses multivariate 
Gaussian joint distribution to capture the correlations of sensor readings. It samples a small 
fraction of sensor data from a WSN and utilizes a Gaussian joint distribution model to estimate 
the non-sampled sensor readings. However, these kinds of models need an expensive long 
training phase and a complete data set of every sensor node within a sufficiently long period. 
Second, the correctness of this kind of models requires a continuous model update which 
needs periodically gathering the data generated by every sensor node and disseminating the 
update information to related sensor nodes. An Energy-Efficient Data Collection Framework 
(EEDC) [19] selects nodes with similar data to form clusters. Within a cluster, one sensor node 
data can be approximated from other node's data. Thus inside a cluster, sensor nodes are 
scheduled to work alternatively to save energy. Temporal correlation is exploited by piecewise 
linear approximation, where the time series is reduced into short line segments. EEDC suffers 
from scalability issue as being a centralized approach. Secondly EEDC cannot guarantee the 
data error bound for the un-sampled nodes. In [20], the authors proposed a technique called 
Self-Based Regression (SBR) technique which works on a tree based aggression network. 
Here the data stream of a sensor node is divided into smaller data packets of length W. The 
packet that most closely representing the entire data is selected and communicated. Here the 
spatial correlation is exploited by periodical snooping of neighboring nodes and the most 
correlated neighbors are suppressed. Every time node has to send heart beat message to 
validate the data correlation between its own and the representative data, which consumes a 
hefty amount of nodal data. It requires large memory and lengthy data computations, which 
makes the system less energy efficient. This method is comfortable for query based data 
collection, whereas our method can be applied to a continuous data collection. 

The proposed work is designed in such a way to accommodate the goals of an ideal data 
gathering system. Being a distributed system, this work can be applied to WSN of any 
magnitude. The system exploits the spatial correlation through the construction of similarity 
based sub clusters represented by a single node. Temporal correlation is exploited by dual 
prediction based reporting. Both the approaches are combined into collective prediction to 
achieve spatio-temporal correlation based data reduction. The system uses light weight 
algorithms, that are most suitable for resource constrained WSN. The contribution of the 
proposed system is in two folds. The system alters the conventional dual prediction based 
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reporting scheme into the collective prediction scheme by considering the spatial correlation 
between closely located nodes. Unlike other spatial correlation based reporting  systems, the 
proposed system is a highly supervised system that detects and corrects anomalies at the time 
of the occurrence itself, without much overhead. 

3. Collective Dual Prediction 

3.1. System Model & Overview  
The proposed system follows three layer architecture. The bottom layer consists of N number 
of nodes randomly distributed over the field of interest. Each node is a self-contained system 
with its own sensing, computing and communication modules powered by a finite energy 
source. The second layer consists of node clusters attributed by a group of spatially nearer 
nodes associated with a high energy cluster head. The nodes transmit their data to the CH, 
where it is aggregated and forwarded to the base station through a backbone constructed by 
cluster heads. The third layer is built over the clusters. Here the cluster members are 
subdivided into numerous sub clusters of closely correlated nodes. The sub clusters are 
represented by an SCH. The data generated by SCH is deemed to represent the whole sub 
cluster. 

The proposed work attempts to reduce the data communication over the network by 
exploiting spatial and temporal correlation between the sensor data. The spatial correlation 
between the sensor data is estimated and the highly correlated sensors are grouped into sub 
clusters. Each sub cluster is represented by an SCH node, thus the redundant data from 
neighboring nodes are suppressed. The temporal correlation in the sensor data series is 
estimated using an LMS filter and is used to predict the future data. Since the data are 
predicted, only a subset of data, that deviates from the desired data are transmitted. Hence the 
method completely filters out spatially and temporally redundant data. Here a collective 
prediction approach is introduced, through which anomalous trends from the non-sampler 
nodes are also identified and communicated to the sink.  

The functionality of the proposed system is in four phases. In the first phase energetic 
nodes are selected as cluster heads using weight based passive clustering method and clusters 
are constructed around them. Next, the CH collects data from its members and further divides 
them into sub clusters based on their data similarity. The node with highest energy (SCH) 
represents the sub cluster. In the third phase, the SCH constructs a temporal correlation model 
from its previous observations using an LMS based filter. Through the model, future data can 
be predicted within a user defined error tolerance. The model is shared with the CH and sub 
cluster members. In the fourth phase, at every sampling instant, the SCH compares the 
predicted data with the observed data. When the prediction deviates from the observation 
beyond the temporal error threshold for certain consecutive rounds, the model is updated. 
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Fig. 1. Evolution of CoPeST Frame work 
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from the sub cluster member, the corresponding data are replaced in that sub cluster member’s 
data series.  

Fig. 1 indicates step by step evolution of our proposed collective prediction framework. 
Fig. 1. (a) shows the conventional clustered aggregation scheme, where all the cluster 
members continuously update their sensed data to the CH. Hence consumes huge amount of 
residual energy. Fig. 1. (b) indicates the prediction based reporting approach, where the nodes 
report only a subset of the total data sensed, the rest is predicted. Hence reduces the temporally 
redundant data and improves energy efficiency. Fig. 1. (c) shows the sub cluster based 
aggregation scheme, where only a portion of total nodes report their data to CH. Other nodes 
closer to the active nodes stay idle. Thus the spatial redundancy of data is reduced and energy 
is conserved. Fig. 1. (d) shows our proposed work combines dual prediction with sub 
clustering. Hence, both temporally and spatially redundant data are suppressed, to achieve 
comparatively higher energy efficiency than the previous methods. 

3.2. Energy efficient passive clustering  
In most of the WSNs the physically nearer nodes are clustered to achieve scalability, 
bandwidth conservation and routing comforts. The clusters distribute the computational load 
of the network, by undertaking various complex estimations at the CH itself. Since our 
algorithm needs to perform numerous computations on different data series, we first divide the 
network into groups of spatially nearer nodes headed by an energetic node. The proposed work 
can be applied to most of the existing clustering algorithms, with the following constraints. 
The members of a cluster should be able communicate with their CH directly, since it is 
essential for prediction based reporting and anomaly detection. As the variations in  spatial 
correlation necessitate periodic clustering, the clustering algorithm should construct clusters 
with minimal communication overhead. Hence we recommend a passive clustering approach.  

CHs often transmit data over long distances, hence they lose more energy compared to 
member nodes. It is essential to rotate the role of CHs among nodes so as not to burden a few 
nodes with more duties than others. The network is reclustered periodically in order to select 
energy-abundant nodes to serve as CHs, thus distributing the load uniformly on all the nodes. 
The passive clustering method may be used to reduce the overheads during clustering process, 
where the node that first proclaims becomes CH.  In the proposed work, higher energy nodes 
are elected as CH to attain energy efficiency, hence the proclamation delay is defined as the 
function of node’s residual energy. The selected CH can forward the aggregated data to the 
central base station through a multi hop backbone constructed only by the CHs. The proposed 
algorithm follows a deterministic approach for CH election, thus guarantees uniform 
distribution of CHs. The algorithm is distributed in nature, hence provides enough space for 
scalability. 

3.2.1. Weight Calculation of Node  
The election of the CH is done on the basis of the highest residual energy. This means that a 
node becomes a CH or a cluster member, depending on its own and one hop neighbor’s 
residual energy. In WSN, there are several heuristics for selecting CHs. Residual energy, node 
degree, distance from the Base Station (BS), node ID and cumulative time for which the node 
acted as CH (node priority) are the prominent heuristics. Since the residual energy of the node 
is the energy aware heuristics, the proposed work uses it as the weighting parameter. Since 
CHs are overloaded with multiple tasks, the rate of energy depletion is also high. Hence the 
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CH elected should have high residual energy. Thus, for an energy efficient clustering approach, 
residual energy is the major indicator for the dominant set of nodes in both homogeneous and 
heterogeneous (energy) networks.  Acquiring residual energy is again an internal task, doesn’t 
need any communication. The weight of the node (We), is given as, 

                                         We(n) = Eres (n)/Einit(n)      (1) 
 

Where, Eres (n) is the residual energy of node ‘n’ and Einit(n) is the initial energy of the node ‘n’. 

3.2.2. Passive Clustering  
In passive clustering, Cluster head is selected based on “first declaration wins” rule, therefore 
the node that first proclaims becomes the CH. In the earlier works, the proclamation delay is 
random. Random delay may result in selection of low energy nodes as CH, hence decreases 
the energy efficiency of the system. In the proposed work, to elect most appropriate nodes, the 
proclamation delay is made inversely proportional to the node’s weight. Once the 
proclamation delay expires, the node proclaims itself as CH. If a node hears a proclamation 
before the expiration of its proclamation delay, it refrains itself from the contention to become 
CH. The waiting time Tw of node n is given as 

                                                 Tw(n) = k /We(n)                                                                        (2) 
   

Where, k is a constant. 
If a node receives multiple proclamations from different nodes, it selects the nearest node as its 
CH and associates with it, thus clusters are formed. 

3.3. Exploiting Spatial correlation  
In a densely deployed WSN nearer nodes sense similar data, due to their spatial proximity. 
When the spatially similar data are sent over the network, they consume substantial amounts 
of network’s energy without any informational value. In a conventional clustered network, all 
the nodes in the cluster transmit their data to cluster heads, where the data is aggregated and 
sent to the sink. In a clustered aggregation scheme, clusters act as local filters on spatially 
redundant data, thus discard the further flow of insignificant data. However, suppressing the 
redundant data at the node itself, might be a better option than filters it out at the CH. Here in 
the proposed work, based on the time series sent by the sensors, the cluster head assigns them 
to different sub clusters based on their data similarity. For each sub cluster, an SCH node 
reports the data to the CH. Thus the spatially redundant data are filtered locally.  
Sub cluster formation is done in three folds. At first, a high energy node is identified as SCH. 
Then, its closest neighbors are discovered. Finally, the data series of the neighbors are 
compared to the SCH’s data series. The comparison is about the magnitude and trend 
similarity. If the neighbors are magnitude and trend similar with the SCH, the nodes are added 
to the sub cluster headed by SCH. From the rest of the cluster members, the next higher energy 
node is identified and the process repeats till all nodes inside the cluster are sub-clustered.  

3.3.1. Selection of SCHs  
Each sub cluster reports the data to the CH, through the SCH. Other nodes report only when 
anomalies occur. Thus the SCH selected should have higher residual energy than other nodes. 
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CH estimates the residual energy of all the cluster members and selects high energy node as 
SCH. Then the CH performs similarity estimation of nearby nodes with SCH. After 
identifying the sub cluster members for the SCH, CH adds them to the sub cluster headed by 
SCH. CH then identifies the high energy node from the rest. The process repeats till all nodes 
are assigned to a sub cluster. 

3.3.2. Similarity Estimation  
Once the SCH node in the cluster is identified, the geographical distance D is identified 
between the SCH and its neighbors. If the distance D is lesser than Dth, the nodes are said to be 
spatially similar. Here Dth is the maximum threshold distance for a sub cluster. As the nodes 
geographical locations are known to the cluster head, calculating the distance between the 
nodes is an easier task. Data similarity between the nearby nodes and SCH is assessed. The 
similarity identification is in two folds, first the magnitude similarity between the nodes is 
measured, and then the trend similarity is also estimated. The nodes that satisfy both the 
conditions are grouped into a sub cluster. The outlier nodes are considered for consecutive sub 
clustering rounds. From the rest of the nodes the next higher energy node is selected, its 
neighbors are listed and similarity is measured. This process continues until all the nodes in the 
cluster are sub clustered. 

3.3.2.2. Magnitude Similarity  
Let x (x1, x2,…, xn) is the time series of representative node and y (y1, y2,…, yn) is the time 
series of node y. Both the time series are of the same scale. The CH measures the Euclidean 
distance between the two time series that indicates the magnitude similarity between the time 
series. Euclidean distance is the square root of the sum of squared differences between 
corresponding elements of the two time series. The Euclidean distance is a fair measure of 
similarity, since it compares the relationship between actual readings. 

The Euclidean distance between the two time series is given by 
 

                                    d(x,y) = �∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1                                                          (3) 

 

The two time series are magnitude similar, if d (x, y) <  α, where α is the user defined 
magnitude similarity threshold. 

3.3.2.3. Trend Similarity 
The Euclidean distance fails to identify the trend information of two time series; hence we 
measure the trend similarity between time series using cross correlation estimations. The 
correlation coefficient is a measure of the degree of linear association between two time series. 
Here we consider the Pearson’s correlation coefficient as an effective indicator of trend 
similarity between two time series. The Pearson’s correlation coefficient between data series x 
and y is given as   

                                      T (x, y) =
∑(𝑥−𝑥̅)(𝑦−𝑦)���

�∑(𝑥−𝑥̅)2 ∑(𝑦−𝑦�)2
                                                        (4) 

 

Where 𝑥̅ and 𝑦� are the mean values of data series from SCH and neighbor node y. The value of    
T (x, y) ranges from -1 to 1. Where +1 indicates perfect positive correlation, -1 indicates perfect 
negative correlation between the two time series and zero indicates no correlation. 
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3.3.3. Spatial Data Suppression  
The data series are said to be α similar, if d (x, y)  < α and T (x, y) > 0.9. If the above conditions 
are met, the CH now adds the node y to the sub cluster represented by x. Sub clusters’ are 
created, such a way that all   its members are α similar with the sub cluster representative. 
Since all the members are α similar with  the representative, only the representative data is 
communicated to the CH, the rest can be approximated within the data error bound by α. This 
scheme substantially reduces the data communications within the cluster. Consequently 
reduces the overall energy expense of the sensors. The algorithm for sub clustering is indicated 
below, where W is the total nodes inside a cluster, Vnbr is the neighbors of node V and Vsc is the 
Sub cluster headed by node V. 

      Algorithm.1. Formation of Sub clusters 
1. Generate 1-hop cluster of W nodes 
2. While (W>0) 
3. V=highest energy node (W) 
4. W-=V; 
5. Vnbr Є D(V,W)<Dth) 
6. For all (Vnbr) 
7. If  euclidean dist (V, Vnbr) < α 
8. If  correlation coeff(V,Vnbr) > 0.9 
9. Add Vnbr in to Vsc 
10. W-=Vnbr; 
11. End if 
12. End if 
13. End for 
14. End while 

3.4. Exploiting Temporal correlation  
Temporal correlation is the measure of similarity between consecutive observations of node 
over the time. Most of the environmental variables show a good level of temporal correlation, 
due to their slow varying nature. This temporal correlation adds up a significant amount of 
redundant data over the time span. To reduce energy consumption, temporal correlation 
among data is exploited to identify a subset of sensor readings from which the remaining 
measurements can be predicted within the user defined accuracy. Readings which can be 
predicted from already delivered data need not be reported to the base station, thus 
communication is reduced. Digital filters are defined to interpret the sensor data in time 
domain, to predict the future values. The short term linearity of the signal is estimated using an 
LMS filter. Based on the estimation, future data are predicted as a linear combination of recent 
data history. 

3.4.1. Prediction based Reporting 

In a clustered data aggregation scheme, data reduction is achieved by employing prediction 
based reporting, where the prediction processes take place at both the sensor node and the CH 
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simultaneously using identical filters. In the sensor node, at each sampling instant t, the actual 
sensed value is compared to the value predicted by the model. If the difference between the 
two is lesser than the threshold, no data is transmitted. If the difference is higher than the 
threshold, the data are transmitted to the CH. As a result only a fraction of data is transmitted. 

In the DPF, there are three distinct modes of operation:  initialization, normal and 
stand-alone. A node goes through  the  initialization mode  only  at  the  beginning  and  then 
switches between the normal and standalone modes.  During the initialization mode, at every 
sampling instant t, the sensor node transmits the observed data to the CH. A prediction model 
is constructed by the sensor node in parallel. The energy consumption of the mode is given as 
          
                                                        Einit =Etx + Erx +Epred                                                                                                 (5) 
 
Where 𝐸tx and 𝐸rx  are the transmission and reception energy of sensor and CH node 
respectively. 𝐸𝑝𝑟𝑒𝑑  is the prediction energy incurred by the sensor node during model 
construction. 

The prediction is said to be converged, if the prediction error is lesser than the error 
threshold β for M consecutive predictions. Now the sensor node switches to standalone mode, 
by communicating the prediction model to the CH. In standalone mode, at each sampling 
instant t, the sensor node and CH predict the data using the prediction model based on data 
history. Along with prediction, sensor node still collects data and compares the actual sensed 
value with the value predicted by the filter. If the deviation is lesser than the threshold β, the 
filter model is assumed to be accurate for that time instant. Hence the filter is fed with the 
prediction y [t] instead of sensed value x [t]. Similarly, the sink predicts a value based on 
model and uses it as an approximation of the actual observation for the time instant. During the 
stand alone mode, the energy is saved as the sensor node does not report its readings to the CH. 
The energy consumption of the dual prediction is given as 
 

                                                           Esa =2Epred                                                                 (6) 
 
If the error exceeds α, the mode switches to normal mode. During normal mode, the data are 
transmitted to the CH. The prediction engine at the sensor node adjusts the weight values 
towards the convergence of the prediction with the desired value. Once the prediction is 
converged, the mode switches again to standalone mode. The energy consumption during 
normal mode is given as 

 
                                                        Enorm =Etx +Erx +E pred                                                      (7) 
 
3.4.2. LMS based Prediction filter 

 
In the proposed work the prediction filter is built on LMS algorithm. The functional features of 
an LMS based prediction filter are briefed in this part. A  linear  adaptive  filter  samples  a  
data  stream x over a length n at  an  instant  k,  which is  denoted  as  x [k]  and calculates a 
prediction as  y [k] = wT [k]·x [k], which effectively is a linear combination of the previous n 
samples of the data stream, weighed  by  the corresponding weight vector w [k]. The output y 
[k] is then compared to the desired signal d [k]. The functionality of the LMS based prediction 
filter is shown in Fig. 2. 
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.                          
Fig. 2. LMS based Prediction filter 

 
The prediction error e [k] is then computed as:  e [k] = y [k] − d [k] and fed  into the adaptation 
algorithm,  so the filter weights are updated at  each  time  step  k  in  order  to  minimize the 
mean square error. In the normalized LMS, the step size is normalized on every time step, thus 
the sensitivity to the input signal is reduced. The functional model of nLMS algorithm is 
defined in the Table 1. 

Table 1. LMS model 

y[k]=wT[k]x[k] Filter output 

e[k]=d[k]–y[k] Estimation Error 

w[k+1]=w[k]+µx[k]e[k]/xT[k]x[k] Weights adaptation 

3.4.3 VSS-nLMS prediction   
Step size plays a crucial role in achieving data accuracy and energy efficiency in the prediction 
based reporting. There is no specific optimum value for step size, since it is context dependent. 
When the deviation is high, larger step size attains faster convergence. Near the point of 
convergence smaller step sizes realize steady state prediction. The work adapts the step size 
with the state of prediction and achieves a considerable speed of convergence and reduced 
deviations. Here we introduce an integer D that controls the step size during different states of 
prediction. 
  
The change in weight is made in multiples of the step size µ, whose value ranges between 0 
and 1/𝐸𝑥, where  𝐸𝑥 is the mean input power. 

                                                𝐸𝑥 = 1
M
∑  x[k]2M

k = 1                                                               (8) 
 

                                                   µ= (1/Ex)/D 
 
D = Dmax, during steady state,  
D = Dmin, during convergence state. 
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3.5. Exploiting spatio temporal correlation (Collective Prediction)  
In a conventional prediction based reporting approach all the cluster members report their data 
to CH through independent prediction filters. In the proposed work, a sub cluster is attributed 
by highly correlated data sources located in close vicinity and are represented by the single 
SCH node. Thus the SCH node’s prediction filter is considered sufficient for the whole sub 
cluster. Here the prediction based reporting is between the SCH and CH using a common 
model. Since the representative node has a close correlation with its neighbors, the data 
generated by representative node resembles the entire sub cluster in both magnitude and trend. 
Thus, by collecting only the representative data, entire sub cluster’s data can be approximated 
within an error bound of α. Each representative node constructs a prediction model based on 
the data observed by it on behalf of the sub cluster. The model and its parameters are 
transmitted to CH and other sub cluster members.  

The sub cluster member executes the model as follows: at each sampling instant t, the 
actual sensed value is compared to the value predicted by the model. If the difference between 
the two is lesser than the threshold, then the model is assumed to be β similar to the node data 
for that time instant. Let β=kδi, where k is an application specified real constant larger than 1. 
The function δi is the standard deviation of the white noise in the prediction system, and it also 
provides a measurement of the accuracy of the prediction. Let xi (t) be the actual sensor 
reading of sensor node i and pi (t) be the estimated value of xi (t) at time t stored at the cluster 
head, then xi (t) Є [pi (t) – β, pi (t) + β] with an error probability at most 1/k2.  

The CH can compute the value through prediction model and uses it as α approximation of 
the actual observation of sub cluster member nodes. Thus, so long as the model predictions are 
similar to the observed values, no communication is necessary between the sub cluster 
members and the CH. In contrast, if the difference between the sensed data and the model 
predicted data exceeds a threshold, the sensed value is pushed to the CH. 

The similarity between the sensor readings of the two sensor nodes can be expressed using 
their Euclidean distance. The Euclidean distance between the readings of any two sensor 
nodes Si and Sj in S at time t is defined as dt(i,j) = |xi(t) – xj(t)|.  From eqn. 4 the trend similarity 
between the time series is estimated. When the data series are closely correlated, the Euclidean 
distance between the individual elements of the data series remains unchanged. Here we 
estimate the real sensor readings of sensor node Si by utilizing the local estimation of sensor 
node Sj. This estimation of xi (t) through pj (t) introduces errors in both spatial and temporal 
domains. The spatial error is due to the deviation of the Euclidean distance between xi (t) and 
xj (t). The temporal error is the local estimation error between xj(t) and pj(t). Let Eij (t) be the 
estimation error of estimating xi (t) by pj (t).  

 
                                         Eij (t)  = |xi (t) - pj (t) | 

                                           = |xi(t) – xj(t) + xj(t) - pj(t)| <=  |xj(t)-pj(t)| + |xi(t)-xj(t)| 
                                           = ej (t) +dt (i, j)                (9) 

 
                               Max (Eij (t)) = max (ej (t)) +dt (i, j)                                       (10) 

 
                               Max (Eij(t)) = β+dt(i,j)                           (11) 

 
Thus, we have Eij (t) Є [0, β+dt (i, j)]. As xi (t) Є [pi (t) -β, pi (t) +β] with error probability at 
most1/k2, it is easy to see that the estimation error Eij (t) Є [0, β+dt (I, j)] with error probability 
at most1/k2. Sensor node Si is ∆- similar to Sj at time t, if and only if |ei(t)+dt(i,j)| <= ∆, where 
∆ is a positive real constant.  
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Thus, the sub cluster members push data only when the observed data deviates from the 

value predicted by the common model, thereby capturing deviating trends. The state diagram 
of the CoPeST framework is shown in Fig. 3. The proposed system employs VSS-nLMS 
based prediction filter for constructing prediction models, which is computationally 
inexpensive and provides optimum level of accuracy. Our approach incorporates active 
feedback between the CH, representative and other sub cluster members’ results in high 
reliability of data with considerable energy conservation. 

The CH initiates sub cluster adjustment by measuring the spatial deviations over the sliding 
window. On each window, the total collected data comprises of predicted data and SCM 
updated deviations. Inside the window, if the deviation is greater than predicted data, the sub 
cluster is considered invalid. The cluster head puts the deviating node in to another closer sub 
cluster or assign it to a separate sub cluster. 

 

4. Experimental Classification Results and Analysis  
 

The very purpose of implementing CoPeST is to achieve an energy efficient data collection. 
The energy efficiency is measured in terms of reduced number of communication packets. The 
approach achieves energy conservation at the cost of marginal tolerance in the data accuracy, 
hence it is essential to analyze the average error of data acquired at the base station with 
respect to the original data observed at the sensors. There are numerous measures for 
estimating the data error in the distributed data gathering system. Here the data error is 
measured in terms of mean absolute error (MAE) of the received data.  The performance of the 
proposed work CoPeST is evaluated on MATLAB platform. In order to investigate the 
performance of CoPeST with large-scale networks, we generate large traces of a spatially 
correlated data set based on a mathematical model proposed in [21], through which the model 
parameters are extracted from small-scale real data sets [22]. The work is evaluated by 
comparing the performance with other energy efficient data gathering approaches. Then the 
impact of spatial and temporal error threshold on the performance is evaluated. The cluster 
size and its impact on the performance is also analyzed. The scalability of the system is also 
analyzed. 
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Fig. 3.Copest flow diagram 
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4.1 Comparison with other approaches 
The work is evaluated by the amount of data reduction, for different error thresholds (∆). With 
the increased ∆, the communication cost is reduced. The proposed work CoPeST is compared 
with other data reduction approaches like PRESTO and ASAP. PRESTO approach involves 
model driven push, where the temporal correlation of the sensor data is used for data reduction. 
In ASAP, the spatial correlation between the data is used to select a fraction of nodes to report 
the data to the CH and the rest are predicted. The former exploits only temporal correlation and 
the latter uses only spatial correlation. In ASAP, the error threshold is considered as a spatial 
error threshold, in PRESTO, the error threshold is considered as a temporal error threshold. In 
CoPeST, the error threshold (∆) is split into two equal error thresholds namely temporal error 
threshold (α) and spatial error threshold (β). (∆ = α + β). The data reduction achieved by 
CoPeST outperforms both PRESTO and ASAP, since it jointly exploits spatio-temporal 
correlation among the sensor data. 

In CoPeST, the data reduction is in two folds. First the number of reporting nodes is 
reduced. This small portion of nodes also sends only a fraction of observed data. For small ∆ 
values, ASAP and CoPeST achieves lower message cost than PRESTO. Since CoPeST 
bifurcates the error threshold, during low ∆ values, spatial and temporal models experience 
tight constraints. This necessitates frequent updates to ensure the data within the specified 
error threshold. At ∆=0. 2°C, CoPeST can reduce only 40% data. When ∆ increases, the 
temporal data reduction is steep along with moderate reduction in active reporting nodes. Thus 
the dual reduction approach performs well and CoPeST outperforms both PRESTO and ASAP. 
At ∆=1°C, CoPeST can reduce about 75% data. The message comparison is shown in Fig.4. 
 

 
 

Fig. 4. Comparison of message costs (CoPeST, ASAP and PRESTO) 
 

The energy model of TELOSB [4] specified in section I is used for energy estimation of 
our work. In CoPeST, (5N+5) cycles are required for each prediction. For the filter length of 4, 
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the energy cost of prediction per round is 30nJ.Each round, the energy cost of transmitting and 
receiving a 16 bit data is 11.52µJ and 12.59µJ respectively. From eq. (5-7), the energy cost 
during initialization and normal modes is 24.14µJ and during standalone mode is 60nJ. 

 

 
Fig. 5. Comparison of energy costs (CoPeST, ASAP and PRESTO) 

 
The Fig. 5 shows the comparison of the energy cost of different protocols for various error 

thresholds. The energy consumption of CoPeST is 50% lesser than that of the conventional 
data gathering at higher error thresholds. 

 

 
Fig. 6. Comparison of mean absolute errors (CoPeST, ASAP and PRESTO) 
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Another metric to evaluate the performance of a data gathering approach is to analyze the 
mean absolute deviation between the observed data and the data collected at the base station. 
The effectiveness of system towards reducing the deviations is measured using this 
performance. In the proposed system, data deviation is due to two main factors. One is the 
deviation in the prediction model, due to trend changes in the sensor measurement. Secondly 
the deviation between the representative’s data and the sub cluster member’s observation due 
to spatial distortions. The deviation trend with the increased ∆ is smoother for CoPeST and 
increase abruptly for the ASAP and the PRESTO. Compared to PRESTO and ASAP, the mean 
deviation is much lesser in CoPeST, due to the bifurcation of error threshold into spatial and 
temporal error thresholds and overlapping of spatial and temporal errors. As in Fig. 6 for 
higher ∆ values, the PRESTO has higher mean deviations, since high temporal error threshold 
allows the prediction to deviate for larger values. At ∆=1°C, the deviation of CoPeST is less 
than a half of the ASAP and PRESTO. 

4.2 Impact Of Spatio-Temporal Error Threshold  
Since the system involves both spatial and temporal data reduction, we analyze the impact of α 
and β discretely on the performance of the proposed system.  The temporal error threshold α 
decides the frequency of trend change updates. Higher the , lesser the frequency of updates and 
vice versa. The β decide the amount of active nodes to report the trend changes in the network. 
The low value of β increases the number of active nodes, which increases the spatial 
granularity of the data observation. The higher value of β reduces the active reporting nodes, 
thus conserves substantial amount of energy. The right combination of α and  β better trades 
off between the data accuracy and energy conservation. The α value is incremented from 
0.2°C to 0.8°C and for each α value, β  is varied from 0.2°C to 0.8°C. For every combination of 
α and β, the message costs and mean data deviations are estimated. From the Fig. 7, it is 
observed that the impact of spatial error threshold of data reduction is smooth, but the impact 
of temporal error threshold of data reduction is sharp. When we increase the spatial error 
tolerance the reduction of active nodes is limited by distance threshold and the maximum 
number of nodes in the cluster. Thus, increased spatial error tolerance cannot further reduce 
the number of active nodes. 

 
Fig. 7. Message costs for various spatial and temporal error thresholds 
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The system combines the advantages of both spatial correlation and temporal correlation 

among sensor data, hence it is essential to evaluate individual performance on message cost to 
evaluate their importance. Here we show the separate message costs of temporal correlation 
based data collection (dual prediction based reporting) and spatial data deviance updates 
(collective data push) for different combinations of α and β.  The temporal correlation based 
data reporting is between the representative node and the CH. The spatial data adjustments are 
among the sub cluster members and the CH. This evaluation helps in identifying the right 
combination of α and β to achieve an efficient data collection. From Fig. 8, it is observed that 
larger temporal and smaller spatial error threshold is the wise choice to achieve significant 
data reduction along with optimal accuracy on collected data. 

 
 

 
Fig. 8. Discrete message costs for various spatial and temporal error thresholds  

 
 

In the same way, the effects of α and β are analyzed on the mean absolute error of the collected 
data. With the increase in α, the MAE also increases. The spatial observation error increase 
with the increased β. The data deviation is inversely proportional to the data reduction. As in 
the case of data reduction, data deviation increases sharply with increased α and increases 
gradually with increased β as shown in Fig. 9.  
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Fig. 9. MAE for various spatial and temporal error thresholds 

 

4.3 Impact of Cluster size  
Here we analyze the impact of  cluster size on the efficiency of our proposed system. The 
cluster size decides the number of nodes in a cluster. The larger the cluster size brings in more 
nodes, hence the nodes per sub cluster also increases. The heavy weight sub clusters reduces 
the number of active reporting nodes, consequently improves the energy efficiency. The data 
reduction and accuracy of the framework with different cluster sizes are indicated in Fig. 10. 
 

(a)              (b) 
Fig. 10. Impact of cluster size on (a) message cost (b) Mean absolute error 

 
The increased cluster size helps in achieving more spatial reduction. In a small cluster size, 

the spatial data reduction with respect to increased spatial error threshold is smooth. The data 
reduction for 0.2°C tolerance is 42K and 0.8°C tolerance is 38K. But in a larger cluster, there is 
a steep reduction in data communication with respect to spatial error tolerance. The data 
reduction for 0.2°C tolerance is 46K and 0.8°C tolerance is 29K. The increased cluster size 
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brings a double benefit for the proposed data reduction approach. Since the number active 
nodes are less, the total trend updates are also reduced. This further decreases the nodal 
communications. From the simulations, it is observed that the cluster size has no direct impact 
on the temporal data reduction, but has high impact on the spatial data reduction. The mean 
data deviation is also analyzed for different cluster sizes. Increased spatial error threshold 
improves the data reduction at the cost of increased data deviation. In small clusters, the 
difference in data deviation with respect to increased spatial error threshold is minimal. In 
large clusters, when the spatial threshold increases, more nodes are put into passive mode. 
Therefore the data deviation also increases abruptly. 

4.4  Scalability 
In a distributed data gathering approach, the scalability is an important parameter. The 
proposed work is evaluated on networks of various scales. The performance has improved 
with the size of the network. Increased number of nodes increases the node density of the 
network. When node density increases more nodes get into close proximity, results in a 
significant increase in spatially correlated data. This close proximity increases the size of sub 
clusters.  Fig. 11. shows the increased size of the network exponentially increases the number 
of sub clusters in the network, hence the percentage of active nodes is reduced. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Number of Cluster and Sub cluster heads for different network scales 
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Fig. 12. Message cost comparison for different network scales 

 
The Fig. 12. shows the proposed work suits well with the large scale networks. With the  

increase in number of nodes, the data load of the network increases. Here in the proposed work, 
the spatially redundant data are filtered out by the sub cluster based reporting. This is the 
reason for the major data reduction in the system. From Fig. 12, it is inferred that with the 
increase in node density, CoPeST increases the percentage data reduction from 75% to 87%. 

5. Conclusion 
CoPeST achieves two level data reduction without much deviance in the collected data 
accuracy. The work has been evaluated with the amount of data reduction and mean absolute 
data deviation. Since the work jointly reduces the spatially and temporally redundant data, the 
data reduction has improved to multiple folds than the previous works. It is highly a supervised  
mechanism that guarantees user specified error threshold in spatial and temporal aspects. The 
system’s performance improves with the increased error tolerance. The system has proven to 
be highly scalable. The impact of various parameters is analyzed in detail. The system has 
reduced the data transmission up to 75% with a mean absolute deviation of  0.07°C. The future 
work involves dynamically adjusting the spatial and temporal error thresholds based on data 
dynamics and spatial variations. 
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