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Abstract 
 

Mobile cloud computing (MCC) combines mobile Internet and cloud computing to improve 
the performance of applications. In MCC, the data processing and storage for mobile devices 
(MDs) is provided on the remote cloud. However, MCC faces the problem of energy 
efficiency caused by randomly varying channels. In this paper, by introducing the Lyapunov 
optimization method, we propose a combined service subscription and delivery (CSSD) 
algorithm that can guide the users to subscribe to services reasonably. This algorithm can also 
determine whether to deliver the data and to whom data is sent in the current time unit based 
on the queue backlog and the channel state. Numerical results validate the correctness and 
effectiveness of our proposed CSSD algorithm. 
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1. Introduction 

Mobile cloud computing (MCC) is regarded as an emerging research area that could 
combine cloud computing [1] with the mobile Internet [2]. MCC can improve the performance 
of mobile applications that are offered by the mobile cloud service providers by offloading 
data processing from mobile devices (MDs) to the remote cloud. As a result, MDs do not need 
a powerful configuration since all the complicated computing can be processed in the cloud 
servers [3]. However, the amount of application data that is transmitted on both wired and 
wireless networks increases rapidly because all users’ requests have to be supported from the 
remote cloud [4, 5]. As a result, the communication overhead of MD will consume a 
significant amount of battery energy. Moreover, the stochastic wireless channels and the MDs 
leave the network might lead to link loss, which can cause serious energy consumption [6]. 
Therefore, reducing the energy consumption of transmission is one of the most significant 
issues in MCC. 

The energy efficiency of data transmission in wireless networks was investigated in [7, 8], 
[9, 10]. In [7], a code-based sleep and wake-up scheduling scheme was presented to minimize 
energy consumption caused by idle listening. In [8], an optimal sleep interval was derived to 
minimize power consumption while still satisfying the mouth-to-ear delay constraint. In [9], 
an enhanced dynamic power management method was proposed to schedule scaled jobs at 
slack time with the goal of saving energy and keeping system reliability. These studies focused 
on controlling sleep interval during the sleep state, while Choi and Lee [10] investigated how 
to efficiently control the transition from active to sleep state by considering the attributes of 
the request-and-response delay. However, the above proposals only considered the power 
states of the MDs during data transmission, ignoring the time-varying channel environment. 
Poor channel conditions result in an increase in data transmission time [11], and this causes an 
increase in transmission energy. 

In order to further reduce transmission energy in the time-varying channel environment, 
some transmission schemes [12, 13, 14] have been studied. Zafer and Modiano [12] used a 
novel continuous-time optimal-control formulation and Lagrangian duality to propose an 
optimal transmission scheduling that can dynamically adapt to time-varying channels to 
minimize energy consumption. Neely [13] exploited time-varying channel conditions to 
design the Energy-Efficient Control (EEC) algorithm based on the Lyapunov optimization 
method. Ra et al. [14] implemented the Lyapunov optimization method on MDs in multiple 
wireless interface environments and proposed the Stable and Adaptive Link Selection 
Algorithm (SALSA) with time-varying V  values to meet different video application delay 
tolerances. In fact, the methods of [12, 13, 14] find an expected channel with good condition to 
transmit the data by postponing the communication for a period of time such that a balance 
between the energy consumption and queue backlog for mobile applications is achieved. In 
practice, the channel conditions of MDs may become extremely poor over a very long period 
of time because of coverage holes or pilot pollution. In this situation, on the one hand, 
channels may defer the data transmission until their supported user’s channel condition is 
sufficiently good. On the other hand, as the queue backlog increases, channels may transmit 
the data to their support user at the low service rate. Indeed, a balance between energy 
consumption and queue backlog can be achieved. However, to achieve this, a huge energy 
consumption is incurred. 
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Recently, some researchers have proposed the idea of proactive fetching applications for 
all subscribed mobile users [15, 16]. Motivated by them, in this paper, we address the optimal 
transmission energy for the time-varying channel scenario in MCC networks that takes into 
account the number of service subscriptions. By introducing the Lyapunov optimization 
method, we propose a combined service subscription and delivery (CSSD) algorithm that can 
guide a user to subscribe to services reasonably and determine whether to deliver the data as 
well as to whom this data is sent in the current time unit based on the queue backlog and 
channel state. Numerical results validate that our proposed CSSD algorithm can effectively 
decrease both the transmission energy and queue backlog by making transmission decisions. 
As a result, users are guided to rational cloud service subscription choices. 

The rest of this paper is organized as follows. The system model and the problem statement 
are introduced in Section 2. In Section 3, the proposed CSSD algorithm is explained in detail. 
In Section 4, the performance of the CSSD algorithm is analyzed. Section 5 presents 
experimental results and performance comparisons. Finally, Section 6 concludes the paper. 

2. System Model and Problem Statement 
We consider an MCC environment in which a mobile application is divided into two parts [17], 
i.e., communications and cloud computing (e.g., CPU, memory, storage, and applications). 
The mobile agent, which resides at the base station, is expected to bridge the gap between 
cloud computing and data transmission that traditionally operated quite separately [18]. In this 
paper, we suppose that cloud services can be promoted to users through a mobile agent and 
service data can be delivered to users via a time-varying channel. The system model is shown 
in Fig. 1. 

 
Fig. 1. System model 

 

2.1 System Model 

Let  be the time unit. We use  to denote the -th time unit, where  is any time. 

The system operates in unit time. Define  to be the amount of data arriving at a mobile 
agent when the system runs a mobile application (e.g., video streaming, audio streaming, or 
news reading) during time unit . Suppose  is Poisson distributed with  

and . Let user  subscribe to  mobile applications in 
time unit , then the number of data packets arriving at the mobile agent is  during 
this time unit, where . The data packet of user  that arrives at the mobile agent 
is queued in . 
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Let 1 2( ) ( ( ), ( ), ( ))k k k N kT r T r T r T=r   be the vector of current channel states for different 
users during time unit kT . After acquiring these channel states, the channel chooses the 

appropriate user to transmit their data packet to in each time slot τ , where 1T kτ = ， 1k +∈Ζ . 
An example of the different time scales τ  and T  is given in Fig. 2. In this example, 1=10k , 

thus =10T τ . Let max( ) {1,2, }i
kTµ µ∈   be the transmission rate of user i  supported by the 

channel, where maxµ +∈Ζ . Therefore, the service rate of user i  supported by the channel can 

be denoted as ( )= ( ) ( )i
i k i k kT w T Tµ µ τ , where ( )i kw T  denotes the number of slots that the 

channel supports for user i  in time unit kT . We then have the service rate of the channel: 

1
( ) ( )N

k i ki
T Tµ µ

=
=∑ . 

T

τ
t

k 2T = k 3T =k 1T =
 

Fig. 2. Example of different time scales τ  and T .  
According to [19], the power states of an MD are divided into the active and idle states. Let 
( )i kr T

iα  be the power of user i  in the active state, which is supported by the channel with 
current channel state ( )i kr T  in time unit kT . Let ( )i kTβ  be the idle power of user i  in time 

unit kT . We can then use ( )
1

( ) [ ( ) ( )( ( ) )]i k
N r T

k i i k i k i ki
E T w T T T w Tα τ β τ

=
= + −∑  to denote the 

energy consumption of all users at time unit kT , where 
1

( )N
i ki

T w T τ
=

≥∑ . 

2.2 Problem Statement 
In the following, we assume that a mobile agent can estimate the unfinished delivery in a 
channel’s queues accurately. Let 1 2( ) ( ( ), ( ), , ( ))k k k N kT Q T Q T Q T=Q  , 1, 2,kT =   be the 
vector denoting user data queued in Q  at time unit kT , We use the following queueing 
dynamics: 

( 1) max[ ( ) ( ),0] ( )i k i k i k i kQ T Q T T n a Tµ+ = − +                                   (1) 
Throughout the paper, we use the following definition of queue stability: 

1 1

1= limsup [ ( )]
k

k

T N

i
T s ik

Q Q s
T→∞ = =

Ε < ∞∑∑                                           (2) 

The focus of our work is energy optimal scheduling for time-varying wireless channels. We 
call every feasible policy that ensures (2) a stable policy, and use *

avE  to denote the infimum 
average energy consumption over all stable policies. We then define the time-averaged energy 
consumption of a feasible policy ∏  as: 

com
1

1= limsup [ ( )]
k

k

T

T sk

E E s
T

Π Π

→∞ =

Ε∑                                                (3) 

where ( )E sΠ  denotes the energy consumption of all users by policy ∏  at time unit kT . 
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The objective of our problem is to find a stable policy by which the mobile agent promotes 
cloud services to users properly, and the policy maks transfer decision every T  time units in 
terms of different channel states and queue backlog to minimizes the time-averaged energy 
consumption. 

3. CSSD Algorithm 
In this section, we consider cloud services that can be promoted to users by a mobile agent and 
present the CSSD algorithm based on the Lyapunov optimization method. 

Based on the Lyapunoc optimization method, our CSSD algorithm can reduce energy 
consumption while maintaining queue stability. We first define the Lyapunov function ( )kL T  
to measure the aggregate queue backlog in the system as: 

2

1

1( )= [ ( )]
2

N

k i k
i

L T Q T
=
∑                                                     (4) 

We next define the T-unit Lyapunov drift ( )T kT∆  as the expected change in the Lyapunov 
function over kT  units. 

( )= { ( 1) ( ) ( )}T k k k kT L T L T T∆ Ε + − Q                                        (5) 

Following the Lyapunov optimization method, we add the expected energy consumption 
{ ( )}kV E TΕ , where 0V > over kT  units (i.e., a penalty function), to (5), which leads to the 

drift-plus-penalty term. This is a key step to obtaining an upper bound on this term. The 
following lemma gives the upper bound for our case. 
Lemma 1: For any given 0V > , under any possible actions max( ) {1,2, }i kTµ µ∈  and 

max( ) {0,1, }ka T A∈   we have: 

1 1
( ) { ( )} { ( )} { ( ) ( ) ( )} { ( ) ( ) ( )}

N N

T k k k i k i k k i k i k k
i i

T V E T B V E T Q T T T Q T n a T Tµ
= =

∆ + Ε ≤ + Ε − Ε + Ε∑ ∑Q Q    

(6) 

where 
2 2 2
max max+=

2
N N nB µ λ

． 

Proof: Squaring both sides of the queueing dynamic (1) and using the fact that for any 
Rx∈ , ( 2 2(max[ ,0])x x≤ ), we have: 

2 2 2 2[ ( +1)] [ ( )] +[ ( )] +[ ( )] 2 ( )[ ( ) ( )]i k i k i k i k i k i k i kQ T Q T T n a T Q T T n a Tµ µ≤ − −            (7) 
Inserting (4) and (7) into (5), we get: 

2 2

1

1( ) {[ ( )] [ ( )] 2 ( )[ ( ) ( )]}
2

N

T k i k i k i k i k i k
i

T T n a T Q T T n a Tµ µ
=

∆ ≤ Ε + − −∑              (8) 

Using the fact that max( )i kTµ µ≤  and max0 in n≤ ≤ , we have: 
2 2 2
max max

1 1

+( ) { ( ) ( ) ( )} { ( ) ( ) ( )}
2

N N

T k i k i k k i k i k k
i i

N N nT Q T T T Q T n a T Tµ λ µ
= =

∆ ≤ − Ε + Ε∑ ∑Q Q      

    (9) 
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Therefore, by defining 
2 2 2
max max+=

2
N N nB µ λ

,  and adding { ( )}kV E TΕ  to both sides of (9), 

we obtain equation (6).  
According to [20], the design principle behind the Lyapunov optimization method is to 

minimize the upper bound of the drift-plus-penalty term, i.e., in every time unit kT , we attempt 
to choose a control policy to minimize the right hand side of (6). The channel’s transfer 
decision can only affect the energy consumption ( )kE T  and the service rate of each user 

( )i kTµ  during time unit kT , hence, we can minimize 
1

{ ( )} { ( ) ( )}
N

k i k k
i

V E T n a T T
=

Ε − Ε∑ Q  by 

the channel’s transfer decision. Note that cloud service providers want users to subscribe to 
services as much as possible. As the user subscriptions increase, the service data also increases. 
This causes a large queue backlog and high energy consumption. Fortunately, in a practical 
application, the mobile agent can promote cloud services to users based on the queue backlog 
and channel state. Therefore, users can subscribe to cloud services reasonably based on the 
mobile agent’s promotion information. We assume here that the control policy can minimize 
the right hand side of (6) when 

1 1
{ ( )} { ( ) ( ) ( )} { ( ) ( )} 0

N N

k i k i k k i k k
i i

V E T Q T T T n a T Tµ
= =

Ε − Ε + Ε =∑ ∑Q Q . The optimal 

subscription solution is then 1
opt

1

( ) ( ) ( )

( )

N
i k i k ki

N
i ki

Q T T VE T
n

Q T

µ

λ
=

=

−
= ∑

∑
, opt 0n ≥ . 

ArialBased on the above analysis, our CSSD algorithm is composed of transfer decisions, 
calculation of the optimal subscription solution, collection of the subscribed services, and 
queues updating. Clearly, the mobile agent is the executor of the proposed CSSD algorithm. 
We now describe the mobile agent implementation of the CSSD algorithm as follows. 

Step 1: At every kT , the channel chooses the user’s data to transmit in order to minimize: 

1
{ ( )} { ( ) ( )}

N

k i k k
i

V E T n a T T
=

Ε − Ε∑ Q                                         (10) 

Step 2: At every kT , the mobile agent promotes cloud services to users with 

1

1

( ) ( ) ( )
max ,0

( )

N
i k i k ki

N
i ki

Q T T VE T

Q T

µ

λ
=

=

 −
 
  

∑
∑

. 

Step 3: The mobile agent collects subscribed services from the users. 
Step 4: The mobile agent requests the cloud data center to initiate the subscribed services, 

and update the queues using (1). 
In Step 1, the optimization objective of (10) is to minimize the number of transmission slots. 

This requires the mobile agent to detect all channel queue lengths every T  time units, which 
only requires a few calculations and takes a very short time. Moreover, it requires the mobile 
agent to know the channel state information for each user. In the proposed method, we assume 
that the mobile agent can acquire each user’s transmission rate based on the channel state 
information. As we only execute the channel’s transfer decision that minimizes the expression 
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1
{ ( )} { ( ) ( )}

N

k i k k
i

V E T n a T T
=

Ε − Ε∑ Q , the transmission takes place only if some transfer 

decision 
1

{ ( )} { ( ) ( )} 0
N

k i k k
i

V E T n a T T
=

Ε − Ε <∑ Q . This happens when either user i ’s channel 

condition is good enough, achieving a large service rate ( )i kTµ , or the queue ( )i kQ T  is 
already congested at time unit kT . At the beginning of time unit kT , the mobile agent has not 
only determined whether to deliver the data or not, but also decided when to send and whom to 
send the data to. If these are some users not assigned to transmission slots in the current 
transfer decision, the mobile agent will notify these users to go to or maintain a sleeping status 
to save energy. In Step 2, the mobile agent promotes cloud services to users with the optimal 
subscription amount at time unit kT . In a practical application, users subscribing to services 
simply refer to this optimal subscription solution. Therefore, there is some deviation between 
subscribed services and the optimal subscription solution in time unit kT . The possible range 
and impact of this deviation is discussed in next section. In Step 3, as the mobile agent collects 
the subscribed service information from users, the mobile agent becomes a means by which 
users are notified of the new content of services. This new content is composed of the titles and 
number of services recommended for subscription. The users utilize this new content as a 
reference when subscribing to appropriate services. In Step 4, according to the subscribed 
service information from users, the mobile agent first notifies the cloud data center to initialize 
subscribed services. The mobile agent then collects and stores users’ data packets in the 
relevant queues. 

4. Performance Analysis 

In this section, we first analyze the performance guarantee provided by our 
CSSD algorithm. We then explain the possible range and impact of the deviation 
between subscribed services and the optimal subscription solution. 

4.1 Bound of Queue Backlog and Energy Consumption 

According to [21], we characterize the optimal time-averaged energy consumption *
av ( )kE T  

with the following lemma that can be achieved by any algorithm that stabilizes the queue. 
Lemma 2: For any rate vector ⊂λ Λ  and time unit kT , there exists a stationary randomized 
control policy optΠ  that chooses the appropriate user to transmit its data packet in each τ  slot. 
We then have the following equalities: 

opt *
av{ ( )}= ( )kE T EΠΕ λ                                                          (11) 

opt

1 1
{ }= { ( )}

N N

i i k
i i

Tλ µΠ

= =

Ε Ε∑ ∑                                                    (12) 

where Λ  denotes the capacity region of the system. 
Lemma 2 shows that using a stationary randomized algorithm, it is possible to achieve the 

minimum time-averaged energy consumption *
av ( )E λ  for a given data packet arrival rate 

vector 1 2={ }Nλ λ λλ ,  where = { ( )}i i kn a Tλ Ε . 
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Based on Lemmas 1 and 2, we derive a theorem that presents the bounds on the 
time-averaged energy consumption and queue backlog achieved by the CSSD algorithm. 
Theorem 1: Suppose there exists an 0ε >  such that * ε+ ⊂λ 1 Λ , then the performance 
bounds of the time-averaged energy consumption and queue backlog can be calculated as: 

CSSD max

1 1

1= limsup { ( )}
k

K N

i k
K T i

B VEQ Q T
K ε→∞ = =

+
Ε ≤∑∑                                 (13) 

CSSD * *
av

1

1= limsup { ( )} { ( )}
k

K

k
K T

BE E T E
K V→∞ =

Ε ≤ +Ε∑ λ
                                

(14) 

Here, 1  denotes the vector of all 1’s, * * * *
1 2={ }Nλ λ λλ ,  such that *

opt
1

{ ( )}
N

i k
i

n a Tλ
=

= Ε∑ , 

and * *
av ( )E λ  and maxE  are the optimal and maximum energy consumptions for stationary 

randomized control policy, respectively. 
Proof: Because * ε+ ⊂λ 1 Λ , it can be shown using Lemma 2 that there exists a stationary 

and randomized policy optΠ  that achieves the following: 
opt * *

av{ ( )}= ( )kE T E εΠΕ +λ 1                                              (15) 

opt opt

1 1
{ ( )}= { ( )}

N N

i k i k
i i

n a T Tµ εΠ Π

= =

Ε Ε −∑ ∑                               (16) 

where * *
av ( )E ε+λ 1  is the optimal energy consumption corresponding to the rate vector 

* ε+ ⊂λ 1 Λ . Substituting (15) and (16) into (6), we get: 
CSSD * *

av
1

( ) { ( ) ( )} { ( ) ( )} { ( ) ( )}
N

T k k k k i k k
i

T V E T T B V E T Q T Tε ε
=

∆ + Ε ≤ + Ε + − Ε ∑Q λ 1 Q Q       (17) 

Substituting (5) into (17) and taking the expectation over ( )kTQ , we obtain: 

* *
av

1
{ ( 1) ( )} { ( )} { ( )}

N

k k i k
i

L T L T Q T B V Eε ε
=

Ε + − + Ε ≤ + Ε +∑ λ 1               (18) 

Summing (18) from 0kT =  to 1K − , using the fact that * *
max( )E Eε+ ≤λ 1 , we have: 

max
0 1

{ ( )} { } { (0)}
k

K N

i k
T i

Q T KB VK E Lε
= =

Ε ≤ + Ε +Ε∑∑                          (19) 

Dividing both sides of  (19) by Kε , we obtain: 
max

1 1

1 { ( )}
k

K N

i k
T i

B VEQ T
K ε= =

+
Ε ≤∑ ∑                                              (20) 

Taking the limit superior as K →∞ , (13) is proven. 
Moreover, based on (17), we can derive: 

CSSD * *
av{ ( ) ( )} { ( ) ( )}k k kV E T T B V E TεΕ ≤ + Ε +Q λ 1 Q                           (21) 

Taking expectation of (21) over ( )kTQ , then summing 1kT =  to K , we have: 

CSSD * *
av

1
{ ( )} { ( )}

k

K

k
T

V E T KB KV E ε
=

Ε ≤ + Ε +∑ λ 1                                (22) 

Dividing both sides of (22) by KV , we obtain: 
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CSSD * *
av

1

1 { ( )} { ( )}
k

K

k
T

BE T E
K V

ε
=

Ε ≤ Ε + +∑ λ 1
                                        

(23) 

Taking the limit superior as K →∞ , using the Lebesgue’s dominated convergence theorem, 
and then letting ε →∞ , we obtain inequality (14).  

The proposed CSSD algorithm has two important properties. First, the mobile agent guides 
users to reasonably subscribe to services based on the queue backlog and channel state. It 
could also avoid a situation where channels transmit data to users with a low service rate when 
the queue backlog is sufficiently high. Therefore, our CSSD algorithm not only can reduce the 
time-averaged energy consumption, but also can decrease the time-averaged queue backlog. 
Second, our CSSD algorithm is designed based on the Lyapunov optimization method that 
reduces energy consumption by guiding users to subscribe to services reasonably. 
Nevertheless, the EEC algorithm [13] may defer the data transfer until the channel’s transfer 
rate or queue backlog is sufficiently high. The method aims to achieve a balance between 
energy consumption and queue backlog by designing V  values. The latter is a scheduling 
algorithm, and the former combines service subscriptions and dynamic scheduling based on 
the latter at every time unit. 

4.2 Deviation of subscribed services 
In a practical application, there is a deviation between the subscribed services and optimal 
subscription solution for our CSSD algorithm. The following theorem gives the possible range 
of this deviation. 
Theorem 2: Assume that total ( )kn T∆  is the deviation between the subscribed services and the 

optimal subscription solution, and let maxµ be the maximum service rate of the channel at time 

unit kT . In the CSSD algorithm, the possible range of total ( )kn T∆  is then max
opt opt[ , ]n n

µ
λ

− − , 

where 1
opt

1

( ) ( ) ( )
max ,0

( )

N
i k i k ki

N
i ki

Q T T VE T
n

Q T

µ

λ
=

=

 −
 =
  

∑
∑

. 

Proof: For any time unit kT , let realn  and optn  be the subscribed services and optimal 
subscription solution, respectively. The deviation between the subscribed services and optimal 
subscription solution can then be described as: 

total real opt( ) ( )k kn T n T n∆ = −
                                                 

(24) 

Moreover, since 
max

µ  is the maximum service rate of the channel and { ( )}ka T λΕ = , then the 

maximum subscribed services is max
µ
λ

.  Combining this value with the subscribed services 

should not be less than zero, hence we get: 

max
real0 n

µ
λ

≤ ≤                                                            (25) 

Inserting (25) into (24), we find that the possible range of total ( )kn T∆  is max
opt opt[ , ]n n

µ
λ

− − . 
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According to the CSSD algorithm, when total ( ) 0kn T∆ ≤ , i.e., the subscribed services realn  

are less than the optimal subscription solution optn , the channel can postpone communication 
for a period of time to wait for a better expected channel condition because the queue backlog 
is not big enough. Therefore, in this case, our CSSD algorithm has low energy consumption 
and queue backlog. When total ( ) 0kn T∆ > , the queue backlog can become so large during time 
unit kT  , the channel can deliver the data packets whatever the channel condition is to service 
users with low transmission delay. In this case, high battery consumption caused by the low 
transmission rate is incurred. According to the above analyses, the energy consumption and 
queue backlog would be affected if total ( ) 0kn T∆ > . The following theorem shows that 
the impact of the CSSD algorithm on the time-averaged energy consumption and queue 
backlog by total ( ) 0kn T∆ > . 

Theorem 3: Let total
1

( )= ( ) 0
N

k i k
i

n T n T
=

∆ ∆ >∑ , { ( )}i k in T dΕ ∆ = , suppose there exists an 

0ε >  such that * ε+ + ⊂λ d 1 Λ , then the performance bounds of the time-averaged energy 
consumption and queue backlog can be calculated as: 

CSSD total max max

1 1

1= limsup { ( )}
k

K N

i k
K T i

B d Q VEQ Q T
K ε→∞ = =

+ +
Ε ≤∑∑                           (26) 

CSSD * *total max
av

1

1= limsup { ( )} { ( )}
k

K

k
K T

B d QE E T E
K V→∞ =

+
Ε ≤ +Ε +∑ λ d

                        
(27) 

where * * * *
1 2={ }Nλ λ λλ ,  such that *

opt
1

{ ( )}
N

i k
i

n a Tλ
=

= Ε∑ ， 1 2( , )nd d d=d  , 

total
1

N

i
i

d d
=

=∑ , and maxQ  , maxE , and * *
av ( )E +λ d  are the maximum queue backlog, 

maximum energy consumption, and optimal energy consumption for stationary randomized 
control policy, respectively. 

Proof: Because * ε+ + ⊂λ d 1 Λ , it can be shown using Lemma 2 that there exists a 
stationary and randomized policy '

optΠ  that achieves the following: 
'
opt * *{ ( )}= ( )k avE T E εΠΕ + +λ d 1                                             (28) 

' ' '
opt opt opt

opt
1 1 1

{ ( )}= { ( )} { ( )}= { ( )}
N N N

i k k i k i k
i i i

n a T n a T n a T Tµ εΠ Π Π

= = =

Ε Ε + Ε ∆ Ε −∑ ∑ ∑          (29) 

where * *
av ( )E ε+ +λ d 1  is the optimal energy consumption corresponding to the rate vector 

* ε+ + ⊂λ d 1 Λ . Substituting (28) and (29) into (6), we get: 
CSSD *

av total
1

( ) { ( ) ( )} { ( ) ( )} ( ) { ( ) ( )}
N

T k k k k i k k
i

T V E T T B V E T d Q T Tε ε
=

∆ + Ε ≤ + Ε + + − − Ε ∑Q λ d 1 Q Q

      (30) 
Substituting (5) into (30), and taking the expectation over ( )kTQ , we obtain: 

* *
total av

1
{ ( 1) ( )} ( ) { ( )} { ( )}

N

k k i k
i

L T L T d Q T B V Eε ε
=

Ε + − + − Ε ≤ + Ε + +∑ λ d 1       (31) 
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Summing (31) from 0kT =  to 1K − , using the fact that * *
max( )E Eε+ + ≤λ d 1 , 

max
1

( )
N

i k
i

Q T Q
=

≤∑ , we have: 

max total max
0 1

{ ( )} { }
k

K N

i k
T i

Q T KB VK E Kd Qε
= =

Ε ≤ + Ε +∑∑                           (32) 

Dividing both sides of  (32) by Kε , we obtain: 
total max max

1 1

1 { ( )}
k

K N

i k
T i

B d Q VEQ T
K ε= =

+ +
Ε ≤∑ ∑                                          (33) 

Taking the limit superior as K →∞ , (26) is proven. 
Moreover, based on (30), we can derive: 

CSSD * *
av total

1
{ ( ) ( )} { ( ) ( )} { ( ) ( )}

N

k k k i k k
i

V E T T B V E T d Q T Tε
=

Ε ≤ + Ε + + + Ε ∑Q λ d 1 Q Q          (34) 

Taking the expectation of (34) over ( )kTQ , then summing 1kT =  to K , we have: 

CSSD * *
av total max

1
{ ( )} { ( )}

k

K

k
T

V E T KB KV E Kd Qε
=

Ε ≤ + Ε + + +∑ λ d 1                        (35) 

Dividing both sides of  (35) by KV , we obtain: 
CSSD * *total max

av
1

1 { ( )} { ( )}
k

K

k
T

B d QE T E
K V

ε
=

+
Ε ≤ +Ε + +∑ λ d 1

                            
(36) 

Taking the limit superior as K →∞ , using the Lebesgue’s dominated convergence theorem, 
and then letting ε →∞ , we obtain inequality (27). 

Based on Theorem 4, the CSSD algorithm can achieve a balance between energy 
consumption and queue backlog when there is a deviation between the subscribed services and 
optimal subscription solution. According to [21], we have * * * *

av av{ ( )} { ( )}E EΕ + > Ελ d λ . By 
comparing (27) with (14), we can see that when total ( ) 0kn T∆ > , we need to set  V  to a larger 
value to obtain the same time-averaged energy consumption as the case in which the 
subscribed services equal the optimal subscription solution, i.e., real opt( )kn T n= . However, the 
time-averaged queue backlog will increase if V  is increased. From these results, we can 
safely draw the conclusion that for the same V , the time-averaged energy consumption and 
queue backlog of the case where total ( ) 0kn T∆ >  is higher than that of the case where 

real opt( )kn T n= . 

5. Performance Evaluation 
In order to evaluate the effectiveness of our proposed CSSD algorithm in the MCC 
environment, we compare our algorithm with EEC algorithm. We consider the MCC 
environment as shown in Fig. 1. There is one cloud servier provider support users over 
randomly varying channel. Using Java, a mobile cloud computing simulation platform is 
builted to simulate this MCC environment. This platform mainly includes two parts, i.e. 
mobile Internet and cloud computing. In the cloud computing part, we employ the modeling of 
cloud computing infrastructure and services offered by CloudSim [22]. For the mobile Internet 
part, we develop a mobile Internet model reference the LET network which is described in 
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[19]. To make the comparison more convenient, we adopt mobile multimedia applications to 
represent the cloud services. The services that are offered by the cloud data center need to be 
delivered to the mobile users by a base station in a cell. The users walk randomly without 
leaving their cell. The MCC system executes the applications and delivers services data to 
users when the users subscribe services on the cloud. We suppose all mobile applications have 
the same data arrival rate, and set =100λ  Kbit/s. The CSSD algorithm can improve 
performance by guiding the users to subscribe to services reasonably based on the 
time-varying channel state and queue backlog. Without loss of generality, we suppose that the 
service rate of the channel is exponentially distributed. This service rate is generated from the 
ranges [0, 1,000] where the average service rate is set to 500 Kbit/s. According to [19], the 
power of MDs in active and idle states are set to 10 and 0.1 mW, respectively. The time unit T  
is set to 1 s, the slot τ is set to 0.1 s, and parameter V is set to 10,000. 

As an executor, the mobile agent operates in unit time. In our experiments, the mobile agent 
first detects the queue backlog and channel state of each user at the the beginning of every time 
unit. Next, using the queue backlog and channel state of each user, the mobile agent calculates 
the optimal number of service subscriptions for the current time unit. Finally, the mobile agent 
guides the users to subscribe services and transmits data to users in the proper slots during the 
current time unit. We would like to emphasize that each execution of the algorithm calculates 
the optimal number of service subscriptions and transmits data to users for only one time unit, 
not for all time units. We ran each simulation for 200 s, which is long enough to observe the 
performance of both the CSSD and EEC algorithms. 

5.1 Network Traffic 
In this experiment, we investigated the network traffic of our CSSD algorithm and the EEC 
algorithm. We consider scenarios in which a mobile user uses mobile applications with a 
time-varying channel. We let the mobile user subscribe to five mobile applications at a time 
under the EEC algorithm, while they subscribe mobile applications in strict accordance with 
the optimal subscription solution optn  under the CSSD algorithm. We measured the service 
data arrival and service data transfer for each time unit as well as for the whole experiment. 
The experimental results are shown in Figs. 3 and 4, respectively. 
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Fig. 3. Service data arrival rate comparison 
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Fig. 3 compares the service data arrival rate. It can be seen that the curve of our CSSD 
algorithm fluctuates with the changes of the channel state. Moreover, there are no service data 
arriving at the channel in some time units. This supports the validity of CSSD algorithm Step 2. 
We can also see that the curve of the EEC algorithm fluctuates around 500 Kbit/s no matter 
how the channel state changes. The reason for this is that the mobile user subscribes to a fixed 
number of mobile applications under the EEC algorithm. 

Fig. 4 shows the service data transfer rate of the EEC algorithm and our CSSD algorithm. 
We can see that when the channel transfers service data to users, the CSSD algorithm has a 
higher service rate than the EEC algorithm. We also can observe that the service data transfer 
rates of our CSSD algorithm are more than 400 Kbit/s. The reason for this is that the EEC 
algorithm aims at service data delivery and balances energy efficiency and queue backlog. In 
contrast, our CSSD algorithm combines service subscription and delivery based on the EEC 
algorithm at every time unit. In this way, our CSSD algorithm has a lower queue backlog than 
that of EEC algorithm, as validated in Fig. 5. Thus, our CSSD algorithm can defer data 
transfer until the channel’s transfer rate is high enough to support users at a high service rate. 
This implies that the CSSD algorithm achieves a better performance than the EEC algorithm if 
the MCC system has a larger queue backlog or poor channel. 
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Fig. 4. Service data transfer rate comparison 

5.2 Performance of Optimal Service Subscriptions 
To evaluate the performance improvement of our CSSD algorithm, we consider two cases: 

=1N  and =2N . Let each mobile user subscribe to two mobile applications at one time under 
the EEC algorithm, while the mobile user subscribes to mobile applications strictly according 
to the optimal subscription solution optn  under the CSSD algorithm. In this experiment, we 
use the queue backlog, energy consumption, and service subscription cost as the performance 
metrics to evaluate performance. We set the cost of a mobile application to 0.3 cents per time 
unit. This corresponds to the fixed-price model used in Microsoft’s Windows Azure Platform 
[23]. 
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We first examine the queue backlog of the EEC algorithm and our CSSD algorithm, as 
shown in Fig. 5. From this graph, our CSSD algorithm works well and the queue backlog is 
sufficiently small. In other words, the queue backlog of the CSSD algorithm is lower than 
5,000 Kbit. For the EEC algorithm, although queue stability can be satisfied, the queue 
backlog of the EEC algorithm is greater than that of our CSSD algorithm. This can be regarded 
in the following way: when the queue backlog becomes very large, our CSSD algorithm can 
reduce the queue backlog by reducing the number of service subscriptions and increasing the 
number of transmission slots while the EEC algorithm reduces the queue backlog simply by 
increasing the number of transmission slots. 
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Fig. 5. Queue backlog comparison 
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Fig. 6. Energy consumption comparison 

 
We next examine the energy consumption of the EEC algorithm and our CSSD algorithm, 

as shown in Fig. 6. Compared with the EEC algorithm for =1N  and =2N , our CSSD 
algorithm achieves 38% and 50% lower energy consumption, respectively. This is because our 
CSSD algorithm can reduce the number of service subscriptions when the channel condition is 
poor or the queue backlog is high. In this way, our CSSD algorithm can sustain a lower queue 
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backlog. This result confirms the benchmark performance, as shown in Fig. 5. Thus, for the 
same parameter V , which control the balance between energy consumption and queue 
backlog, our CSSD algorithm has a better performance in terms of reducing the energy 
consumption. 

Finally, we simulated two algorithms to compare the cost of service subscription. For ease 
of comparison, we define a performance metrics totalC  that evaluates the total cost of 
subscribing to services: 

total
1 1

( )
k

N K

i k
i T

C n T p
= =

=∑∑                                                  
 
(37) 

Fig. 7 compares the values of totalC  under the two algorithms for various values of N . It is 
clear that our proposed algorithm has a better performance than the EEC algorithm. In 
particular, compared with the EEC algorithm, our CSSD algorithm reduces the cost of 
subscribing services by 50% for =2N . This is because our CSSD algorithm can guide the 
users to subscription services according to the optimal subscription solution optn , and hence 
users can reduce the subscription of unnecessary services. It is interesting to note that the 
CSSD algorithm for =1N  and =2N  have almost same cost of service subscription. This is 
because users subscribe to mobile applications in strict accordance with the optimal 
subscription solution optn , thus the cost of service subscription does not rapidly increase with 
N . 
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Fig. 7. Service subscription cost comparison 

5.3 Impact of Service Subscribed Deviation 
The purpose of this experiment was to investigate the impact of the CSSD algorithm on 
performance incurred by the service subscription deviation. In this experiment, we considered 
three different cases of expected value of service subscription deviation totaln∆ : total[ ] 0nΕ ∆ = , 

total[ ] 0.2nΕ ∆ = , and total[ ] 0.4nΕ ∆ = , where total[ ] 0nΕ ∆ =  denotes the subscribed services 
equal to the optimal subscription solution, therefore there is no service subscription deviation. 
Let the number of users N  be fixed to two. The experimental results are shown in Figs. 8 and 
9. 
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Fig. 8 shows the queue backlogs of total[ ] 0nΕ ∆ = , total[ ] 0.2nΕ ∆ = , and total[ ] 0.4nΕ ∆ = . 
It can be seen that the queue backlogs of total[ ] 0nΕ ∆ = , total[ ] 0.2nΕ ∆ = , and 

total[ ] 0.4nΕ ∆ =  stabilize at around 1,500, 3,000, and 5,000 Kbit when the simulation time is 
more than 100 s, respectively. These results confirm the claim that our CSSD algorithm can 
consume more energy for transmission while satisfying queue stability. We also observe that 
the queue backlog increases with the expected value of service subscription deviation when 
the queue is stable. For example, the queue backlog of total[ ] 0.4nΕ ∆ =  is the maximum. The 
reason for this is that the data packet arrival rate increases with the expected value of service 
subscription deviation, thus total[ ] 0.4nΕ ∆ =  incurs the highest queue backlog. 
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Fig. 8. Queue backlog comparison under service subscription deviation 
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Fig. 9. Energy consumption comparison under service subscription deviation 
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Fig. 9 compares the energy consumption of total[ ] 0nΕ ∆ = , total[ ] 0.2nΕ ∆ = , and 

total[ ] 0.4nΕ ∆ = . We observe that at the beginning of the simulation, these three cases have 
similarly low queue backlogs and there are no data packet transfers to mobile users with poor 
channel conditions, thus these three cases have almost the same energy consumption. Taken as 
a whole, the energy consumption increases with the expected value of service subscription 
deviation. This is because higher expected values of service subscription deviation have higher 
queue backlogs. In order to maintain queue stability, data packets might be transmitted in poor 
channel conditions, and hence a higher expected value of service subscription deviation 
consumes higher energy. 

6. Conclusion 
In this paper, we proposed a new energy-efficient scheduling method for a time-varying 
channel scenario in MCC networks. This new method employs a mobile agent’s ability to 
calculate the optimal subscription and promote cloud services to users. Based on the Lyapunov 
optimization, the proposed CSSD algorithm makes transmission decisions and guides users to 
subscribe to cloud services considering both the channel condition and queue backlog. 
Simulation results validate that our proposed CSSD algorithm performs better in terms of 
queue backlog, energy consumption, and service subscription cost.  

From the simulated results, it is shown that our proposed CSSD algorithm can be used as a 
reference for MCC system design, providing practical engineering insights. In future work, the 
performance of our CSSD algorithm will be evaluated in practical mobile applications, such as 
mobile office, mobile commerce, mobile learning, and so on. Moreover, the more general case 
will be considered, where the information interaction and delay constraint bring little 
application performance penalty. In addition, compatibility issues with existing protocols can 
also be incorporated into the proposed CSSD algorithm to broaden its application. 
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