
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 2, Feb. 2015 728

Copyright © 2015 KSII

This work was supported by the ICT R&D program of MSIP/IITP. [I5501-14-1007, 3D Smart Media/Augmented

Reality Technology, Korea-China-Japan-Russia Cooperation International Standardization] and by Basic Science

Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science,

ICT & Future Planning(No. 2013R1A1A1013410)

http://dx.doi.org/10.3837/tiis.2015.02.014 ISSN : 1976-7277

Improved Disparity Map Computation on
Stereoscopic Streaming Video with
Multi-core Parallel Implementation

Cheong Ghil Kim

1
and Yong Soo Choi

2

1 Dept. Of Computer Science, Namseoul University

Cheonan, Choongnam, Korea

[e-mail: cgkim@nsu.ac.kr]
2 Division of Liberal Arts and Teaching(Multimedia), Sungkyul University

Anyang-si, Kyeonggi-do, Korea

[e-mail: ciechoi72@gmail.com]

*Corresponding author: Yong Soo Choi

Received May 10, 2014; revised November 18, 2014; accepted January 13, 2015;

published February 28, 2015

Abstract

Stereo vision has become an important technical issue in the field of 3D imaging, machine

vision, robotics, image analysis, and so on. The depth map extraction from stereo video is a

key technology of stereoscopic 3D video requiring stereo correspondence algorithms. This is

the matching process of the similarity measure for each disparity value, followed by an

aggregation and optimization step. Since it requires a lot of computational power, there are

significant speed-performance advantages when exploiting parallel processing available on

processors. In this situation, multi-core CPU may allow many parallel programming

technologies to be realized in users computing devices. This paper proposes parallel

implementations for calculating disparity map using a shared memory programming and

exploiting the streaming SIMD extension technology. By doing so, we can take advantage

both of the hardware and software features of multi-core processor. For the performance

evaluation, we implemented a parallel SAD algorithm with OpenMP and SSE2. Their

processing speeds are compared with non parallel version on stereoscopic streaming video.

The experimental results show that both technologies have a significant effect on the

performance and achieve great improvements on processing speed.

Keywords: Disparity map, stereoscopic 3D, parallel processing, shared memory, sub-word

parallelism

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 2, February 2015 729

1. Introduction

Recent developments on 3D technologies have made 3DTV and mobile 3DTV the most

spotlighted technology in the area of audio-video entertainment and multimedia. This

development enables auto-stereoscopy or glasses-free 3D viewing on smartphone without the

use of special headgear or glasses on the part of the viewer [1]. The principle of 3D video is

based on stereo vision with two cameras to obtain two different views on the same scene, and

the relative depth information is obtained by comparing two images, known as disparities;

therefore, depth maps which contains information relating to the distance of the surfaces of

scene objects from a viewpoint may provide an essential description of the world seen through

cameras. This technology has been studied extensively due to its usefulness in many

applications like 3D scene reconstruction, robot navigation, civil engineering, manufacturing,

and so on.

In order to construct a stereo vision system, two cameras located at two different positions is

usually used, which is known as binocular stereopsis based on epipolar constraint. Here, for a

pixel in the left image the corresponding point in the right image lies on the same horizontal

line, the epipolar line. As a result, the geometry associated with solving this problem is

simplified by assuming that the two cameras are coplanar with aligned image coordinate

systems.

Object point

(X, Y, Z)

Epipolar

plane

Epipolar line

Base line b

Focal axis

Focal

center

(x
l,
 y

l
) (x

r,
 y

r
)

Fig. 1. Stereo camera geometry

Fig. 1 shows the basic structure of the stereo image formation and the stereo camera

geometry [2]. The center of the lens is called the camera focal center and the axis extending

from the focal center is referred to as the focal axis. The line connecting the focal centers is

called the baseline, b. The plane passing through an object point and the focal centers is the

epipolar plane. The intersection of two image planes with an epipolar plane makes the epipolar

line. Let (X, Y, Z) denote the real world coordinates of a point. The point is projected onto two

730 Kim et al.: Improved Disparity Map Computation on Stereoscopic Streaming Video with Multi-core Parallel Implementation

corresponding points, (xl, yl) and (xr, yr), in the left and right image, respectively. The disparity

is defined as the difference vector between two points in the stereo images, v = (xl - xr; yl - yr).

According to the stereo camera geometry shown in Fig. 1, the disparity is defined with the

difference between two focal centers denoted as C1 and C2 in Fig. 2 and calculated as below:

12 CCD  (1)

The depth d therefore is calculated by triangulation as below:

D

f
bd  (2)

where b is the distance of the two optical centers and f is the focal length. A disparity of zero

indicates that the depth of the appropriate point equals infinity. In order to assure the stereo

epipolar geometry, the rectification of both images is necessary; therefore, both cameras

require calibration first to acquire camera parameters for the rectification.

(X, Y, Z)

d

b

(xl, yl) (xr, yr)

X

f

U1 U2

C1 C2

Fig. 2. Disparity calculation

In general, the most difficult area in stereo vision is matching points or features between the

left and right image. This is called as stereo matching or stereo correspondence problem [3],

which has been an intensive research area for decades [4, 5, 6]. In order to solve this problem,

many algorithms have been introduced and most of previous studies to solve and improve the

performance of stereo matching can be grouped into three categories according to matching

primitives: area-based [7], feature-based [8], and phased-based approaches [9]. The most

common ones are absolute intensity differences (AD), the squared intensity differences (SD)

and the normalized cross correlation (NCC) [10]. Evaluation of various matching costs can be

found in [11,12]. In recent years, this challenge has been extended to Multi-view Video

Coding (MVC) which comprises rich 3D information and requires more computational

powers [13-15].

Stereo matching inherently requires considerably high computational expenses, especially

when extracting dense disparity map which can produce accurate segmentation for more

reliable applications. This problem becomes more serious with large high resolution images,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 2, February 2015 731

and it is still far away from achieving real time requirements in systems with either general

purpose CPU or DSP. As a result, there have been several researches on implementing a

specialized processing hardware to achieve the required computational complexity using

FPGA [16-18].

In the meantime, recent advances of CPU performance on speed and architecture can be

expected to bring an alternative way of improving the calculation of disparity map. In the

market, multi-core processor architecture has emerged as a dominant trend in desk-top PCs

while preserving the CPU clock speed between 3 GHz and 4 GHz [19-21]. This performance

enhancement allows a single chip to increase its processing capability without requiring a

complex system. Especially, the increase in processor core brings new opportunities in parallel

computing. Therefore, a performance improvement on computing depth map could be

achieved by taking advantage of parallelism in software rather than implementing dedicated

hardware.

This paper presents a fast dense stereo-correspondence algorithm using two parallel

programming techniques on multi-core CPU. The Sum of Absolute Differences (SAD)

algorithm is used to reconstruct disparity map requiring heavy computations but simple and

identical calculation with heavy memory accesses. The proposed method mainly aims at

improving the execution time using OpenMP (Open Multi-processing) [22], an open

specification API (Application Programming Interface) and SSE (Streaming SIMD

Execution) [23]. They can provide an easy low-burdensome method for threading applications

based on shared memory architecture and a SIMD (Single Instruction Multiple Data) parallel

execution with sub-word parallel instruction set, respectively. And the performance evaluation

was made by comparing its processing time with the serial implementation.

The organization of this paper is as follows. Section 2 introduces the background of SAD

algorithm and parallel technologies of OpenMP and SSE. Section 3 discusses the design of

parallel SAD using OpenMP and SSE. Section 4 covers the results of simulation about the

implementations of parallel SADs with comparison with its serial implementation. In section 5,

we conclude our results.

2. Background

2.1 SAD algorithm

The SAD is the most commonly used algorithm for measuring a similarity between image

blocks. Here, a search iteration is performed for each candidate block by taking absolute

difference between each pixel in the original block and the corresponding pixel in a block

being used for comparison. These differences are summed to create a simple metric of block

similarity. It computes intensity differences for each center pixel (i, j) in a window W(x, y) as

follows:

 


N

yxwji RL jdiIjiIdyxSAD
),(),(

),(),(),,(, (1)

where IL and IR are pixel intensity functions of a left and right image, respectively. W(x, y) is

square window that surrounds the position (x, y) of the pixel. A disparity SAD (x, y, d)

calculation is repeated within the x-coordinate frame in the image row, defined by zero and

maximum possible disparity dmax of the searched scene. A minimum difference value over the

frame indicates the best matching pixel. And a position of the minimum defines the disparity

732 Kim et al.: Improved Disparity Map Computation on Stereoscopic Streaming Video with Multi-core Parallel Implementation

of an actual pixel. On each search iteration, a SAD corresponding of a candidate block is

computed using all its pixels simultaneously. The value obtained is compared with the

reference SAD which is the minimum SAD computed before this iteration. If a current SAD is

less than the reference SAD, it is stored as the reference SAD for the remaining search

iterations. This process can be summarized as three steps: 1) computation of differences

between corresponding elements; 2) determine the absolute value of each differences; 3) add

all absolute values.

Usually, the matching costs are aggregated over support regions. Those support regions,

often referred to as support or aggregating windows, could be square or rectangular, fix-sized

or adaptive ones. In this work, we have implemented with different window sizes of 4, 8, and

16 for performance evaluations.

2.2 OpenMP

OpenMP is an open specification API supporting multi-platform shared-memory parallel

programming. In recent years, OpenMP has extended its use in accelerators, embedded

systems, multi-core and real-time systems although it solely focused on shared memory

systems in the early days. As for OpenMP programming model, parallelization have been

implemented by high-level abstractions which allow parallelized C/C++ programs for parallel

processors with a shared memory by adding specific OpenMP directives into C-program codes.

These directives support the distribution of autonomous subtasks (threads) over the available

processor cores [24]. As a result, all threads can access global and shared memories and

programmers can control the number of threads. Optimal performance occurs when the

number of threads represents the number of processors.

Code

 Set of executable
instructions

Shared memory for
shared variables

Parallel region

T
h
re

a
d
s
(1

)

T
h
re

a
d
s
(2

)

T
h
re

a
d
s
(n

)

…

Stack

…

Fig. 3. Operational block diagram of OpenMP

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 2, February 2015 733

Fig. 3 depicts the operational block diagram of OpenMP in which how a process can be

divided into several threads. Here, a master thread exists to assign tasks to threads, i.e.,

fork-join. Fork-join time increases when there are more threads than processors. Moreover,

data can be labeled with private or shared. In particular, private data are visible to one thread

while all threads can spot shared data. In practical programs, local variables which are about to

be parallelized should be private. Additionally, global variables must be assigned as shared

data. OpenMP requires a compiler and most IDEs today accommodate it. Numerous benefits

exist to using OpenMP, e.g., preservation of serial code, simplicity, flexibility and portability.

Nevertheless, explicit synchronization remains as an issue that to be addressed [25].

2.3 Stream SIMD Extension

Another parallelization technique, called SSE technology, is vectorization by converting a

scalar code to a code using SSE instructions, in which a single instruction will process several

elements at the same time.

The increasing popularity of high quality digital contents processing for many areas of

multimedia applications such as digital image processing, video processing, 3D graphics, and

so on, leads the ISA (Instruction Set Architecture) of general purpose processors to have

quipped with dedicated instructions based on sub-word parallelisms [25]. They demand high

performance computing power for data intensive processing and have a great potential for

SIMD parallel processing. Current microprocessors for desktop and mobile computing

devices have the capability of hardware supporting for vector operations with SIMD type

instructions.

This vectorization started form MMX (MultiMedia eXtension), the first IA-32 SIMD

instructions on Intel CPU. It performed arithmetic or logical operations on the packed data in

parallel. Later this was extended to SSE using eight new 128-bit registers and SSE2

technology introduced new SIMD double-precision floating-point instructions and new SIMD

integer instructions into the IA-32 Intel architecture. More specifically, SSE2 has the memory

streaming instruction extensions, which allows programmers to prefetch data into a specified

level of the cache hierarchy. Most multimedia applications present the streaming data access

pattern. This means that data are accessed sequentially and seldom reused. Therefore,

prefetching this type of data into the L2 cache is an effective way to improve the memory

system performance [26].

SSE2 contains integers, 2, 4, 8, or 16 variables with a width of 8, 4, 2 or 1 byte. Therefore it

is possible to perform the same operation on several variables in parallel. Fig. 4 shows various

packed data types in XMM registers. The introduction of sub-word parallelism to an existing

ISA requires new instructions with packed types arithmetic and logic operations and

data/sub-word packing and rearrangement operations. SSE instructions are divided into the

following four functional groups: packed and scalar single-precision floating-point

instructions, 64-bit SIMD integer instructions, state management instructions, and

cacheability control, prefetch, and memory ordering instructions

734 Kim et al.: Improved Disparity Map Computation on Stereoscopic Streaming Video with Multi-core Parallel Implementation

Packed Byte: 16 bytes packed into 128bits

128 078

128 01516

128 03132

128 06364

Packed Word: 8 words packed into 128bits

Packed Doubleword: 4 doublewords packed into 128bits

Packed Quadword: 2 quadwords packed in 128bit

Fig. 4. Packed data types

3. Parallel implementation

This section introduces efficient parallel implementations of SAD algorithm, demanding high

performance computing power, in multi-core CPUs. SAD is a representative computation

intensive algorithm accompanied by heavy memory access with relatively low computational

complexity. This operational model is well suited for exploiting the streaming SIMD

extension technology and OpenMP based on thread. By doing so, we can take advantage of all

the hardware features of multi-core processor concurrently for data- and task-level

parallelism.

3.1 OpenMP

Disparity map calculation is a pixel-by-pixel basis to find corresponding pixels for a left and

right image pair. Generally, this computing procedure can be characterized as having no

dependency between processes. It means that these kinds of application are inherently suitable

for making use of parallel processing. The basic processing concept of SAD is accumulating

absolute differences of a left and right image pixels within a given window. Using the

Equation (1), the least SAD is determined to be the disparity.

By using OpenMP, SAD program is initially executed by one process; and then it activates

light-weight processes (threads) at the entry of a parallel region. After that each thread

executes a task comprised of a group of instructions. OpenMP program is an alternation of

sequential regions and parallel regions. A sequential region is always executed by the

MASTERthread, the one whose rank equals 0. A parallel region can be executed by many

threads at once.Threads can share the work contained in the parallel region.

Fig. 5 shows the general concept of three possible parallel implementation methods: 1)

executing a loop by dividing up iterations between the threads; 2) executing many code

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 2, February 2015 735

sections but only one per thread; 3) executing many occurrences of the same procedure by

different threads. During the execution of a task, a thread available can be read and/or updated

in memory. When it is defined either in the stack (local memory space) of a thread, it becomes

a private variable; when in a shared-memory space accessible by all the threads, it is a shared

variable [23]. This work takes advantage of loop-level parallelism for fast SAD and the

pragma omp parallel for num_threads() is used to fork threads and specify the number of

threads. Four threads are used for this four core system.

do i=...

1) Parallel loop

end do

x=a+b
y=x+c

call sub(...)

do i=...
end do

2) Parallel section

call sub(...)

3) Repeated procedure

do i=...
end do

Fig. 5. Different parallel implementation methods

3.2 Stream SIMD Extension

Current microprocessors for desktop and mobile computing devices have the capability of

hardware supporting for vector operations with SIMD type instructions as a representative

enhancements to traditional superscalar processors. The advantage is to exploit sub-word

parallelism in SIMD style by making small data elements packed together into one register and

operating on all data elements in a register in parallel.

The source code block depicted in Fig. 6 shows a SAD function based on 4 x 4 block with

current and reference data passed as parameters. Data is stored in XMM registers and

differences are calculated with a SIMD instruction of PSUBUSB and negative values are

clipped at zero. This subtraction is executed once more with swapping operands. PSUBUSB

performs a SIMD subtract of packed unsigned integers of a source operand from the packed

unsigned integers of the destination operand with unsigned saturation, and stores the packed

unsigned integer results in the destination operand. The final absolute difference can be

obtained by adding the two results of subtraction by using a SIMD add instruction of PADDB.

736 Kim et al.: Improved Disparity Map Computation on Stereoscopic Streaming Video with Multi-core Parallel Implementation

unsigned int mmx_GetSAD(unsigned char *pRef, unsigned char *pOrg, int strip_ref,
int strip_org)
{
 unsigned int sad=0;

 __asm{

 mov eax, [pRef]; mov ebx, [pOrg];
 mov esi, 16;

_LOOP:

 // Calculate 8 pixels of Absolute differenceS with mmx register and PSUBUSB
 // Clipping the minus results

 movq mm0, [eax]; movq mm1, [eax + 8];
 movq mm2, [ebx]; Movq mm3, [ebx + 8];

 movq mm4, mm0; movq mm5, mm;

 psubusb mm0, mm2; psubusb mm2, mm4;
 psubusb mm1, mm3; Psubusb mm3, mm5;

 paddb mm0, mm2; paddb mm1, mm3;

 // SUM of absolute differences

 movq mm2, mm0; Movq mm3, mm1;
 pxor mm4, mm4;

 punpckhbw mm0, mm4; Punpcklbw mm2, mm4;
 punpckhbw mm1, mm4; Punpcklbw mm3, mm4;

 paddw mm0, mm2; Paddw mm1, mm3; Paddw mm0, mm1;
 movq mm1, mm0;

 punpckhwd mm0, mm4; Punpcklwd mm1, mm4;
 paddd mm0, mm1

 movd ecx, mm0; Psrlq mm0, 32; movd edx, mm0

 add ecx, edx; add sad, ecx;
 add eax, 16 ; add ebx, 16;

 dec esi
 jnz _LOOP

 emms
 }

 return sad;
}

Fig. 6. SSE impelentation of SAD on 4 x 4 block

4. Experimental Classification Results and Analysis

For the simulation, we estimate the computation speed of SAD algorithm on the sample stereo

video stream, SampleVideo.avi, with different block sizes of which window sizes are 4 × 4, 8

× 8, and 16 × 16. They are denoted as 4, 8, and 16, respectively. The details of SampleVideo

are summarized in Table 1. Three versions of the SAD algorithm have been implemented with

C++ in this paper. They are serial, OpenMP, and SSE execution version and denoted as normal,

OpenMP, and SSE, respectively. The normal version is an ordinary sequential execution

version without writing any parallel code. OpenMP and SSE signify the implementation

exploiting task- and data-level parallelism, respectively. In order to evaluate the speedup of

parallel SAD implementations over its serial one, the processing time was measured. Here,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 2, February 2015 737

speedup is defined as the ratio of performance with the enhancement to performance without

the enhancement. Table 2 describes the experimental hardware environment using Laptop

with Intel Core I7 CPU. In this work, we just estimate the processing time of SAD algorithm

and to obtain the execution time in terms of CPU clock cycles, we use RDTSC (Read Time

Stamp Counter) instruction to measure the execution time of the three different code blocks.

Execution times are obtained by executing each implementation 10 times inside a loop, and

then the summed averaged execution time was selected with milliseconds measure unit. Fig. 7

shows the simulation UI for selecting simulation parameters and monitoring the running

process.

Table 1. Simulation video

Items Descriptions and Values

File Name SampleVideo.avi

File Size 761 KB

Format AVI

Duration 7733 ms

Bitrate 692 Kbps

Width 800

Height 600

Frame Rate 15.00 fps

Video Codec MPEG-4 (DivX 4) (Simple@L1)

Audio Codec MPEG Audio (MP3) (Version 1) (Layer 3)

(Joint Stereo / MS Stereo)

Table 2. Simulation hardware

Type Laptop

CPU Intel® Core™ i7 4700MQ Processor

Chipset Intel® HM87

RAM KINGMAX DDR3 8GB x 2 (ea)

GPU Nvidia GeForce GTX 765M / 2GB GDDR5

HDD HGST 1TB 7200RPM

Table 3 shows the simulation results and Fig. 8 depicts the average performance

improvement over the processing time of normal, the serial implementation version. The

performance improvements are normalized to the normal execution time.

SSE shows significant performance improvement as the growing of window sizes shown in

Fig. 9. This result signifies that the computation of SAD algorithm is a typical data intensive

computing which use a data parallel approach to processing large volumes of data with heavy

memory accesses; but relatively low computational complexity. As for OpenMP, it is

necessary to select the number of thread by users. We used 4 threads. The increase of number

of threads over 4 resulted in the degradation of the overall performance. This was because the

increased threads caused the overhead of thread distribution of master thread.

738 Kim et al.: Improved Disparity Map Computation on Stereoscopic Streaming Video with Multi-core Parallel Implementation

Fig. 7. UI for simulation

Table 3. Simulation results

WinSize
Search

Range
Normal OpenMP SSE Normal OpenMP SSE

1 387.6637931 234.2758621 112.8189655 100% 60% 29%

5 685.6293103 540.0258621 468.4396552 100% 79% 68%

10 1345.568966 936.5258621 264.7844828 100% 70% 20%

1 533.4827586 470.8534483 340.9137931 100% 88% 64%

5 2630.5 1437 405.7155172 100% 55% 15%

10 5190.310345 1328.112069 984.112069 100% 26% 19%

1 2063.293103 1243.025862 438.5086207 100% 60% 21%

5 10240.09483 2095.448276 1828.112069 100% 20% 18%

10 19854.65517 4464.241379 3583.568966 100% 22% 18%

Elapsed Time Average Time Reduced

4

8

16

0%

20%

40%

60%

80%

100%

1 5 10 1 5 10 1 5 10

4 8 16

Normal SSE OpenMP

Search range / Window size

Fig. 8. Performance Improvement on three versions

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 2, February 2015 739

0

1

2

3

4

5

6

7
OpenMP

SSE

1 5 10 1 5 10 1 5 10
4 8 16

Search range / Window size

S
p
e
e
d
u
p

Fig. 9. The ratio of execution time on OpenMP and SSE

5. Conclusion

This paper introduced parallel SAD implementations for the fast depth map computation on

multi-core CPU. For this purpose, we used a parallel algorithm for calculating disparity map

using OpenMP, a shared memory programming which can provide the advantage to simplify

managing and synchronization of program threads. Also, this paper introduced the

effectiveness of exploiting the streaming SIMD extension instructions. As a result, we were

able to take advantage of all the hardware and software features of current multi-core

processors. The performance evaluation was carried out on stereoscopic streaming video

rather than a stereoscopic image pair and the processing times of each implementation were

measured. The experimental results show that both technologies of OpenMP and SSE have a

significant effect on the performance and achieve great improvements on processing speed.

Especially, the SSE implementation could achieve more performance improvements than the

OpenMP implementation.

References

[1] C. G. Kim, "A Characteristic Analysis Study of Android based Stereoscopic 3D Technology," The

Journal of Korea Society of Communication and Space Technology, Vol. 8, No. 2, pp. 68-73, June

2013. Article (CrossRef Link)

[2] C. G. Kim, V. P. Sirni, and S. D. Kim, "High Performance Coprocessor Architecture for

Real-Time Dense Disparity Map," The KIPS Transactions: Part A, Vol. 14-A, No. 5, pp. 301-308,

Oct. 2007. Article (CrossRef Link)

[3] S. T. Barnard and W. B. Thompson, “Disparity analysis of images,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 2, No. 4, pp. 333–340, 1980. Article (CrossRef Link)

[4] M. Z. Brown, D. Burschka, and G. D. Hager, "Advances in computational stereo," IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, Issue 8, pp. 993-1008, Aug.

2003. Article (CrossRef Link)

http://ksci.kisti.re.kr/search/article/articleView.ksci?articleBean.artSeq=TOOSCJ_2013_v8n2_68
http://dx.doi.org/10.3745/kipsta.2007.14-a.5.301
http://dx.doi.org/10.1109/TPAMI.1980.4767032
http://dx.doi.org/10.1109/TPAMI.2003.1217603

740 Kim et al.: Improved Disparity Map Computation on Stereoscopic Streaming Video with Multi-core Parallel Implementation

[5] H. Sunyoto, W. van der Mark, and D. M. Gavrila, "A comparative study of fast dense stereo vision

algorithms," in Proc. of IEEE Intelligent Vehicles Symposium 2004, pp. 319-324, 14-17 June 2004.

DOI: Article (CrossRef Link)

[6] A. Kuhl, "Comparison of Stereo Matching Algorithms for Mobile Robots," Technische Universität

Ilmenau, 2004. Article (CrossRef Link)

[7] T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka, “A stereo machine for video-rate dense

depth mapping and its new applications,” in Proc. of IEEE CVPR ’96, pp. 196-202, 1966.

10.1109/CVPR.1996.517074. Article (CrossRef Link)

[8] J. Y. Goulermas and P. Liatsis, "Feature-based stereo matching via coevolution of epipolar

subproblems," in Proc. of Seventh International Conference on Image Processing And Its

Applications, Vol. 1, pp. 23-27, 13-15 July 1999. Article (CrossRef Link)

[9] D. Fleet, A. Jepson, and M. Jenkin, “Phase-based disparity measurement,” CVGIP: Image

Understanding, Vol. 53, pp. 198-210, 1991. Article (CrossRef Link)

[10] N. Lazaros, G. C. Sirakoulis, and A. Gasteratos, "Review of stereo vision algorithms: From

software to hardware," International Journal of Optomechatronics, vol. 2, pp. 435–462, 2008.

Article (CrossRef Link)

[11] D. Scharstein and R. Szeliski, "A Taxonomy and Evaluation of Dense Two-Frame Stereo

Correspondence Algorithms," International Journal of Computer Vision, Vol. 47, Issue 1-3, pp.

7-42, April-June 2002. Article (CrossRef Link)

[12] H. Hirschmuller and D. Scharstein, "Evaluation of cost functions for stereo matching," in Proc. of

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8, June

2007. Article (CrossRef Link)

[13] Y. Pang, W. D. Hu, L. F. Sun, and S. Q. Yang, “Adaptive data-driven parallelization of multi-view

video coding on multi-core processor,” Science in China Series F: Information Sciences 2009, Vol.

52 No. 2, pp. 195-205, 2009. Article (CrossRef Link)

[14] Y. Yang, G. Jiang, M. Yu, and D. Zhu, “Parallel process of hyper-space-based multiview video

compression,” in Proc. of 2006 IEEE International Conference on Image Processing, pp. 521 –

524, 8-11 Oct. 2006. Article (CrossRef Link)

[15] B. Zatt, M. Shafique, S. Bampi, and J. Henkel, "Multi-Level Pipelined Parallel Hardware

Architecture for High Throughput Motion and Disparity Estimation in Multiview Video Coding,"

Design, Automation & Test in Europe Conference & Exhibition (DATE), 14-18 March 2011.

Article (CrossRef Link)

[16] C. Banz, S. Hesselbarth, H. Flatt, H. Blume, and P. Pirsch, "Real-time stereo vision system using

semi-global matching disparity estimation: Architecture and FPGA-Implementation," in Proc. of

2010 International Conference on Embedded Computer Systems (SAMOS), 19-22 July 2010.

Article (CrossRef Link)

[17] J. Diaz, E. Ros, R. Carrillo, and A. Prieto, "Real-time system for high-image resolution disparity

estimation,” IEEE Transactions on Image Processing, Vol. 16, No. 1, pp 280-285, Jan. 2007.

Article (CrossRef Link)

[18] Ahmad Darabiha, W. James MacLean, Jonathan Rose, Reconfigurable hardware implementation

of a phase-correlation stereo algorithm, Machine Vision and Applications, Springer-Verlag (2006)

17(2): 116–132. Article (CrossRef Link)

[19] J. Chhugani, M. Macy, A. Baransi, A. D. Nguyen, M. Hagog, S. Kumar, V. W. Lee, P. Dubey, and

Y. K. Chen, “Efficient implementation of sorting on multi-core SIMD CPU architecture,” Journal:

Proceedings of the VLDB Endowment, Vol. 1, Issue2, pp. 1313–1324, 2008.

Article (CrossRef Link)

[20] A. Kayi, Y. Yao, T. El-Ghazawi, and G. Newby, “Experimental evaluation of emerging multi-core

architectures,” In Proceeding of IPDPS 2007, pp. 1–6, 2007. Article (CrossRef Link)

[21] C. G. Kim and Y. S. Choi, "A High Performance Parallel DCT with OpenCL on Heterogeneous

Computing Environment," Multimedia Tools and Applications, Vol. 64, Issue 2, pp 475-489, May

2013. Article (CrossRef Link)

[22] H. Blume, J. von Livonius, L. Rotenberg, H. Bothe, J. Brakensiek, and T. G. Noll, “OpenMP-based

parallelization on an MPCore multiprocessor platform – A performance and power analysis,”

http://dx.doi.org/10.1109/IVS.2004.1336402
http://robotics.ee.uwa.edu.au/theses/2005-Stereo-Kuhl.pdf
http://dx.doi.org/10.1109/cvpr.1996.517074
http://dx.doi.org/10.1049/cp:19990274
http://dx.doi.org/10.1016/1049-9660(91)90027-m
http://dx.doi.org/10.1080/15599610802438680
http://dx.doi.org/10.1109/smbv.2001.988771
http://dx.doi.org/10.1109/cvpr.2007.383248
http://dx.doi.org/10.1007/s11432-009-0042-8
http://dx.doi.org/10.1109/icip.2006.312391
http://dx.doi.org/10.1109/date.2011.5763234
http://dx.doi.org/10.1109/icsamos.2010.5642077
http://dx.doi.org/10.1109/tip.2006.884931
http://dx.doi.org/10.1007/s00138-006-0018-2
http://dx.doi.org/10.14778/1454159.1454171
http://dx.doi.org/10.1109/ipdps.2007.370584
http://dx.doi.org/10.1007/s11042-012-1028-x

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 2, February 2015 741

Journal of Systems Architecture, Vol. 54, pp. 1019–1029, 2008. Article (CrossRef Link)

[23] A. Peleg and U. Weiser, “MMX technology extension to the Intel architecture,” IEEE Micro, Vol.

16, Issue 4, pp. 42–50, 1996. Article (CrossRef Link)

[24] Y. Song and Y. S. Ho, “Fast Disparity Map Estimation Using Multi-thread Parallel Processing,” in

Proc. of International Conference on Embedded Systems and Intelligent Technology (ICESIT), pp.

1 – 4, 2011. Article (CrossRef Link)

[25] C. G. Kim, D. H. Lee, and J. G. Kim, "Optimizing Image Processing on Multi-core CPUs with

Intel Parallel Programming Technologies," Multimedia Tools and Applications, Vol. 68, Issue 2,

pp 237-251, Jan. 2014. Article (CrossRef Link)

[26] C. G. Kim, "Parallel SAD for Fast Dense Disparity Map Using a Shared Memory Programming,"

Information Technology Convergence, Vol. 2, pp. 1055-1060, Jul. 2013. Article (CrossRef Link)

Cheong Ghil Kim received the B.S. in Computer Science from University of

Redlands, CA, U.S.A. in 1987. He received the M.S. and Ph.D. degree in Computer

Science from Yonsei University, Korea, in 2003 and 2006, respectively. Currently, he

is a professor at the Department of Computer Science, Namseoul University, Korea.

His research areas include Multimedia Embedded Systems, Mobile AR, and 3D

Contents.

YongSoo Choi was born in Kangwon Do, Korea, in 1972. He received the B.S.,

M.S. and Ph.D. degrees in the Department of Instrumentation and Control

Engineering from the Kangwon National University, Korea, in 1998, 2000 and 2006,

respectively. From 2006 to 2007, he was a research professor with the Center for

Technology Fusion in Construction, YonSei University, Korea. From 2007 to 2013,

he was a research professor with the Brain Korea 21 of Ubiquitous Information

Security, Korea University, Korea. He is currently a Assistant Professor with the

Division of Liberal Arts & Teaching, Sungkyul University, Korea. From 2013 to

present, he was a Delegate of Korea for ISO/IEC JTC1/SC29. His research interests

include multimedia signal processing, digital watermarking, steganography and

multimedia hashing. Dr. Choi is a member of the IEIE Computer Society. He is

currently a Editor in Chief of Journal of the Institute of Electronics Engineers of

Korea, the Section of Computer and Information, Korea. He also serve as Reviewer in

Journal of Multimedia Tools and Applications, LNCS Transactions on Data Hiding

and Multimedia Security and Transactions on Internet and Information Systems.

http://dx.doi.org/10.1016/j.sysarc.2008.04.001
http://dx.doi.org/10.1109/40.526924
http://icserv.gist.ac.kr/mis/publications/data/2011/ICESIT2011_Song.pdf
http://dx.doi.org/10.1007/s11042-011-0906-y
http://dx.doi.org/10.1007/978-94-007-6996-0_112

