
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 8, Aug. 2014 2796
Copyright ⓒ 2014 KSII

Adaptive Logarithmic Increase Congestion
Control Algorithm for Satellite Networks

Minsu Shin1, Mankyu Park1 , Deockgil Oh1, Byungchul Kim2and Jaeyong Lee2

1 Dept. of Satellite Wireless Convergence, Electronics and Telecommunications Research Institute
Daejeon, 305-700, S.KOREA

[e-mail: {msshin, neomkpark, dgoh}@etri.re.kr]
2 Dept. of Information and Communications, Chungnam National University

Daejeon, 305-764, S.KOREA
[e-mail: {byckim, jyl}@cnu.ac.kr]

*Corresponding author: Minsu Shin

Received February 17, 2014; revised May 9, 2014; accepted June 28, 2014; published August 29, 2014

Abstract

This paper presents a new algorithm called the adaptive logarithmic increase and adaptive
decrease algorithm (A-LIAD), which mainly addresses the Round-Trip Time (RTT) fairness
problem in satellite networks with a very high propagation delay as an alternative to the
current TCP congestion control algorithm. We defined a new increasing function in the
fashion of a logarithm depending on the increasing factor 𝜶, which is different from the other
logarithmic increase algorithm adopting a fixed value of 𝜶 = 2 leading to a binary increase. In
A-LIAD, the 𝜶 value is derived in the RTT function through the analysis. With the
modification of the increasing function applied for the congestion avoidance phase, a hybrid
scheme is also presented for the slow start phase. From this hybrid scheme, we can avoid an
overshooting problem during a slow start phase even without a SACK option. To verify the
feasibility of the algorithm for deployment in a high-speed and long-distance network, several
aspects are evaluated through an NS-2 simulation. We performed simulations for intra- and
inter-fairness as well as utilization in different conditions of varying RTT, bandwidth, and
PER. From these simulations, we showed that although A-LIAD is not the best in all aspects, it
provides a competitive performance in almost all aspects, especially in the start-up and packet
loss impact, and thus can be an alternative TCP congestion control algorithm for high BDP
networks including a satellite network.

Keywords: computer networks, wireless networks, wireless communications, congestion
control, satellite network

http://dx.doi.org/10.3837/tiis.2014.08.013

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 8, August 2014 2797

1. Introduction

Satellite networks are becoming an important candidate in information and communication
infrastructures as they provide several advantages to wireless Internet communications. They
generally provide wider coverage and higher bandwidth, and can be deployed relatively faster
than other terrestrial wireless networks. Moreover, continuous efforts have been made to
incorporate satellite systems with terrestrial networks for the purpose of higher service
availability [1], and new types of applications requiring a wideband transmission in a channel
are emerging nowadays [2]. These trends make satellite networks more attractive than ever
before. Nevertheless, satellite links pose some challenges to the congestion control operation
of the Transmission Control Protocol (TCP) [3]. The main challenges to the TCP performance
of satellite networks are the long Round-Trip Time (RTT), which is generally around 600
msec in bi-directional networks over a geostationary satellite, and the presence of a high
packet loss rate by random wireless errors, which cause a spurious TCP congestion control.

TCP Reno [4], TCP NewReno [5], and SACK TCP [6] are the standard versions of TCP
congestion control protocols currently deployed on the Internet, and they have achieved great
success in performing congestion avoidance and control. The key feature of standard TCP is
its congestion avoidance phase, which uses the additive increment multiplicative decrement
(AIMD) algorithm [4]. Being a window-based algorithm, TCP controls its sending rate by
maintaining a window size variable, W, which limits the number of unacknowledged packets
in the network from a single user. When a packet loss is detected, the TCP sender decreases its
sending window by half. On the other hand, the TCP sender increases its sending window by
one when a packet is successfully delivered. Under this algorithm, senders gently probe the
network for available bandwidth by cautiously increasing their sending rates, and sharply
reduce their sending rates when congestion is detected.

Based on TCP feature analyses over the past many years, several performance issues faced
by TCP/IP-based applications on satellite links have been reported. Their performance is
limited by the delay and probability of bit errors inherent in geosynchronous satellite systems.
These limitations are becoming more critical as new satellite systems offer much higher data
transmission rates than those available in the past.

Motivated by the observations above, we are focusing more on the impact of RTT in the
protocol design. After the “Slow Start (SS)” phase, standard TCP enters the “Congestion
Avoidance (CA)” phase, where the congestion window value is increased approximately
linearly by one for every RTT. As a result, TCP increases its sending rate proportionally to
1/RTT, making small RTT flows more aggressive than ones with a large RTT [5], [7]. Such a
behavior leads to underutilization and RTT unfairness issues when flows with a large RTT are
involved in a network.

Many contributions have been presented to enhance the TCP performance in high-speed
networks with long distances. While these algorithms provide their own advantages in various
performance metrics, most of them have an impact on the RTT of the flows. Even among the
variants adopting a logarithmic increase, i.e., LIAD [8], LogWestwood+ [9], BIC [10], etc., no
variants have presented this RTT fairness issue clearly. Herein, we present the dependence on
the RTT and packet loss rate of the LIAD approach from its performance analysis in Fig. 1. As
shown in Fig. 1, the average sending rate of the LIAD approach is decreased as the RTT of a
flow increases almost linearly.

2798 Minsu Shin et al.: Adaptive Logarithmic Increase Congestion Control Algorithm for Satellite Networks

Fig. 1. Average sending rate of LIAD in terms of RTT (@PER=10E-08)

The paper is structured as follows. In section 2, we review the existing variants. In section 3,

we present our proposed congestion control protocol. Next, we provide NS-2 simulation
results using several different metrics in section 4. Finally, in section 5, we offer a summary
conclusion of this paper.

2. Related Works
As we mentioned previously, several new protocols have been introduced to replace standard
TCP in high-speed networks with a long RTT. Since conventional TCP mechanisms have been
designed to be well operated in wired networks with moderate network capacity and very few
link errors, in which most packet losses are due to network congestion, they consequently
show inefficiencies and performance degradations in high bandwidth delay networks with a
relatively high number of link errors. A lot of effort has been devoted for TCP to operate well
even in these different environments, and we now briefly review the existing TCP
modifications to see how they work for such networks.

Several contributions are proposed to address TCP protocol issues with wireless links.
TCP-Westwood [12] tried to identify the cause of packet loss through an effective end-to-end
bandwidth estimation, such that it can avoid an unnecessary decrease of the congestion
window size and thus achieve better fairness and friendliness than Reno over the lossy link.
However, its dependency on the accuracy of bandwidth estimation should be verified in
various network scenarios, and the estimation performance can be improved by adopting more
sophisticated delay measurement algorithms [13]. TCP Veno [14] utilizes the buffer
estimation scheme of TCP Vegas for network congestion detection to differentiate the cause of
packet loss over a wireless access network. It modifies the increase and decrease policies of
TCP Vegas using this congestion state information, and thus it increases the congestion
window more conservatively during a congestion state, and decreases its congestion window
to 80% of the current size even in the event of a loss if the buffer utilization is not excessive.
Although TCP Veno improves the problem of proactive approaches in terms of fairness, there
is no significant effect over the standard algorithms [17]. TCP Jersey [15] and its enhancement,
TCP-NJ [16], have also been proposed as new TCP schemes capable of distinguishing a
wireless packet loss from congestion losses. TCP Jersey computes the available bandwidth
once every RTT using time-sliding window estimation, and this available bandwidth is used to

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 8, August 2014 2799

set the optimum congestion window. In addition, TCP-NJ enhances the performance of this
bandwidth estimation such that it can be immune to the reverse path conditions over which
ACK packets are delivered. In addition to the bandwidth estimation, they have considered a
congestion warning signal from the network as another criterion for loss differentiation. This
feature imposes a critical limitation in their wide deployment in real networks, as it requires all
routers in the network to be configured. Another type of TCP variant has been proposed to
enhance TCP performance in a satellite network, which typically has a very large bandwidth
and delay product. TCP-Peach [18] is a new congestion control scheme for improving the
goodput performance and fairness in satellite networks by substituting Slow Start with Sudden
Start and Fast Recovery with Rapid Recovery in the traditional TCP protocol. These two new
algorithms are based on the use of dummy segments, which are low-priority segments that do
not affect the network traffic, to probe the availability of network resources. TCP-Peach+ [19]
enhanced its previous version by introducing NIL segments instead of dummy segments.
Since they carry unacknowledged information, NIL segments can be used for error recovery as
well as probing the unused capacity of the network in two new algorithms, called Jump Start
and Quick Recovery. TCP-Peach and TCP-Peach+ use redundant segments with low priority
and require all the routers to support a priority mechanism for their intended improvements.
Moreover, for the generation and identification of the redundant segments, the sender and
receiver modifications are necessary, and can lead to a deployment problem in a real network.
To remove the performance dependence on RTT in heterogeneous networks including a long
RTT link such as a satellite connection, TCP Hybla [20] was presented. The basic idea of
modifications to the standard congestion control rules is that long RTT connections have the
same instantaneous transmission rate with a comparatively fast reference TCP connection with
a short RTT, such as wired connections. To this end, TCP Hybla introduces the normalized
factor, defined as the ratio between the actual RTT and the round trip time of the reference
connection, to make the congestion window of a long RTT connection increase exponentially.
TCP-Cherry [21] was proposed to improve TCP performance over satellite IP networks under
increased link errors by introducing a different type of low-priority probing packet, called a
supplement segment, which carry data that are not yet transmitted. Using this low-priority
probing packet, TCP-Cherry proposed two new algorithms, Fast-Forward Start and First-Aid
Recovery, replacing Slow Start and Fast Recovery in Reno to increase the congestion window
quickly from the connection start and differentiate the cause of packet loss, respectively. Even
though it was shown to have a better performance in terms of goodput and fairness, the same
limitations as described in TCP-Peach and TCP-Peach+ can be expected.

To address the under-utilization and RTT unfairness problems in high-speed and long-delay
networks, there are other approaches used to make their congestion windows increase more
rapidly when the current window size is small. For these purposes, BIC [10] adopted binary
searching for finding the optimal window size, in its Rapid Convergence phase, by computing
repeatedly the midpoint between two boundary points, Wmin and Wmax, and setting it to either
Wmin or Wmax according to the occurrence of the loss event. This technique allows bandwidth
probing to be more aggressive initially, and becomes less aggressive as the current window
size becomes closer to Wmax. As a result, the increase function becomes logarithmic. CUBIC
[11] is an enhanced version of the TCP BIC, and is less aggressive at startup, avoiding the
additive increase by adopting a cubic function of the elapsed time since the last packet loss
event for its congestion window update rules. This was later supported in terms of RTT
fairness and utilization through various experimental studies, although several concerns were
raised [22]. LogWestwood+ [9] proposed a logarithmic increase mechanism, in addition to the
adaptive decrease of Westwood+, for less sensitivity of RTT and high utilization of network

2800 Minsu Shin et al.: Adaptive Logarithmic Increase Congestion Control Algorithm for Satellite Networks

capacity. Since it increases the congestion window in a similar way as BIC, the congestion
window increases rapidly when the current value is small, and gently increases when
approaching an estimated maximum value. However, LogWestwood+ has not been
sufficiently verified for RTT fairness, while having good friendliness characteristics with
standard NewReno. Another protocol adopting a logarithmic increase was presented in LIAD
[8], which mainly addresses the impact of high bit errors in wireless networks. LIAD proposes
an accurate prediction of the initial ssthresh value and a change in the adaptive decrease factor
according to the congestion level, while maintaining the same increase function of
LogWestwood+. As a result of involving two new algorithms, LIAD can provide better
goodput performance and friendliness behavior with a high wireless error rate than other
logarithmic increase-type protocols, such as LogWestwood+, BIC, and CUBIC. However, it is
not evaluated in detail for RTT fairness.

And another interesting studies to allow self-organization for individual nodes by adjusting
their control parameters under the varying channel environments [24]. Although it presents
modelling wireless networks with CSMA, its control conept could be applied for TCP
friendliness which is one of main considerations to address in the paper.

3. The Proposed A-LIAD Algorithm
As mentioned above, since the TCP protocol dates back to the early and rather low-speed
wired networks, it requires an adaptation taking into account the network characteristic of a
large BDP in order to maintain high bandwidth utilization while being fair with existing
widely deployed TCP solutions.

Thus, we propose an adaptive logarithmic increase and adaptive decrease (A-LIAD)
algorithm. The conceptual idea of an adaptive logarithmic increase function is that each
congestion epoch should have the same time duration independent of the RTT. To this end,
during each congestion epoch, the adaptive logarithmic increase algorithm adjusts the
increasing parameter, 𝛼, in the function of the RTT so that a long RTT flow increases its
congestion window faster than a short RTT flow. During a slow start phase, A-LIAD adopts
the same exponential increase mechanism during the first half period of the slow start, and the
logarithmic increase during the next half period of the start. With this hybrid scheme, we can
avoid the overshooting problem, which is known to result in multiple packet losses and thus
severe performance degradation during a slow start phase. During the congestion avoidance
phase, delay-based max-probing is performed as a first step to find an appropriate 𝑊𝑊𝑚𝑎𝑥 value
that the network can hold without any expected packet losses. The process then enters the
adaptive logarithmic increase step until a packet loss occurs. When a packet loss is detected by
three duplicated ACKs, the protocol reduces its window through a decrease parameter, 𝛽,
which is adaptively determined based on the current RTT in the final step. A fast retransmit
and fast recovery are performed in the same way as in the standard TCP. The general
congestion window dynamics of A-LIAD are shown in Fig. 2.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 8, August 2014 2801

Window
size

time
Slow start Congestion avoidance

Exponential
increase

Logarithmic
increase

Adaptive
logarithmic

increase

Adaptive
decrease

Congestion
epoch

Max probing
(delay-based)

Wmax

(1-β)Wmax

ssthresh

½ ssthresh

Fig. 2. Window dynamics of the proposed protocol

3.1 Slow start behavior
A-LIAD adopts a hybrid increase function for a slow start phase. When a flow starts, it
estimates the network bandwidth delay product (BDP) using Hoe's estimation, and uses this
estimate as the initial ssthresh. By repeating this estimation every RTT during a slow start,
A-LIAD can update its adequate level of ssthresh such that it can adapt to the network
variation even if a new flow sharing the same bottleneck link enters. This process continues
until the end of the slow start phase. A-LIAD adopts the same exponential increase mechanism
until the first half period of the slow start (cwnd< (1/2)ssthresh), while the logarithmic
increase is used during the next half period of the slow start ((1/2)ssthresh<cwnd<ssthresh).
With this hybrid scheme, we can avoid the overshooting problem, which is known to result in
multiple packet losses and thus a severe performance degradation during a slow start phase.

Denoted by 𝑊𝑊(𝑡𝑡), the congestion window is expressed in segments, and through tγ, the time
at which half of the ssthresh value γ is reached, we use the following rule for a slow start phase:

𝑊𝑊(𝑡𝑡) = �
2𝑡/𝑅𝑇𝑇 ,
𝛾 + 𝛾�1 − 𝛾(1/2)𝑡/𝑅𝑇𝑇�,

0 ≤ 𝑡𝑡 < 𝑡𝑡𝛾
𝑡𝑡𝛾 ≤ 𝑡𝑡 < 𝑡𝑡2𝛾

 , 𝑆𝑆
 , 𝑆𝑆. (1)

By expressing the value 𝑊𝑊 of the congestion window in MSS units, the cwnd update rules

for each ACK reception are given by

 𝑊𝑊𝑖+1 = �
𝑊𝑊𝑖 + 1, 0 ≤ 𝑡𝑡 < 𝑡𝑡𝛾, 𝑆𝑆

𝑊𝑊𝑖 + � 𝛾
𝑊𝑖
− 1

2
� , 𝑡𝑡𝛾 ≤ 𝑡𝑡 < 𝑡𝑡2𝛾 , 𝑆𝑆. (2)

We will show in the simulation that this kind of increase function, called an S-function, can

avoid multiple packet losses owing to the known problem of a slow start overshoot by
reducing its increasing window rate around the network BDP value.

3.2 Congestion avoidance behavior
During the congestion avoidance phase, the A-LIAD protocol performs a logarithmic increase
step, adjusting its increasing rate adaptively according to its RTT after a delay-based
max-probing step, followed by an adaptive decrease step when a packet loss is detected based
on the reception of three consecutive duplicate ACKs.

2802 Minsu Shin et al.: Adaptive Logarithmic Increase Congestion Control Algorithm for Satellite Networks

For a logarithmic increase as the first step in the congestion avoidance phase, the maximum
window size, 𝑊𝑊𝑚𝑎𝑥, should be determined. The only information we can use to predict an
impending congestion and the resulting occurrence of a packet loss is a delay. Packet delays
increase abruptly just before a loss, although they change very slowly even when network
congestion increases [23]. When the ratio of the current RTT to the minimum RTT is smaller
than the threshold 𝛿 , the congestion window increases rapidly following a logarithmic
increase with an increasing factor 𝛼 = 2 since this region can be considered far from the severe
congestion level. On the other hand, the congestion window increases slowly with a linear
increase when the delay ratio becomes larger than the threshold since the congestion loss is
impending. From the simulation, 𝛿 = 1.93 gives the best results, and thus this value is used
throughout the simulation. The window update rule for each ACK reception is presented in
(3).

𝑊𝑊𝑖+1 = �
𝑊𝑊𝑖 + (𝑠𝑠𝑡𝑡ℎ𝑟𝑒𝑠ℎ/𝑊𝑊𝑖) − �1

2
� , 𝑅𝑇𝑇

𝑅𝑇𝑇𝑚𝑖𝑛
< 𝛿

𝑊𝑊𝑖 + 1, 𝑜𝑡𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (3)

After determining the maximum window size, 𝑊𝑊𝑚𝑎𝑥, through the delay-based max-probing

step, the protocol enters an adaptive logarithmic increase step after reducing the window
through the decreasing parameter, 𝛽.

Thus, the protocol starts the adaptive logarithmic increase step from (1 − 𝛽)𝑊𝑊𝑚𝑎𝑥and
increases the window until a packet loss occurs. We call the time period between the last
packet loss and current packet loss the congestion epoch. As shown in Fig. 2, during each
congestion epoch, the congestion window increases from (1 − 𝛽)𝑊𝑊𝑚𝑎𝑥 to 𝑊𝑊𝑚𝑎𝑥.

Denoted by 𝑊𝑊(𝑡𝑡) with the elapsed time since the last packet loss occurred, the congestion
window is expressed in segments as

𝑊𝑊(𝑡𝑡) = 𝑊𝑊𝑚𝑎𝑥�1 − 𝛽(1/𝛼)𝑡/𝑅𝑇𝑇�, 𝑡𝑡𝑐 ≤ 𝑡𝑡, 𝐶𝐴. (4)

where 𝑡𝑡𝑐 denotes the time when the last packet loss takes place. Note that the increasing rate is
governed by the parameter 𝛼. Different from the existing protocols adopting a logarithmic
increase with a fixed increasing rate of 𝛼 = 2, which leads to a binary increase [8]-[10], we
adaptively change the increasing parameter 𝛼 in the RTT function. Increasing parameter 𝛼
should be higher, and thus the protocol should be able to increase the window faster as the
RTT becomes longer such that consequently the protocol can provide good RTT fairness when
flows with different RTTs are competing in the same bottleneck link. The method for
determining the value of 𝛼 in terms of a flow's RTT is detailed in section 3.

We need to give the per ACK increment rules according to the window increasing function
in (4) to react to each ACK reception. We derive the total number of packets sent in the k-th
RTT, 𝑊𝑊𝑘, and then convert this number into the per-ACK increment.

𝑊𝑊𝑘+1 = 𝑊𝑊𝑘 + �1 − 1

𝛼
� (𝑊𝑊𝑚𝑎𝑥 −𝑊𝑊𝑘). (5)

Equation (5) shows the per-RTT increment rule of cwnd. Now, we can then derive the

per-ACK increment rules for the i-th ACK reception as follows

𝑊𝑊𝑖+1 = 𝑊𝑊𝑖 + �1 − 1
𝛼
� (𝑊𝑊𝑚𝑎𝑥 −𝑊𝑊𝑖)/𝑊𝑊𝑖 . (6)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 8, August 2014 2803

For an adaptive decrease of the congestion window upon a packet loss event happening after
entering an adaptive logarithmic increase phase, A-LIAD takes the network congestion level
into account in a similar way as H-TCP. Since it is difficult to assume that the bottleneck
buffer size is equal to the bandwidth-delay product in a high-speed network, setting the
decrease parameter as 𝛽 = 0.5 is not practical. Therefore, we adopt an adaptive decrease
mechanism such that the throughput is matched before and after a decrease, and decrease
parameter 𝛽 can be calculated as in (7).

𝛽 = 1 − 𝑅𝑇𝑇𝑚𝑖𝑛

𝑅𝑇𝑇𝑚𝑎𝑥
 , (7)

where RTTmin and RTTmaxare the minimum and maximum RTTs experienced by the flow,
respectively.

3.3 Analysis of the growth function in CA
This section analyzes A-LIAD's growth function during the congestion avoidance phase, as
indicated in Fig. 3. If the increasing parameter 𝛼 of all flows is the same regardless of their
RTTs, the duration of the congestion epoch for a short RTT flow will be shorter than that for a
long RTT flow. For this reason, the window of a long RTT flow will increase slower than that
of a short RTT flow, and therefore the RTT fairness characteristic worsens.

Fig. 3. Window dynamics of two flows with different RTTs

The basic concept of A-LIAD is to adjust the increasing parameter 𝛼 in terms of the RTT.

The window growth function of A-LIAD increases more aggressively with a higher 𝛼 ,
yielding a faster increase. Therefore, if 𝛼 can be adjusted to be proportional to the RTT, it can
guarantee RTT fairness between flows with different RTTs, and provide a significant
advantage for the protocol to be used in recent high BDP networks with wireless links. To the
best of our knowledge, this property is unique, and the existing logarithmic increase protocols
cannot provide this characteristic since they adopt a fixed increasing parameter 𝛼= 2, leading
to the same movement as a binary increase. This is the main point of using A-LIAD.
The objective here is to determine α in the RTT function, and to this end, the window
dynamics of A-LIAD are analyzed.

When the congestion window increases from (1 − 𝛽)𝑊𝑊𝑚𝑎𝑥 to 𝑊𝑊𝑚𝑎𝑥, the total number of
RTTs, 𝑁, within a congestion epoch is

2804 Minsu Shin et al.: Adaptive Logarithmic Increase Congestion Control Algorithm for Satellite Networks

𝑁 = 𝑙𝑜𝑔𝛼(𝛽 ∙ 𝑊𝑊𝑚𝑎𝑥), (8)

and the throughput 𝑅 of the increasing period, 𝑁 ∙ 𝑅𝑇𝑇, can be computed by

𝑅 = 𝑌

𝑁∙𝑅𝑇𝑇

 = 𝑌
𝑁∙𝑅𝑇𝑇

�𝑊𝑊𝑚𝑎𝑥 − � 𝛼
𝛼−1

�𝛽 ∙ 𝑊𝑊𝑚𝑎𝑥�

 = 𝑊𝑚𝑎𝑥
𝑁∙𝑅𝑇𝑇

�(𝑁 + 1) − � 𝛼
𝛼−1

�𝛽� .

 (9)

where 𝑌 denotes the total number of TCP segments sent in the period, 𝑁 ∙ 𝑅𝑇𝑇.

In (9), the response function of the protocol, which represents the average sending rate
during a congestion epoch, needs to be independent of the round-trip time. For this purpose,
we have to select the value of 𝛼 that can absorb the effect of the RTT so that each congestion
epoch has the same duration of time regardless of its RTT. In other words, we have to be able
to reduce the duration to a certain level by adjusting the 𝛼 value according to the RTT when
the RTT of a flow is long. This condition derives the following equation.

𝑙𝑜𝑔𝛼(𝛽∙𝑊𝑚𝑎𝑥(𝛼))

𝑙𝑜𝑔𝛼𝑟𝑒𝑓(𝛽∙𝑊𝑚𝑎𝑥�𝛼𝑟𝑒𝑓�)
= 𝑅𝑇𝑇𝑟𝑒𝑓

𝑅𝑇𝑇
. (10)

where 𝑊𝑊𝑚𝑎𝑥(𝛼) and 𝑊𝑊𝑚𝑎𝑥(𝛼𝑟𝑒𝑓)denote the 𝑊𝑊𝑚𝑎𝑥values when their increasing factors are 𝛼
and 𝛼𝑟𝑒𝑓, respectively.

We need to decide how much we should reduce the congestion epoch duration according to
the RTT, and therefore determine the reference levels to which we want to reduce the
congestion epoch duration. In A-LIAD, we try to keep the performance of LIAD when the
RTT is 75 ms, and thus 𝛼𝑟𝑒𝑓 = 2 and 𝑅𝑇𝑇𝑟𝑒𝑓 = 0.075. With the reference values, we can
reduce (10) into the following form:

𝑙𝑜𝑔𝛼(𝛽 ∙ 𝑊𝑊𝑚𝑎𝑥(𝛼)) = 1.5787/𝑅𝑇𝑇. (11)

However, 𝑊𝑊𝑚𝑎𝑥 is the function of 𝛼, and thus this equation is difficult to solve in a closed

form. To construct a mathematical function for 𝛼, we use the curve fitting method, and as a
consequence, derive 𝛼 as the function of the RTT.

4. Performance Evaluation

4.1 Network model
This section first defines the network model for an NS-2 simulation. Several performance
metrics, including goodput, fairness, and friendliness, are then defined for evaluations under
different topologies in heterogeneous wireless networks.

A network topology is shown in Fig. 4. The satellite TCP connections consist of wired links
followed by a satellite link, while the wired background traffic uses entirely wired paths. All
connections share an R1-R2 bottleneck link, whose bandwidth was deliberately limited to 10
or 50 Mbps according to the metrics.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 8, August 2014 2805

Fig. 4. Network model used for the simulation

4.2 Start-up performance
In this section, we evaluate the ability of each TCP variant to exploit the available bandwidth
of a GEO satellite network under the most favorable conditions (i.e., in the absence of
congestion owing to wired cross traffic and wireless link losses). To evaluate the start-up
dynamics, the throughput in Fig. 5 is measured at different elapsed times.

As a general comment, all protocols proposed for a high-speed and long-distance network
present a fast exploitation of bandwidth during a start-up duration of 30 sec. CUBIC, BIC,
STCP, and HSTCP have the highest throughput during the start-up phase. While the proposed
A-LIAD has the second highest throughput during the start-up, it also has about 80% of the
bandwidth, which is an acceptable level since the difference between CUBIC and A-LIAD is
about 3% of the bandwidth.

Fig. 5. Throughput performance at the start-up of a GEO satellite connection

We also show the congestion window dynamics of several TCP protocols in Fig. 6 to

demonstrate how to respond at the start-up. In particular, CUBIC operates at the network
capacity level, including the link capacity and network buffer, since its decrease factor β takes
a smaller value than other variants. Moreover, note that the SACK option is enabled for all
variants such that multiple losses during a slow-start phase can be nearly recovered within a
few rounds. Without the SACK option, which was not originally included in the variants, the
start-up performance would suffer from multiple losses during a slow-start phase.

To further investigate the start-up performance in terms of the overshooting problem during
a slow-start phase, let us examine the cwnd dynamics given in Fig. 7. It is known that standard
TCP has an overshooting problem during a slow-start phase since its exponential increase is so

2806 Minsu Shin et al.: Adaptive Logarithmic Increase Congestion Control Algorithm for Satellite Networks

aggressive that cwnd becomes almost twice the BDP, causing multiple losses and thus many
retransmissions and timeouts. The hybrid scheme adopted by A-LIAD tries to reduce the
increasing rate at around ssthresh estimated in the initial stage of the connection by
introducing a logarithmic increase triggered after the second half of ssthresh. From the
simulation evaluation, A-LIAD does not experience an overshooting during the SS phase and
enters the CA phase at the proper level, as shown in Fig. 7(a), while TCP-W and CUBIC are
shown to experience multiple window reductions after the end of the SS phase in Fig. 7(b). If
the SACK option is not enabled for the simulation, the performance of TCP-W and CUBIC
during the start-up phase will be affected by these multiple losses more severely than the
results in Fig. 7(b). This property of the hybrid scheme leads to the avoidance of multiple
losses even without the SACK option. This becomes important for short transfer flows since
they make up more than 70% of Internet traffic.

Fig. 6. Comparison of cwnd dynamics at a start-up

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 8, August 2014 2807

(a) window dynamics of A-LIAD (b) comparison of window dynamics with other variants

Fig. 7. Start-up performance of A-LIAD (a) and the comparison with other variants (b)

4.3 Fairness
In this section, we conduct simulations in the same multiple flow environment with C = 50
Mbps RTT = 100 ms, and varying PERs of 0%, 0.1%, and 1% in order to ensure the
intra-fairness property in the presence of packet losses. Even if some flows take more than
max fair rate, as shown in Fig. 8, most flows share almost an equal amount of bandwidth on
average over each PER level, and Jain’s fairness index of each case is around 99.5%.

Fig. 8. Intra-fairness: Throughput of 6 competing A-LIAD flows in terms of PER

2808 Minsu Shin et al.: Adaptive Logarithmic Increase Congestion Control Algorithm for Satellite Networks

Fig. 9. RTT fairness: throughput performance in terms of RTT.

Next, we evaluate the RTT fairness of the proposed A-LIAD. One of the design goals is for

A-LIAD to have less sensitivity to a long RTT by adapting increasing factor α proportionally
to the RTT. A simulation was performed with a single flow at C = 10 Mbps for various RTTs,
and the results are compared with CUBIC in Fig. 9. Within the range of 50 to 600 msec, the
results show that A-LIAD is almost unaffected by the RTT variations.

4.4 Impact of packet loss
In this section, the effects of wireless channel errors are investigated. In Fig. 10, variable PERs
are considered for a GEO satellite connection with RTT = 600 msec in the absence of
competing flows. A PER value of 0.1% significantly affects all variants, including those
designed to be error resilient, such as Westwood. This negative effect is dramatically
increased for a very high PER (e.g., 1%). This is mainly due to the slow reopening of cwnd,
which is caused by a very long RTT, after the loss recovery phases. Although the utilization of
A-LIAD is also affected by the wireless packet loss, resulting in around a 60% bandwidth
utilization, A-LIAD maintains the highest throughput in both PER = 0.1% and 1%.

Fig. 10. Wireless packet loss impact on throughput

To better highlight this point, we investigated the window size dynamics of the variants in

Fig. 11. While the other variants operate at much below BDP (in this case, 700 packets),

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 8, August 2014 2809

A-LIAD works at around a comparatively higher window leading to less sensitivity to a
wireless packet loss. This property is mainly due to the logarithmic increase during a lossless
period resulting in fast recovery of losses.

Fig. 11. Window dynamics of variants in terms of packet loss

4.5 Friendliness
To evaluate the friendliness (sometimes called inter-protocol fairness in other papers), we
configured five Group B flows to always run the NewReno protocol, while one flow of Group
A runs different TCP variants. As stated in section 2, the main reason behind a friendliness
evaluation is to ensure the possibility for incremental deployment of the proposed protocol.
This means that the proposed protocol should not necessarily be perfectly fair with the most
widely implemented TCP, New-Reno. However, its deployment should not degrade the
NewReno performance greatly.

2810 Minsu Shin et al.: Adaptive Logarithmic Increase Congestion Control Algorithm for Satellite Networks

Fig. 12. Friendliness with Reno: RTT = 25 ms, PER = 0

Following this observation, we measured the throughput share of Group B flows running

the NewReno protocol, and Group A running different protocols, including NewReno and
other variants. According to the results presented in Fig. 12, which are obtained from a
simulation with C = 10 Mbps and RTT = 25 msec for 300 sec, HSTCP and CUBIC
demonstrate the best friendliness characteristic owing to their TCP mode. On the other hand,
STCP and A-LIAD show the worst friendliness property for a short RTT, and they reduce the
throughput of the NewReno flows in Group B by 45% and 38%, respectively, while CUBIC
reduces the share of NewReno flows by 11%. However, as the delay increases, CUBIC also
steals significant bandwidth from the NewReno flows since its aggressiveness, shown in Fig.
13, has one of the highest values, along with STCP and A-LIAD, in the case of RTT = 600
msec. This is not in the favor of incremental deployment for the current Internet, where most
flows are based on the NewReno protocol. However, taking into account that CUBIC is
already a part of the OS Linux kernel, and its friendliness is the lowest among all the evaluated
protocols, A-LIAD will remain an attractive alternative for high-speed and long-distance
networks.

25ms 300ms 600ms
10

20

30

40

50

60

70

80

90

100

T
h
ro

u
g
h
p
u
t
s
h
a
re

 (
%

)

Reno

HSTCP

STCP

A-LIAD

BIC

CUBIC

Round Trip Time
Fig. 13. Aggressiveness of A-LIAD against Reno in terms of RTT

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 8, August 2014 2811

5. Conclusion

In this paper, we presented the adaptive logarithmic increase and adaptive decrease algorithm,
or A-LIAD, as an alternative to the current TCP congestion control algorithm. We described
that the convex curve is not appropriate for the increasing function of the congestion window,
and thus proposed a logarithmic increasing function that adaptively adjusts its increasing rate
in the RTT function. We defined a new increasing function in the fashion of a logarithm
depending on the increasing factor 𝛼, which is different from other logarithmic increase
algorithms adopting a fixed value of 𝛼 = 2, leading to a binary increase. A mathematical
analysis for the throughput of A-LIAD is represented, and the 𝛼 value is derived for an RTT
function through this analysis. With a modification of the increasing function applied for the
CA phase, a hybrid scheme was also presented for a slow-start phase. We used the logarithmic
increase function for the second half of a slow-start period, while for the first half period of a
slow start, an exponential increase function is used in the same way as standard TCP. From
this hybrid scheme, we can avoid an overshooting problem during a slow-start phase even
without a SACK option. To verify the feasibility of the algorithm for deployment in a
high-speed and long-distance network, several aspects were evaluated through an NS-2
simulation. We performed simulations for the start-up performance, intra-fairness, and
inter-fairness as well as the packet loss impacts under different conditions of varying RTT,
bandwidth, and PER. From these simulations, we showed that although A-LIAD is not the best
option in every aspect, it provides a competitive performance in almost all aspects, especially
during a start-up and for a packet loss impact, and thus can be an alternative TCP congestion
control algorithm for high BDP networks including satellite networks.

References
[1] J. M. Park, D. S. Ahn, H. J. Lee, et al., “Feasibility of Coexistence of Mobile-Satellite Service and

Mobile Service in Cofrequency Bands,” ETRI Journal, vol. 32, no. 2, pp. 255-264, Apr. 2010.
Article(CrossRef Link)

[2] B. Y. Kim, M. S. Bang, S. H. Kim, et al., “A Study on Feasibility of Dual-Channel 3DTV Service
via ATSC-M/H,” ETRI Journal, vol. 34, no. 1, pp. 17-23, Feb. 2012. Article(CrossRef Link)

[3] Y. Hu and V. O. H. Li, “Satellite-based internet: a tutorial,” IEEE Communications Magazine, vol.
39, no. 3, pp. 164–171, Mar. 2001. Article(CrossRef Link)

[4] V. Jacobson, “Congestion avoidance and control,” ACM Computer Communication Review, vol.
18, pp. 314–329, Aug. 1988. Article(CrossRef Link)

[5] Internet RFC 6582, The NewReno Modification to TCP’s Fast Recovery algorithm, IETF, Apr.
2012.

[6] Internet RFC 2018, TCP Selective Acknowledgment Options, IETF, Oct. 1996
[7] J. Padhye, V. Firoiu, D. Towsley, et al., “Modeling TCP throughput: A simple model and its

empirical validation,” in Proc. of ACM SIGCOMM, 1998. Article(CrossRef Link)
[8] B. J. Chang, S. Y. Lin, and J. Y. Jin, “LIAD: Adaptive bandwidth prediction based Logarithmic

Increase Adaptive Decrease for TCP congestioncontrol in heterogeneous wireless networks,”
Computer Networks, vol. 53, issue 14, pp. 2566–2585, Sep. 2009. Article(CrossRef Link)

[9] D. Kliazovich, F. Granelli, and D. Miorandi, “Logarithmic window increase for TCP Westwood+
for improvement in high speed, longdistance networks,” Computer Networks, vol. 52, no. 12, pp.
2395–2410, Aug. 2008. Article(CrossRef Link)

[10] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control for fast long-distance
networks,” in Proc. of IEEE INFOCOM, 2004. Article(CrossRef Link)

http://dx.doi.org/10.4218/etrij.10.1409.0066
http://dx.doi.org/10.4218/etrij.12.0111.0270
http://dx.doi.org/10.1109/35.910603
http://dx.doi.org/10.1145/52325.52356
http://dx.doi.org/10.1145/285237.285291
http://dx.doi.org/10.1016/j.comnet.2009.05.010
http://dx.doi.org/10.1016/j.comnet.2008.04.018
http://dx.doi.org/10.1109/INFCOM.2004.1354672

2812 Minsu Shin et al.: Adaptive Logarithmic Increase Congestion Control Algorithm for Satellite Networks

[11] S. Ha, I. Rhee and L. Xu, “CUBIC : A new TCP-friendly high-speed TCPvariant,” ACM SIGOPS
Operating Systems Review, vol. 42, no. 5, pp 64-74. Jul. 2008. Article(CrossRef Link)

[12] C. Casetti, M. Gerla, S. Mascolo, et al., “TCP Westwood : end-to-end congestion control for
wired/wireless networks,” Wireless Networks, vol. 8, pp. 467-479, 2002. Article(CrossRef Link)

[13] M. Aoki, E. Oki, and R. R. Cessa, “Measurement Scheme for One-Way Delay Variation with
Detection and Removal of Clock Skew,” ETRI Journal, vol. 32, no. 6, pp. 854-862, Dec. 2010.
Article(CrossRef Link)

[14] C. P. Fu and S. C. Liew, “TCP Veno : TCP enhancement for transmission over wireless access
network,” IEEE J. Sel. Areas Commun., vol. 21, no. 2, pp. 216-228, Feb. 2003.
 Article(CrossRef Link)

[15] K. Xu, Y. Tian, and N. Ansari,“TCP-Jersey for wireless IP communications,” IEEE J. Sel. Areas
Commun., vol. 22, pp. 747-756, 2004. Article(CrossRef Link)

[16] K. Xu, Y. Tian, and N. Ansari, “Improving TCP performance in integrated wireless
communications networks,” Computer Networks, vol. 47, pp. 219-237, 2005.
Article(CrossRef Link)

[17] A. Afanasyev, N. Tilley, P. Reiher, et al., “Host-to-Host Control for TCP,” IEEE Communications
Survey & Tutorials, vol. 12, no. 3, pp. 547-566, Third Quarter, 2010. Article(CrossRef Link)

[18] I. F. Akyildiz, G. Morabito, and S. Palazzo, “TCP peach : A new congestion control scheme for
satellite IP networks,” IEEE/ACM Trans. Networking, vol. 9, no. 3, pp. 307-321, Jun. 2001.
Article(CrossRef Link)

[19] I. F. Akuildiz, X. Zhang, and J. Fang, “TCP Peach+ : enhancement of TCP Peach for satellite IP
networks,” IEEE Communications Letters, vol. 6, no. 7, pp. 303-305, Jul. 2002.
Article(CrossRef Link)

[20] C. Caini and R. Firrincieli, “TCP Hybla: a TCP Enhancement for Heterogeneous Networks,”
International Journal of Satellite Communications and Networking, vol. 22, no. 5, pp. 547–566,
Sep. 2004. Article(CrossRef Link)

[21] S. Utsumi, S. M. S. Zabir, and N. Shiratori, “TCP-Cherry : A new approach for TCP congestion
control over satellite IP networks,” Computer Communications, vol. 31, issue 10, pp. 2541-2561,
Jun. 2008. Article(CrossRef Link)

[22] D. J. Leith, R. N. Shorten, and G. McCullagh, “Experimental Evaluation of Cubic-TCP,” in Proc.
of Protocols for Fast Long Distance Networks (PFLDnet), Los Angeles, 2007.

[23] S. B. Moon, Measurement and Analysis of End-to-End Delay and Loss in the Internet, doctorial
dissertation, University of Massachusetts Amherst, Massachusetts, Jan. 2000.

[24] Z. Shi, C. Beard and K. Mitchell, “Analytical Models for Understanding Space, Backoff and Flow
Correlation in CSMA Wireless Networks,” Wireless Networks, vol. 19, issue 3, pp. 393-409, Apr.
2013. Article(CrossRef Link)

http://dx.doi.org/10.1145/1400097.1400105
http://dx.doi.org/10.1023/A:1016590112381
http://dx.doi.org/10.4218/etrij.10.0109.0611
http://dx.doi.org/10.1109/JSAC.2002.807336
http://dx.doi.org/10.1109/JSAC.2004.825989
http://dx.doi.org/10.1016/j.comnet.2004.07.006
http://dx.doi.org/10.1109/SURV.2010.042710.00114
http://dx.doi.org/10.1109/90.929853
http://dx.doi.org/10.1109/LCOMM.2002.801317
http://dx.doi.org/10.1002/sat.799
http://dx.doi.org/10.1016/j.comcom.2008.03.029
http://dx.doi.org/10.1007/s11276-012-0474-8

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 8, August 2014 2813

Minsu Shin received his BS and MS degrees in electrical engineering from Korea
Aerospace University, Seoul, Korea in 1998 and 2000, respectively, and Ph.D degrees
in Computer Networks from Chungnam National University in 2011. Since he joined
the Electronics and Telecommunications Research Institute (ETRI) in 2000, he has
worked for satellite communication systems and broadcasting systems until now. Now
his research interests are satellite communication network design, wireless resource
management, wireless TCP and cross-layer enhancement.

Mankyu Park received the B.S. and M.S. degrees, from Kongju National University
in 1999 and 2001, respectively. He received the Ph.D. degree in Computer Networks
from Chungnam National University in 2011. In 2009, he joined the Electronics and
Telecommunications Research Institute (ETRI), where he is a Senior Member of
Engineering Staff in Satellite Broadcasting and Telecommunications Convergence
Research Team. His research interests include Internet protocols, traffic control, TCP
congestion control, performance analysis and mobile communication.

Deockgil Oh received his B.S. degree in Electronics Engineering Department from
Seoul National University (SNU) in 1980. He received the M.S. and Ph.D degrees in
Electronics Engineering from SNU, Korea, in 1984 and 1996, respectively. He joined
ETRI in 1982, where he is currently working as a team leader at Team of Satellite
Broadcasting and Communication Convergence. His research interests include wireless
access technology, mobile communication and broadcasting system and future
generation satellite broadcasting architectures.

Byungchul Kim received the B.S. degree in electronics engineering from Seoul
National University in 1988, and M.S. and Ph.D degrees in electronic engineering from
Korea Advanced Institute of Science and Technology (KAIST), Korea, in 1990 and
1996, respectively. He is currently a professor at the Department of Information and
Communication Engineering of Chungnam National University, Korea since 1999.
Also, from 1993 to 1999, he worked as a Research Engineer at the Samsung Electronics.
His research interests include computer networks, wireless internet, sensor networks
and mobile communications.

Jaeyong Lee received the B.S. degree in Electronics engineering from Seoul National
University in 1988, and M.S. and Ph.D degrees in electronic engineering from Korea
Advanced Institute of Science and Technology (KAIST), Korea, in 1990 and 1995. He
is currently a professor at the Department of Information and Communication
Engineering of Chungnam National University, Korea since 1995. Also, from 1990 to
1995, he worked as a research engineer at the Digicom Institute of Information and
Communications. His research interests include Internet protocols, traffic control,
performance analysis and mobile internet.

