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Abstract 
 

This paper presents a new algorithm called the adaptive logarithmic increase and adaptive 
decrease algorithm (A-LIAD), which mainly addresses the Round-Trip Time (RTT) fairness 
problem in satellite networks with a very high propagation delay as an alternative to the 
current TCP congestion control algorithm. We defined a new increasing function in the 
fashion of a logarithm depending on the increasing factor 𝜶, which is different from the other 
logarithmic increase algorithm adopting a fixed value of 𝜶 = 2 leading to a binary increase. In 
A-LIAD, the 𝜶  value is derived in the RTT function through the analysis. With the 
modification of the increasing function applied for the congestion avoidance phase, a hybrid 
scheme is also presented for the slow start phase. From this hybrid scheme, we can avoid an 
overshooting problem during a slow start phase even without a SACK option. To verify the 
feasibility of the algorithm for deployment in a high-speed and long-distance network, several 
aspects are evaluated through an NS-2 simulation. We performed simulations for intra- and 
inter-fairness as well as utilization in different conditions of varying RTT, bandwidth, and 
PER. From these simulations, we showed that although A-LIAD is not the best in all aspects, it 
provides a competitive performance in almost all aspects, especially in the start-up and packet 
loss impact, and thus can be an alternative TCP congestion control algorithm for high BDP 
networks including a satellite network. 
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1. Introduction 

Satellite networks are becoming an important candidate in information and communication 
infrastructures as they provide several advantages to wireless Internet communications. They 
generally provide wider coverage and higher bandwidth, and can be deployed relatively faster 
than other terrestrial wireless networks. Moreover, continuous efforts have been made to 
incorporate satellite systems with terrestrial networks for the purpose of higher service 
availability [1], and new types of applications requiring a wideband transmission in a channel 
are emerging nowadays [2]. These trends make satellite networks more attractive than ever 
before. Nevertheless, satellite links pose some challenges to the congestion control operation 
of the Transmission Control Protocol (TCP) [3]. The main challenges to the TCP performance 
of satellite networks are the long Round-Trip Time (RTT), which is generally around 600 
msec in bi-directional networks over a geostationary satellite, and the presence of a high 
packet loss rate by random wireless errors, which cause a spurious TCP congestion control.  

TCP Reno [4], TCP NewReno [5], and SACK TCP [6] are the standard versions of TCP 
congestion control protocols currently deployed on the Internet, and they have achieved great 
success in performing congestion avoidance and control. The key feature of standard TCP is 
its congestion avoidance phase, which uses the additive increment multiplicative decrement 
(AIMD) algorithm [4]. Being a window-based algorithm, TCP controls its sending rate by 
maintaining a window size variable, W, which limits the number of unacknowledged packets 
in the network from a single user. When a packet loss is detected, the TCP sender decreases its 
sending window by half. On the other hand, the TCP sender increases its sending window by 
one when a packet is successfully delivered. Under this algorithm, senders gently probe the 
network for available bandwidth by cautiously increasing their sending rates, and sharply 
reduce their sending rates when congestion is detected. 

Based on TCP feature analyses over the past many years, several performance issues faced 
by TCP/IP-based applications on satellite links have been reported. Their performance is 
limited by the delay and probability of bit errors inherent in geosynchronous satellite systems. 
These limitations are becoming more critical as new satellite systems offer much higher data 
transmission rates than those available in the past.  

Motivated by the observations above, we are focusing more on the impact of RTT in the 
protocol design. After the “Slow Start (SS)” phase, standard TCP enters the “Congestion 
Avoidance (CA)” phase, where the congestion window value is increased approximately 
linearly by one for every RTT. As a result, TCP increases its sending rate proportionally to 
1/RTT, making small RTT flows more aggressive than ones with a large RTT [5], [7]. Such a 
behavior leads to underutilization and RTT unfairness issues when flows with a large RTT are 
involved in a network. 

Many contributions have been presented to enhance the TCP performance in high-speed 
networks with long distances. While these algorithms provide their own advantages in various 
performance metrics, most of them have an impact on the RTT of the flows. Even among the 
variants adopting a logarithmic increase, i.e., LIAD [8], LogWestwood+ [9], BIC [10], etc., no 
variants have presented this RTT fairness issue clearly. Herein, we present the dependence on 
the RTT and packet loss rate of the LIAD approach from its performance analysis in Fig. 1. As 
shown in Fig. 1, the average sending rate of the LIAD approach is decreased as the RTT of a 
flow increases almost linearly. 
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Fig. 1. Average sending rate of LIAD in terms of RTT (@PER=10E-08) 

 
The paper is structured as follows. In section 2, we review the existing variants. In section 3, 

we present our proposed congestion control protocol. Next, we provide NS-2 simulation 
results using several different metrics in section 4. Finally, in section 5, we offer a summary 
conclusion of this paper. 

2. Related Works 
As we mentioned previously, several new protocols have been introduced to replace standard 
TCP in high-speed networks with a long RTT. Since conventional TCP mechanisms have been 
designed to be well operated in wired networks with moderate network capacity and very few 
link errors, in which most packet losses are due to network congestion, they consequently 
show inefficiencies and performance degradations in high bandwidth delay networks with a 
relatively high number of link errors. A lot of effort has been devoted for TCP to operate well 
even in these different environments, and we now briefly review the existing TCP 
modifications to see how they work for such networks. 

Several contributions are proposed to address TCP protocol issues with wireless links. 
TCP-Westwood [12] tried to identify the cause of packet loss through an effective end-to-end 
bandwidth estimation, such that it can avoid an unnecessary decrease of the congestion 
window size and thus achieve better fairness and friendliness than Reno over the lossy link. 
However, its dependency on the accuracy of bandwidth estimation should be verified in 
various network scenarios, and the estimation performance can be improved by adopting more 
sophisticated delay measurement algorithms [13]. TCP Veno [14] utilizes the buffer 
estimation scheme of TCP Vegas for network congestion detection to differentiate the cause of 
packet loss over a wireless access network. It modifies the increase and decrease policies of 
TCP Vegas using this congestion state information, and thus it increases the congestion 
window more conservatively during a congestion state, and decreases its congestion window 
to 80% of the current size even in the event of a loss if the buffer utilization is not excessive. 
Although TCP Veno improves the problem of proactive approaches in terms of fairness, there 
is no significant effect over the standard algorithms [17]. TCP Jersey [15] and its enhancement, 
TCP-NJ [16], have also been proposed as new TCP schemes capable of distinguishing a 
wireless packet loss from congestion losses. TCP Jersey computes the available bandwidth 
once every RTT using time-sliding window estimation, and this available bandwidth is used to 
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set the optimum congestion window. In addition, TCP-NJ enhances the performance of this 
bandwidth estimation such that it can be immune to the reverse path conditions over which 
ACK packets are delivered. In addition to the bandwidth estimation, they have considered a 
congestion warning signal from the network as another criterion for loss differentiation. This 
feature imposes a critical limitation in their wide deployment in real networks, as it requires all 
routers in the network to be configured. Another type of TCP variant has been proposed to 
enhance TCP performance in a satellite network, which typically has a very large bandwidth 
and delay product. TCP-Peach [18] is a new congestion control scheme for improving the 
goodput performance and fairness in satellite networks by substituting Slow Start with Sudden 
Start and Fast Recovery with Rapid Recovery in the traditional TCP protocol. These two new 
algorithms are based on the use of dummy segments, which are low-priority segments that do 
not affect the network traffic, to probe the availability of network resources. TCP-Peach+ [19] 
enhanced its previous version by introducing NIL segments instead of dummy segments. 
Since they carry unacknowledged information, NIL segments can be used for error recovery as 
well as probing the unused capacity of the network in two new algorithms, called Jump Start 
and Quick Recovery. TCP-Peach and TCP-Peach+ use redundant segments with low priority 
and require all the routers to support a priority mechanism for their intended improvements. 
Moreover, for the generation and identification of the redundant segments, the sender and 
receiver modifications are necessary, and can lead to a deployment problem in a real network. 
To remove the performance dependence on RTT in heterogeneous networks including a long 
RTT link such as a satellite connection, TCP Hybla [20] was presented. The basic idea of 
modifications to the standard congestion control rules is that long RTT connections have the 
same instantaneous transmission rate with a comparatively fast reference TCP connection with 
a short RTT, such as wired connections. To this end, TCP Hybla introduces the normalized 
factor, defined as the ratio between the actual RTT and the round trip time of the reference 
connection, to make the congestion window of a long RTT connection increase exponentially. 
TCP-Cherry [21] was proposed to improve TCP performance over satellite IP networks under 
increased link errors by introducing a different type of low-priority probing packet, called a 
supplement segment, which carry data that are not yet transmitted. Using this low-priority 
probing packet, TCP-Cherry proposed two new algorithms, Fast-Forward Start and First-Aid 
Recovery, replacing Slow Start and Fast Recovery in Reno to increase the congestion window 
quickly from the connection start and differentiate the cause of packet loss, respectively. Even 
though it was shown to have a better performance in terms of goodput and fairness, the same 
limitations as described in TCP-Peach and TCP-Peach+ can be expected. 

To address the under-utilization and RTT unfairness problems in high-speed and long-delay 
networks, there are other approaches used to make their congestion windows increase more 
rapidly when the current window size is small. For these purposes, BIC [10] adopted binary 
searching for finding the optimal window size, in its Rapid Convergence phase, by computing 
repeatedly the midpoint between two boundary points, Wmin and Wmax, and setting it to either 
Wmin or Wmax according to the occurrence of the loss event. This technique allows bandwidth 
probing to be more aggressive initially, and becomes less aggressive as the current window 
size becomes closer to Wmax. As a result, the increase function becomes logarithmic. CUBIC 
[11] is an enhanced version of the TCP BIC, and is less aggressive at startup, avoiding the 
additive increase by adopting a cubic function of the elapsed time since the last packet loss 
event for its congestion window update rules. This was later supported in terms of RTT 
fairness and utilization through various experimental studies, although several concerns were 
raised [22]. LogWestwood+ [9] proposed a logarithmic increase mechanism, in addition to the 
adaptive decrease of Westwood+, for less sensitivity of RTT and high utilization of network 
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capacity. Since it increases the congestion window in a similar way as BIC, the congestion 
window increases rapidly when the current value is small, and gently increases when 
approaching an estimated maximum value. However, LogWestwood+ has not been 
sufficiently verified for RTT fairness, while having good friendliness characteristics with 
standard NewReno. Another protocol adopting a logarithmic increase was presented in LIAD 
[8], which mainly addresses the impact of high bit errors in wireless networks. LIAD proposes 
an accurate prediction of the initial ssthresh value and a change in the adaptive decrease factor 
according to the congestion level, while maintaining the same increase function of 
LogWestwood+. As a result of involving two new algorithms, LIAD can provide better 
goodput performance and friendliness behavior with a high wireless error rate than other 
logarithmic increase-type protocols, such as LogWestwood+, BIC, and CUBIC. However, it is 
not evaluated in detail for RTT fairness. 

And another interesting studies to allow self-organization for individual nodes by adjusting 
their control parameters under the varying channel environments [24]. Although it presents 
modelling wireless networks with CSMA, its control conept could be applied for TCP 
friendliness which is one of main considerations to address in the paper.  

3. The Proposed A-LIAD Algorithm 
As mentioned above, since the TCP protocol dates back to the early and rather low-speed 
wired networks, it requires an adaptation taking into account the network characteristic of a 
large BDP in order to maintain high bandwidth utilization while being fair with existing 
widely deployed TCP solutions.  

Thus, we propose an adaptive logarithmic increase and adaptive decrease (A-LIAD) 
algorithm. The conceptual idea of an adaptive logarithmic increase function is that each 
congestion epoch should have the same time duration independent of the RTT. To this end, 
during each congestion epoch, the adaptive logarithmic increase algorithm adjusts the 
increasing parameter, 𝛼, in the function of the RTT so that a long RTT flow increases its 
congestion window faster than a short RTT flow. During a slow start phase, A-LIAD adopts 
the same exponential increase mechanism during the first half period of the slow start, and the 
logarithmic increase during the next half period of the start. With this hybrid scheme, we can 
avoid the overshooting problem, which is known to result in multiple packet losses and thus 
severe performance degradation during a slow start phase. During the congestion avoidance 
phase, delay-based max-probing is performed as a first step to find an appropriate 𝑊𝑊𝑚𝑎𝑥 value 
that the network can hold without any expected packet losses. The process then enters the 
adaptive logarithmic increase step until a packet loss occurs. When a packet loss is detected by 
three duplicated ACKs, the protocol reduces its window through a decrease parameter, 𝛽, 
which is adaptively determined based on the current RTT in the final step. A fast retransmit 
and fast recovery are performed in the same way as in the standard TCP. The general 
congestion window dynamics of A-LIAD are shown in Fig. 2. 
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Fig. 2. Window dynamics of the proposed protocol 

 

3.1 Slow start behavior 
A-LIAD adopts a hybrid increase function for a slow start phase. When a flow starts, it 
estimates the network bandwidth delay product (BDP) using Hoe's estimation, and uses this 
estimate as the initial ssthresh. By repeating this estimation every RTT during a slow start, 
A-LIAD can update its adequate level of ssthresh such that it can adapt to the network 
variation even if a new flow sharing the same bottleneck link enters. This process continues 
until the end of the slow start phase. A-LIAD adopts the same exponential increase mechanism 
until the first half period of the slow start (cwnd< (1/2)ssthresh), while the logarithmic 
increase is used during the next half period of the slow start ((1/2)ssthresh<cwnd<ssthresh). 
With this hybrid scheme, we can avoid the overshooting problem, which is known to result in 
multiple packet losses and thus a severe performance degradation during a slow start phase. 

Denoted by 𝑊𝑊(𝑡𝑡), the congestion window is expressed in segments, and through tγ, the time 
at which half of the ssthresh value γ is reached, we use the following rule for a slow start phase: 

 

𝑊𝑊(𝑡𝑡) =  �
2𝑡/𝑅𝑇𝑇 ,                                
𝛾 + 𝛾�1 − 𝛾(1/2)𝑡/𝑅𝑇𝑇�,

0 ≤ 𝑡𝑡 < 𝑡𝑡𝛾
𝑡𝑡𝛾 ≤ 𝑡𝑡 < 𝑡𝑡2𝛾

 , 𝑆𝑆
  , 𝑆𝑆.   (1) 

 
By expressing the value 𝑊𝑊 of the congestion window in MSS units, the cwnd update rules 

for each ACK reception are given by 
 

 𝑊𝑊𝑖+1 = �
𝑊𝑊𝑖 + 1,               0 ≤ 𝑡𝑡 < 𝑡𝑡𝛾, 𝑆𝑆

𝑊𝑊𝑖 + � 𝛾
𝑊𝑖
− 1

2
� , 𝑡𝑡𝛾 ≤ 𝑡𝑡 < 𝑡𝑡2𝛾 , 𝑆𝑆.   (2) 

 
We will show in the simulation that this kind of increase function, called an S-function, can 

avoid multiple packet losses owing to the known problem of a slow start overshoot by 
reducing its increasing window rate around the network BDP value. 
 

3.2 Congestion avoidance behavior 
During the congestion avoidance phase, the A-LIAD protocol performs a logarithmic increase 
step, adjusting its increasing rate adaptively according to its RTT after a delay-based 
max-probing step, followed by an adaptive decrease step when a packet loss is detected based 
on the reception of three consecutive duplicate ACKs. 
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For a logarithmic increase as the first step in the congestion avoidance phase, the maximum 
window size, 𝑊𝑊𝑚𝑎𝑥, should be determined. The only information we can use to predict an 
impending congestion and the resulting occurrence of a packet loss is a delay. Packet delays 
increase abruptly just before a loss, although they change very slowly even when network 
congestion increases [23]. When the ratio of the current RTT to the minimum RTT is smaller 
than the threshold 𝛿 , the congestion window increases rapidly following a logarithmic 
increase with an increasing factor 𝛼 = 2 since this region can be considered far from the severe 
congestion level. On the other hand, the congestion window increases slowly with a linear 
increase when the delay ratio becomes larger than the threshold since the congestion loss is 
impending. From the simulation, 𝛿 = 1.93 gives the best results, and thus this value is used 
throughout the simulation. The window update rule for each ACK reception is presented in 
(3). 

 

𝑊𝑊𝑖+1 = �
𝑊𝑊𝑖 + (𝑠𝑠𝑡𝑡ℎ𝑟𝑒𝑠ℎ/𝑊𝑊𝑖) − �1

2
� , 𝑅𝑇𝑇

𝑅𝑇𝑇𝑚𝑖𝑛
< 𝛿

𝑊𝑊𝑖 + 1, 𝑜𝑡𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
   (3) 

 
After determining the maximum window size, 𝑊𝑊𝑚𝑎𝑥, through the delay-based max-probing 

step, the protocol enters an adaptive logarithmic increase step after reducing the window 
through the decreasing parameter, 𝛽.  

Thus, the protocol starts the adaptive logarithmic increase step from (1 − 𝛽)𝑊𝑊𝑚𝑎𝑥and 
increases the window until a packet loss occurs. We call the time period between the last 
packet loss and current packet loss the congestion epoch. As shown in Fig. 2, during each 
congestion epoch, the congestion window increases from (1 − 𝛽)𝑊𝑊𝑚𝑎𝑥 to 𝑊𝑊𝑚𝑎𝑥. 

Denoted by 𝑊𝑊(𝑡𝑡) with the elapsed time since the last packet loss occurred, the congestion 
window is expressed in segments as  

 
𝑊𝑊(𝑡𝑡) = 𝑊𝑊𝑚𝑎𝑥�1 − 𝛽(1/𝛼)𝑡/𝑅𝑇𝑇�,     𝑡𝑡𝑐 ≤ 𝑡𝑡,    𝐶𝐴.   (4) 

 
where 𝑡𝑡𝑐 denotes the time when the last packet loss takes place. Note that the increasing rate is 
governed by the parameter 𝛼. Different from the existing protocols adopting a logarithmic 
increase with a fixed increasing rate of 𝛼 = 2, which leads to a binary increase [8]-[10], we 
adaptively change the increasing parameter 𝛼 in the RTT function. Increasing parameter 𝛼 
should be higher, and thus the protocol should be able to increase the window faster as the 
RTT becomes longer such that consequently the protocol can provide good RTT fairness when 
flows with different RTTs are competing in the same bottleneck link. The method for 
determining the value of 𝛼 in terms of a flow's RTT is detailed in section 3. 

We need to give the per ACK increment rules according to the window increasing function 
in (4) to react to each ACK reception. We derive the total number of packets sent in the k-th 
RTT, 𝑊𝑊𝑘, and then convert this number into the per-ACK increment. 

 
𝑊𝑊𝑘+1 = 𝑊𝑊𝑘 + �1 − 1

𝛼
� (𝑊𝑊𝑚𝑎𝑥 −𝑊𝑊𝑘).    (5) 

 
Equation (5) shows the per-RTT increment rule of cwnd. Now, we can then derive the 

per-ACK increment rules for the i-th ACK reception as follows 
 

𝑊𝑊𝑖+1 = 𝑊𝑊𝑖 + �1 − 1
𝛼
� (𝑊𝑊𝑚𝑎𝑥 −𝑊𝑊𝑖)/𝑊𝑊𝑖 .   (6) 
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For an adaptive decrease of the congestion window upon a packet loss event happening after 
entering an adaptive logarithmic increase phase, A-LIAD takes the network congestion level 
into account in a similar way as H-TCP. Since it is difficult to assume that the bottleneck 
buffer size is equal to the bandwidth-delay product in a high-speed network, setting the 
decrease parameter as 𝛽 = 0.5 is not practical. Therefore, we adopt an adaptive decrease 
mechanism such that the throughput is matched before and after a decrease, and decrease 
parameter 𝛽 can be calculated as in (7). 

 
𝛽 = 1 − 𝑅𝑇𝑇𝑚𝑖𝑛

𝑅𝑇𝑇𝑚𝑎𝑥
  ,      (7) 

 
where RTTmin and RTTmaxare the minimum and maximum RTTs experienced by the flow, 
respectively. 
 

3.3 Analysis of the growth function in CA 
This section analyzes A-LIAD's growth function during the congestion avoidance phase, as 
indicated in Fig. 3. If the increasing parameter 𝛼 of all flows is the same regardless of their 
RTTs, the duration of the congestion epoch for a short RTT flow will be shorter than that for a 
long RTT flow. For this reason, the window of a long RTT flow will increase slower than that 
of a short RTT flow, and therefore the RTT fairness characteristic worsens.  
 
 

 
Fig. 3. Window dynamics of two flows with different RTTs 

 
The basic concept of A-LIAD is to adjust the increasing parameter 𝛼 in terms of the RTT. 

The window growth function of A-LIAD increases more aggressively with a higher 𝛼 , 
yielding a faster increase. Therefore, if 𝛼 can be adjusted to be proportional to the RTT, it can 
guarantee RTT fairness between flows with different RTTs, and provide a significant 
advantage for the protocol to be used in recent high BDP networks with wireless links. To the 
best of our knowledge, this property is unique, and the existing logarithmic increase protocols 
cannot provide this characteristic since they adopt a fixed increasing parameter 𝛼= 2, leading 
to the same movement as a binary increase. This is the main point of using A-LIAD. 
The objective here is to determine α in the RTT function, and to this end, the window 
dynamics of A-LIAD are analyzed. 

When the congestion window increases from (1 − 𝛽)𝑊𝑊𝑚𝑎𝑥 to 𝑊𝑊𝑚𝑎𝑥, the total number of 
RTTs, 𝑁, within a congestion epoch is  
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𝑁 = 𝑙𝑜𝑔𝛼(𝛽 ∙ 𝑊𝑊𝑚𝑎𝑥),    (8) 

 
and the throughput 𝑅 of the increasing period, 𝑁 ∙ 𝑅𝑇𝑇, can be computed by 

 
𝑅 = 𝑌

𝑁∙𝑅𝑇𝑇

    = 𝑌
𝑁∙𝑅𝑇𝑇

�𝑊𝑊𝑚𝑎𝑥 − � 𝛼
𝛼−1

�𝛽 ∙ 𝑊𝑊𝑚𝑎𝑥�

    = 𝑊𝑚𝑎𝑥
𝑁∙𝑅𝑇𝑇

�(𝑁 + 1) − � 𝛼
𝛼−1

�𝛽� .

    (9) 

 
where 𝑌 denotes the total number of TCP segments sent in the period, 𝑁 ∙ 𝑅𝑇𝑇.  

In (9), the response function of the protocol, which represents the average sending rate 
during a congestion epoch, needs to be independent of the round-trip time. For this purpose, 
we have to select the value of 𝛼 that can absorb the effect of the RTT so that each congestion 
epoch has the same duration of time regardless of its RTT. In other words, we have to be able 
to reduce the duration to a certain level by adjusting the 𝛼 value according to the RTT when 
the RTT of a flow is long. This condition derives the following equation. 

 
𝑙𝑜𝑔𝛼(𝛽∙𝑊𝑚𝑎𝑥(𝛼))

𝑙𝑜𝑔𝛼𝑟𝑒𝑓(𝛽∙𝑊𝑚𝑎𝑥�𝛼𝑟𝑒𝑓�)
= 𝑅𝑇𝑇𝑟𝑒𝑓

𝑅𝑇𝑇
.                  (10) 

 
where 𝑊𝑊𝑚𝑎𝑥(𝛼) and  𝑊𝑊𝑚𝑎𝑥(𝛼𝑟𝑒𝑓)denote the 𝑊𝑊𝑚𝑎𝑥values when their increasing factors are 𝛼 
and 𝛼𝑟𝑒𝑓, respectively. 

We need to decide how much we should reduce the congestion epoch duration according to 
the RTT, and therefore determine the reference levels to which we want to reduce the 
congestion epoch duration. In A-LIAD, we try to keep the performance of LIAD when the 
RTT is 75 ms, and thus 𝛼𝑟𝑒𝑓 = 2 and 𝑅𝑇𝑇𝑟𝑒𝑓 = 0.075. With the reference values, we can 
reduce (10) into the following form: 
 

𝑙𝑜𝑔𝛼(𝛽 ∙ 𝑊𝑊𝑚𝑎𝑥(𝛼)) = 1.5787/𝑅𝑇𝑇.                 (11) 
 
However, 𝑊𝑊𝑚𝑎𝑥 is the function of 𝛼, and thus this equation is difficult to solve in a closed 

form. To construct a mathematical function for 𝛼, we use the curve fitting method, and as a 
consequence, derive 𝛼 as the function of the RTT. 

4. Performance Evaluation 

4.1 Network model 
This section first defines the network model for an NS-2 simulation. Several performance 
metrics, including goodput, fairness, and friendliness, are then defined for evaluations under 
different topologies in heterogeneous wireless networks.  

A network topology is shown in Fig. 4. The satellite TCP connections consist of wired links 
followed by a satellite link, while the wired background traffic uses entirely wired paths. All 
connections share an R1-R2 bottleneck link, whose bandwidth was deliberately limited to 10 
or 50 Mbps according to the metrics. 
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Fig. 4. Network model used for the simulation 

4.2 Start-up performance 
In this section, we evaluate the ability of each TCP variant to exploit the available bandwidth 
of a GEO satellite network under the most favorable conditions (i.e., in the absence of 
congestion owing to wired cross traffic and wireless link losses). To evaluate the start-up 
dynamics, the throughput in Fig. 5 is measured at different elapsed times.  

As a general comment, all protocols proposed for a high-speed and long-distance network 
present a fast exploitation of bandwidth during a start-up duration of 30 sec. CUBIC, BIC, 
STCP, and HSTCP have the highest throughput during the start-up phase. While the proposed 
A-LIAD has the second highest throughput during the start-up, it also has about 80% of the 
bandwidth, which is an acceptable level since the difference between CUBIC and A-LIAD is 
about 3% of the bandwidth. 
 

 
Fig. 5. Throughput performance at the start-up of a GEO satellite connection 

 
We also show the congestion window dynamics of several TCP protocols in Fig. 6 to 

demonstrate how to respond at the start-up. In particular, CUBIC operates at the network 
capacity level, including the link capacity and network buffer, since its decrease factor β takes 
a smaller value than other variants. Moreover, note that the SACK option is enabled for all 
variants such that multiple losses during a slow-start phase can be nearly recovered within a 
few rounds. Without the SACK option, which was not originally included in the variants, the 
start-up performance would suffer from multiple losses during a slow-start phase. 

To further investigate the start-up performance in terms of the overshooting problem during 
a slow-start phase, let us examine the cwnd dynamics given in Fig. 7. It is known that standard 
TCP has an overshooting problem during a slow-start phase since its exponential increase is so 
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aggressive that cwnd becomes almost twice the BDP, causing multiple losses and thus many 
retransmissions and timeouts. The hybrid scheme adopted by A-LIAD tries to reduce the 
increasing rate at around ssthresh estimated in the initial stage of the connection by 
introducing a logarithmic increase triggered after the second half of ssthresh. From the 
simulation evaluation, A-LIAD does not experience an overshooting during the SS phase and 
enters the CA phase at the proper level, as shown in Fig. 7(a), while TCP-W and CUBIC are 
shown to experience multiple window reductions after the end of the SS phase in Fig. 7(b). If 
the SACK option is not enabled for the simulation, the performance of TCP-W and CUBIC 
during the start-up phase will be affected by these multiple losses more severely than the 
results in Fig. 7(b). This property of the hybrid scheme leads to the avoidance of multiple 
losses even without the SACK option. This becomes important for short transfer flows since 
they make up more than 70% of Internet traffic. 
 

 
 

Fig. 6. Comparison of cwnd dynamics at a start-up 
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(a)  window dynamics of A-LIAD                       (b) comparison of window dynamics with other variants 

 
Fig. 7. Start-up performance of A-LIAD (a) and the comparison with other variants (b) 

 

4.3 Fairness 
In this section, we conduct simulations in the same multiple flow environment with C = 50 
Mbps RTT = 100 ms, and varying PERs of 0%, 0.1%, and 1% in order to ensure the 
intra-fairness property in the presence of packet losses. Even if some flows take more than 
max fair rate, as shown in Fig. 8, most flows share almost an equal amount of bandwidth on 
average over each PER level, and Jain’s fairness index of each case is around 99.5%. 

 
 

 
Fig. 8. Intra-fairness: Throughput of 6 competing A-LIAD flows in terms of PER 
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Fig. 9. RTT fairness: throughput performance in terms of RTT. 

 
Next, we evaluate the RTT fairness of the proposed A-LIAD. One of the design goals is for 

A-LIAD to have less sensitivity to a long RTT by adapting increasing factor α proportionally 
to the RTT. A simulation was performed with a single flow at C = 10 Mbps for various RTTs, 
and the results are compared with CUBIC in Fig. 9. Within the range of 50 to 600 msec, the 
results show that A-LIAD is almost unaffected by the RTT variations. 
 

4.4 Impact of packet loss 
In this section, the effects of wireless channel errors are investigated. In Fig. 10, variable PERs 
are considered for a GEO satellite connection with RTT = 600 msec in the absence of 
competing flows. A PER value of 0.1% significantly affects all variants, including those 
designed to be error resilient, such as Westwood. This negative effect is dramatically 
increased for a very high PER (e.g., 1%). This is mainly due to the slow reopening of cwnd, 
which is caused by a very long RTT, after the loss recovery phases. Although the utilization of 
A-LIAD is also affected by the wireless packet loss, resulting in around a 60% bandwidth 
utilization, A-LIAD maintains the highest throughput in both PER = 0.1% and 1%. 

 
Fig. 10. Wireless packet loss impact on throughput 

 
To better highlight this point, we investigated the window size dynamics of the variants in 

Fig. 11. While the other variants operate at much below BDP (in this case, 700 packets), 
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A-LIAD works at around a comparatively higher window leading to less sensitivity to a 
wireless packet loss. This property is mainly due to the logarithmic increase during a lossless 
period resulting in fast recovery of losses.  
 
 

 
 

Fig. 11. Window dynamics of variants in terms of packet loss 
 

4.5 Friendliness 
To evaluate the friendliness (sometimes called inter-protocol fairness in other papers), we 
configured five Group B flows to always run the NewReno protocol, while one flow of Group 
A runs different TCP variants. As stated in section 2, the main reason behind a friendliness 
evaluation is to ensure the possibility for incremental deployment of the proposed protocol. 
This means that the proposed protocol should not necessarily be perfectly fair with the most 
widely implemented TCP, New-Reno. However, its deployment should not degrade the 
NewReno performance greatly.  
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Fig. 12. Friendliness with Reno: RTT = 25 ms, PER = 0 

 
Following this observation, we measured the throughput share of Group B flows running 

the NewReno protocol, and Group A running different protocols, including NewReno and 
other variants. According to the results presented in Fig. 12, which are obtained from a 
simulation with C = 10 Mbps and RTT = 25 msec for 300 sec, HSTCP and CUBIC 
demonstrate the best friendliness characteristic owing to their TCP mode. On the other hand, 
STCP and A-LIAD show the worst friendliness property for a short RTT, and they reduce the 
throughput of the NewReno flows in Group B by 45% and 38%, respectively, while CUBIC 
reduces the share of NewReno flows by 11%. However, as the delay increases, CUBIC also 
steals significant bandwidth from the NewReno flows since its aggressiveness, shown in Fig. 
13, has one of the highest values, along with STCP and A-LIAD, in the case of RTT = 600 
msec. This is not in the favor of incremental deployment for the current Internet, where most 
flows are based on the NewReno protocol. However, taking into account that CUBIC is 
already a part of the OS Linux kernel, and its friendliness is the lowest among all the evaluated 
protocols, A-LIAD will remain an attractive alternative for high-speed and long-distance 
networks. 
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5. Conclusion 

In this paper, we presented the adaptive logarithmic increase and adaptive decrease algorithm, 
or A-LIAD, as an alternative to the current TCP congestion control algorithm. We described 
that the convex curve is not appropriate for the increasing function of the congestion window, 
and thus proposed a logarithmic increasing function that adaptively adjusts its increasing rate 
in the RTT function. We defined a new increasing function in the fashion of a logarithm 
depending on the increasing factor 𝛼, which is different from other logarithmic increase 
algorithms adopting a fixed value of 𝛼  = 2, leading to a binary increase. A mathematical 
analysis for the throughput of A-LIAD is represented, and the 𝛼 value is derived for an RTT 
function through this analysis. With a modification of the increasing function applied for the 
CA phase, a hybrid scheme was also presented for a slow-start phase. We used the logarithmic 
increase function for the second half of a slow-start period, while for the first half period of a 
slow start, an exponential increase function is used in the same way as standard TCP. From 
this hybrid scheme, we can avoid an overshooting problem during a slow-start phase even 
without a SACK option. To verify the feasibility of the algorithm for deployment in a 
high-speed and long-distance network, several aspects were evaluated through an NS-2 
simulation. We performed simulations for the start-up performance, intra-fairness, and 
inter-fairness as well as the packet loss impacts under different conditions of varying RTT, 
bandwidth, and PER. From these simulations, we showed that although A-LIAD is not the best 
option in every aspect, it provides a competitive performance in almost all aspects, especially 
during a start-up and for a packet loss impact, and thus can be an alternative TCP congestion 
control algorithm for high BDP networks including satellite networks. 
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