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Abstract 
 

Because HTTP-related ports are allowed through firewalls, they are an obvious point for 
launching cyber attacks.  In particular, malware uses HTTP protocols to communicate with 
their master servers. We call this an HTTP-based command and control (C&C) server. Most 
previous studies concentrated on the behavioral pattern of C&Cs. However, these approaches 
need a well-defined white list to reduce the false positive rate because there are many benign 
applications, such as automatic update checks and web refreshes, that have a periodic access 
pattern. In this paper, we focus on finding new discriminative features of HTTP-based C&Cs 
by analyzing HTTP activity sets. First, a C&C shows a few connections at a time (low density). 
Second, the content of a request or a response is changed frequently among consecutive C&Cs 
(high content variability). Based on these two features, we propose a novel C&C analysis 
mechanism that detects the HTTP-based C&C. The HAS-Analyzer can classify the 
HTTP-based C&C with an accuracy of more than 96% and a false positive rate of 1.3% 
without using any white list. 
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1. Introduction 

Recently, HTTP-based malware has become more prevalent and has inflicted tremendous 
damage on many industries and government organizations through DDoS Attack, spamming, 
etc. Moreover, a number of web exploit kits using zero-day exploits [9] makes it easy to 
deploy aware to a broad range of victims. Arguably, the most crucial attack of malware is data 
theft. This type of malware typically exfiltrates the harvested data from infected machines to 
the corresponding C&C server. It might be developed into a targeted Advanced Persistent 
Threat (APT). Thus, the research community has developed a number of behavioral 
pattern-based techniques for distinguishing HTTP-based C&Cs from normal web accesses on 
benign web servers. Most previous research has focused on the regular access pattern of C&Cs, 
such as BotSniffer [8], BOTFINDER [20] and DISCLOSURE [1]. They concentrate on a 
periodic access pattern, response crowd, flow sizes, etc. However, these approaches need a 
well-defined whitelist to reduce false positives because there are many benign applications 
(e.g., automatic updatechecks, web refreshes, etc.) that have a regular access pattern.  

In this paper, we try to find the discriminative features for distinguishing C&C flows based 
on HTTP activity set which is a set of request-response pairs generated by the initial 
application request for a URI. By coupling multiple web connections into HTTP activity sets, 
we could derive two discriminative feature sets. 

 
 Low density: A C&C channel utilizes a small portion of network resources. The 

corresponding features are the average referer tree depth, the average number of 
different destination domains, the average number of requests and the average 
number of bytes of exchanged data. 

 High content variability: The content in a series of C&C connections changes 
frequently at each time during the process of stealing data or updatingcommands. 
The corresponding features are the minimum and average similarity scores of the 
content, and the number of significant changes (formally defined later). 

 
Based on these observations, we present the HAS-Analyzer, a system that detects 

malware-infected machines and the corresponding C&C servers by using only network 
analysis. The HAS-Analyzer leverages the two feature sets, low density and high content 
variability.  This means that  HTTP-based malware exchanges different data to the C&C 
server at each connection with a small amount of traffic. 

We demonstrated the effectiveness of the two feature sets. Our evaluation is based on 
126,018 active C&C connections from 500 known malware samples and 1.2 TB of a benign 
dataset. Though we did not use any white list or reputation system, we were able to archive a 
high accuracy and low false positive rate by using the HAS-Analyzer. 

 
Main Contribution. The primary contribution of this paper is the introduction of two 
discriminative power feature sets of HTTP-based C&Cs. We first present a new data structure, 
the HTTP activity set, coupled with multiple web connections. Based on the analysis of the 
HTTP activity set, we derived two unique feature sets for HTTP- based C&Cs: low density 
and high content variability.  We also present the HAS-analyzer, which detects HTTP-based 
C&Cs with a high accuracy and a low false positive rate without using any reputation systems. 
We evaluated the accuracy of the HAS-analyzer against HTTP-based C&C experiences 
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through a virtual machine experimentation platform using more than 500 recently captured 
HTTP-based malware examples. We validate our proposed system by demonstrating how our 
detection engine successfully identifies the HTTP-based C&C on normal web connections. 

2. Background 

2.1 Case Study of HTTP-based C&C  
In traditional HTTP-based botnets, the attacker simply sets the command in the data at a C&C 
server. Then the botnets frequently connect to their C&C servers with a predefined delay. 
Today, botnets not only just receive a command but also have the ability to harvest personal 
data from the compromised machine and exfiltrate them to the corresponding C&C server. Fig. 
1 shows the HTTP-based C&C behavior. They typically split the harvested data into small 
chunks and then exfiltrate them to the predefined URL using a GET or POST method. For 
updating commands, botnets insert current status information into the reporting request at each 
connection. There are several well-known HTTP-based botnets, for example, Zeus [26], which 
is designed mainly to steal financial data. The bots of this botnet periodically connect to the 
C&C server with a URL such as http://.../gate.php.  
 
 

 
Fig. 1. Behaviors of HTTP-based C&C 

 
 

2.2 Motivation 
As depicted in Fig. 1, most HTTP-based C&C traffic is low volume. This is a strategy of C&C 
to make their detection difficult, especially if there is only a small number of C&C connections 
in the monitored traffic. We take this strategy as the first feature of HTTP-based C&C. Thus, a 
small number of connections or a small number of total transferred bytes from a host may be 
an indicator for C&C behavior. In addition, the exfiltrated data changes on each connection as 
the harvested data from a victim host change. In addition, the command or current status of a 
victim host changes at each connection. Thus, a series of attached content in C&C connections 
will change from time to time. We prefer to denote such phenomena as high content variability.  
To check high content variability, we compare the similarities in attached content of C&C 
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connections heading for the same URI. Before illustrating the new features in detail, in the 
next section we outline a new data structure to dissect multiple web connections into an 
activity set. 

3. HTTP Activity Set (HAS) 

3.1 Definition 
In order to extract discriminative features, we first define an HTTP activity set as a new data 
structure. An HTTP activity set is a correlated set of request-response pairs generated by the 
initial application request for an external web server. We refer to it as a ‘HAS’ in the rest of 
this paper. Specifically, a HAS can be generated by human-driven applications (e.g., web 
browser) or by automatic programs (e.g., RSS feeds, web refresh or bots).  
 
 

 
Fig. 2. Examples of HAS 

 
 

Fig. 2 shows two  examples of the HAS. In both cases, we can see that coupled web 
connections may have different destination addresses. For example, the domain 
“themes.googleusercontent.com” and “www.blogger.com” are correlated by a referer link, 
depicted as example 1 (a) in Fig. 2 and “su3.ahnlab.com” and “update.ahnlab.com” are also 
correlated by the request time interval depicted as example 2(b) in Fig. 2. We will use both the 
referer information and the request time interval to generate HTTP activity sets.  

3.2 Metadata Structure 
In order to couple separate web connections into one HAS, it is essential to develop a custom 
data structure that provides access to the syntactic fields of the web traffic. First, we 
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reassemble the TCP stream and parse the HTTP traffic. Then, we design a record of the HASs 
that have a same source IP. We extract the time stamp of request time (ts), destination domain 
(domain), URL path (url), referer information (ref), and useragent (ua) as well as the content 
in the request and response (Contentreq, Contentresp). Finally, we define a data structure R as 
follows. 

 
}{ : ntentrespentreq, Co, ua, Cont, url, refts, domainR =                   (1) 

 
A HAS is composed of a set of R and has a unique identifier that is a full request URI 

(domain + uri) in the first R of the HAS.  
 

 
Fig. 3. Flowchart of method to extract HAS 

 
 

3.3 Methodology 
Now, we introduce a method to couple the separate web connections into HAS using network 
traffic analysis. There are three main factors as follows. 
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  Request time interval: Since an operation of web applications generates a set of web 

connections within a short time interval, we regard these web connections as a group. 
  Referer information: Using the referer information, we construct a referer tree, where 

the nodes are the downloaded content, c1 and c2, and the edge from node c1 to node 
c2 means that an application followed a link from c1 to c2. Note that the root of a 
referer tree represents an initial request by an application without following a link. In 
most cases, a referer tree is generated by webbrowsers and it could be regarded as an 
activity set as depicted in (a) example 1 in Fig. 2. 

  Second-level domain: Automatic programs usually do not record referer information 
into web requests. Thus, we need other information to group web connections of 
automatic programs. We can simply infer that second-level domains could be a clue 
to group those connections. Depicted as (b) example 2 in Fig. 2, the antivirus 
program commonly communicates with its web server, anhlab.com. In this case, 
ahnlab is the second-level domain of .com TLD (Top-level domain). 

 
The flowchart described in Fig. 3 explains how HASs are extracted by using the above three 
factors. Finally, we obtained the two cases of HAS as depicted in Fig. 2. One is a constructed 
referer tree within a short time interval ((a) example 1). Another is a set containing the same 
second-level domain within a short time interval ((b) example 2). The time interval should be 
lower than the threshold τ . We empirically determined the value τ  as 1.8 (sec) by measuring 
the maximum time intervals in our extensive experiments.  

4. Feature Selection 
We introduce several discriminative features based on analysis of the HAS. These features are 
derived from low density and high content variability for the HAS. 

4.1 Low Density 
 The first feature sets in our analysis mechanism are based on the density in a series of HASs. 
An HTTP-based C&C uses a small portion of network resources in order to guarantee its 
stealth because the user of the compromised machine would not notice them.  Following this 
premise, the derived features are:  
 

  The average referer tree depth: We can easily observe that the referer information of a 
C&C contains a spoofed value or no value. That means that the HAS of the C&C 
tends not to generate a referer tree, whereas a benign HAS can create a deep referer 
tree. 

  The average number of different destination domains: For attackers, it is costly to 
maintain a number of C&C servers at the same time. That means that the malware 
programs typically communicate with one C&C server during a given period of time.  

  The average number of requests: In order to maintain the stealth of the C&C 
connection, the malware often uses a small number of requests each time.  

  The average bytes of exchanged data: The long and steady process of data exfiltration 
can reveal the characteristics of data theft malware. Data theft malware often splits 
harvested data into small pieces and steadily sends them to the corresponding C&C 
server. Thus, the average bytes of exchanged data are expected to have limited value. 
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4.2 High Content variability 
To extract the second feature set, we inspect the content carried in each request and response. 
In our observation, the exchanged content for the same URL are changed significantly during 
the process of data exfiltration or updating commands. The properties of the content specify 
the bodies of the request, response, parameters in the URL path, and the additional header 
values in the HTTP request and response. There are several methods for checking the 
similarity between two sets of content. In our work, we aim to pick up C&C messages on 
normal web contents that have a form of plain or encoded ASCII texts, or pre-defined binary 
data form. Due to the diversity of content format used in malware, we require the standard 
fingerprint which makes it applicable for different type of content. Thus, we adopt SimHash 
[18] as our similarity function where it measures the bitwise hamming distances between hash 
values. SimHash specifies the distribution on a family of hash functions H = {h} such that for 
two objects xi and xj, 
 

x
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xhxhPR ji
jiHh

),(
1  )}(  )({

θ
−==∈                               (2) 

 
where )( ji , xxθ is the angle between xi and xj . Another reason for choosing SimHash is the 
privacy concern. When we parse the HTTP payload of a web connection, we store the hash 
value, xi , for content i instead of storing raw content directly without sanitization. This issue is 
further discussed in section 8. 
 

 The minimum and average similarity score: The C&C server tends to receive and 
return different content for the same request URI from clients in contrast to a benign 
web server. We calculate the similarity scores of each property in the content. We 
then select the minimum value among them. The score has a value between 0 and 1. 
A low score means that the variability is high at a certain point due to the data 
exfiltration.  We also check the average similarity score. 

 The number of significant changes: We check how many significant changes (e.g., 
similarity score < 0.5) occurred in a given number of observations. This is 
normalized as n/l, where n is the number of significant changes and l is the given 
number of observation. The score has a value between 0 and 1. A high score means 
that the variability is high in a series of web connections. 

5. Proposed System 

5.1 Overview 
Our proposed system, the HAS-Analyzer, is an HTTP-based C&C detection system designed 
to identify both infected hosts and C&C servers. Fig. 4 shows an overview of the system 
architecture. The HAS-Analyzer is composed of three main phases: HAS extraction, feature 
extraction and training-detection.  Our method for extracting a HAS is introduced in the last 
part of this section. The feature extraction is carried out in two stages that contain a density 
check and content variability check based on our feature selection. We can finally pick out a 
suspicious HAS by putting feature vectors into the classifier. 
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HTTP Activity Set (HAS) Extraction. A HAS consists of multiple pairs of records. Each 
record contains some values in the HTTP request header and bodies of both the request and the 
response. The criteria for classifying the HAS is the referer information and the request time 
interval. HAS extraction finally generates a series of HASs that have the same IP address and 
the same first record. The detailed method for extracting a HAS was introduced in the Section 
3. 
 
 

 
Fig. 4. Overview of proposed analysis mechanism 

 
 
Feature Extraction. The feature extraction has two sub-components: checking the density of 
the HAS (HAS-D) and checking the content variability of the HAS (HAS-C). These 
components wait until a series of HASs is generated from the HAS extraction. When more 
than n HASs are collected (in our implementation, n=20), the HAS-Analyzer checks the 
density and content variability of the HAS. The HAS-D component checks the average referer 
tree depth, the average number of different destination domains, the average number of 
requests and the average number of bytes of the exchanged data. Next, the HAS-C component 
checks the minimum similarity score and the number of signifficant changes. However, it may 
be difficult to compute all the similarity scores of the content between two adjacent HASs. 
Since some benign HASs contain hundreds of records (e.g., visiting web portal sites), we 
compute the similarity scores of the first w content that have the same request URI. We 
determined the value w as 5 because the maximum number of requests in the C&C HAS was 5 
in our dataset. 
 
Training. We trained the HAS-Analyzer with 121,529 C&C HASs and 1.6 TB of benign web 
traffic consisting of 683,223 benign HASs. We split these datasets into atraining set (70% of 
dataset) and a test set (the remaining 30%). Then we created a detection model by using a 
WEKA machine learning toolbox with 10-fold cross validation. We used three machine 
learning algorithms for the classifier, including Naïve Bayes, J48 decision tree [17] and 
Random Forest [11]. We compare the accuracy for these algorithms in the evaluation.  
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5.2 Details of HAS Extraction and Feature Extraction  
To assist in understanding this system, we texplain additional information about HAS 
extraction and feature extraction. In Fig. 5, we give a description of how to extract a HAS and 
features through network traffic analysis. HAS extraction and the feature extraction consist of 
three steps, HAS-D1, HAS-D2 and HAS-CC. In HAS-D1, if the time interval between two 
adjacent requests exceeds the threshold τ , the HAS-Analyzer divides it into separate groups 
and then constructs referer trees in HAS-D2. As explained in the owchart of Fig. 3, generated 
referer trees become HASs and the rest of the RR (Request/Response) -pairs having the same 
second-level domain are merged into one HAS. The density features such as r (the number 
ofrequests) and d (referer tree depth) are calculated at this step. For example, at thetop of the 
description, four groups are generated since their request time interval is shorter than τ . Then 
the HAS 1-1 is generated from group 1 by constructing a referer tree, and the rest of RR-pairs 
that have the same second-level domain become HAS 1-2. Finally, in HAS-CC, the 
HAS-Analyzer groups a series of HASs that have the same identifier, such as the same initial 
web request. Therefore, HAS 1-2, HAS 2and HAS 4 are grouped into a series. The high 
content variability features are then extracted.  

6. Evaluation 
We performed a feature evaluation on our dataset. After the HAS-Analyzer was trained from a 
given training set, we evaluated the accuracy of the HAS-Analyzer for each feature over the 
test set. We used the 12 cores of Intel Xeon processor 2.66 Ghz with 16GB memories for the 
evaluation. 

 
Fig. 5. Description of method to extract HAS and features 

 

6.1 Dataset  
Our dataset is based on about 500 malware samples and benign web traffic collected from an 
access network at our research institute. The Trace-M and Trace-B were used to train the 
HAS-Analyzer and the Trace-T was used to evaluate the HAS-Analyzer. 
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Trace-M (Malicious). Each C&C trace lasted for several hours in daytime. The Trace-M was 
collected from several sources. First, we collected HTTP-based C&Cs through implementing 
a VM-based system that was automatically connected to exploit URLs provided by the 
Malware Domain List [14] . The most common web exploit kits were the blackhole exploit kit 
and the cool exploit kit, and the most common type of malicious payload was Zeus bots. 
However, since the traces contain non-active C&C servers, we selected only active 
HTTP-based C&C traces. During the capturing, we obtained the banking trojans and some of 
info stealers. The other source wasVirusTotal [21]. We collected bot samples from VirusTotal. 
The set contained root kits, key loggers and backdoors used in APT campaigns. We executed 
the collected malware programs on a VMWare Workstation with Windows XP SP2 using 
TCPdump to trace the web traffic for an execution period of several hours. We also filtered out 
the non-active traffic, where the C&C server was dead. Finally, we collected 125,192 active 
C&C HASs. The data composition of Trace-M is depicted in Table 1. 
 

Table 1. Full Description of Datasets 
Datasets Types Examples 

Trace-M 
Banking Trojans (66.1%) Zeus, Spyeye, Citadel, Tinba, Stabuniq 
Rootkits (12.6%) Torpig, Xpaj 
APT Components (9.3%) Taidoor, Ixeshe, Enfal, Murcy, win32.daws 

Trace-B 
Web Browsers (88.2%) IE, Chrome, Safari, Mozila, Opera 

Non-Web Browsers (11.8%) Alyac, V3, Twitter, Facebook, Dropbox, 
Simple RSS reader, iTunes, Others 

 
Trace-B (Benign). Trace-B was captured on the access network in our laboratory. The total 
size of Trace-B was 1.2 TB and had full traces of web connections communicating with 3,879 
benign web servers. The Trace-B consisted of web browsing traffic (88.2%) generated by 
employees and non-web browsing traffic (11.8%) generated by automatic programs. We 
sorted two groups by checking the destination server address and the user-agent field of the 
HTTP request. The non-web browsing traffic is important in our work because it is likely to 
cause false positives.  It may generate false positives in the HAS-Analyzer when we use a 
low-density feature set. The false positives caused by non-web browsing traffic will be treated 
after the evaluation. The data composition of Trace-B is also depicted in Table 1.  
 
Trace-T (Test). For testing, we overlaid traces from Trace-M instances onto our recorded 
laboratory network traffic and assigned the malware traffic to originate from randomly 
selected internal hosts observed to be active during that hour. This made our testing scenario 
much more realistic, because the internal hosts to be identified still exhibit their normal 
connection patterns, in addition to subtle C&C activities. In the Trace-T dataset, there were 
about 90 GB of benign web connections and 86,759 C&C connections..  
 

6.2 Classifier Determination 
To determine the best classifiers in the HAS-Analyzer, we evaluated the three standard 
classifiers in terms of accuracy (ACC) and false positive rate (FPR). Table 2 shows the 
performance evaluation of the classifiers over the training set across the two proposed feature 
sets. As shown in Table 2, training on all the features suggests that Radom Forest [11] has the 
best performance. Therefore, we chose Random Forest as our classifier. 
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Table 2. Performance Analysis of Three Classifiers 
Classifier ACC (%) FPR (%) 

Naïve Bases 84.1 5.5 
J48 Decistion Tree 91.7 9.6 

Random Forest 96.9 1.3 
 

6.3 Feature Evaluation  
We performed all our experiments on a set of a fraction in HTTP-based C&C traces on a 
Trace-T dataset. Fig. 6 shows the accuracy (ACC), false positive rate (FPR) and false negative 
rate (FNR) for the evaluation. The features we evaluated were the following: the average 
referer tree depth (D_1), the average number of different destination domains (D_2), the 
average number of requests (D_3), the average bytes of exchanged data (D_4), the minimum 
similarity score (C_1), the average similarity score (C_2), the number of significant changes 
(C 3), the combination of all low density features (D all), the combination of all high content 
variability features (C_all), and finally, the combination of all features (D+C). The best 
performance was in D+C. In low density features, the average referer tree depth (D_1) and the 
number of different destination domains (D_2) had over 80% of accuracy with no false 
negatives, while the average number of requests (D_3) and the average bytes of exchanged 
data (D_4) had an accuracy of 70% with a low false negative rate (about 3%). And, in high 
content variability features, all the features had an accuracy of 90% with low false positive rate 
(lower than 1%) and a little false negative rate (about 1%). 
 

 
Fig. 6. Accuracy(ACC), false positives(FP), false negative(FN) for the different combination of 

features 
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Relationship between Two Feature Sets. As shown in Fig. 6, the high content variability 
feature set seemed to have a slightly better performance than the low density feature set. 
However, high content variability features had some false negatives instead of relatively low 
false positives. On the other hand, low density features had high false positives instead of 
relatively low false negatives. By comparing the results of D all, C all and D+C, we inferred 
the relationship between the two feature sets. As shown in Table 3, the low density feature set 
contributed to reducing false negatives by 1.95% and improving the overall accuracy slightly. 
Meanwhile, as shown in Table 4, the high content variability feature set contributed to 
reducing false positives by 22.23% and improving the overall accuracy by 9.82% with slightly 
increased false negatives. Thus, we concluded that the two feature sets are in the 
complementary relationship.  
 
False Positives and False Negatives. We also analyzed the false positives and false negatives 
that occurred in our feature evaluation. The low density characteristic was often observed in 
benign automatic programs such as web refreshes, facebook, twitter, dropbox and many other 
automatic programs. These automatic HASs were regarded as C&C HASs that caused false 
positives. The high content variability characteristic can also be observed in benign HASs. 
Representative examples are dynamic web pages using server side scripting such as Active 
Server Page or Java Server Page. Suppose that a dynamic web page has content update scripts 
with pre-defined time intervals. As time goes by, the content of such a page will change 
continuously. Accordingly, the minimum similarity score or the average similarity score may 
be lower than the threshold θ . Then, false positives occasionally occur. False negatives 
occurred in the following situation. When malware generated simple heartbeat connections 
without updating commands or exfiltrating data, the content in the connections remained 
constant for a period of time. Such malware caused false negatives. As we discussed the 
relationship between the two feature sets, these issues can be mitigated by using the 
combination of all proposed features.  
 
 

Table 3. Contribution of Low Density Feature Set on the Overall Accuracy 
Measures With D_all With D+C Change 
ACC (%) 87.04 96.86 9.82(↑) 
FPR (%) 23.52 1.29 22.23(↓) 
FNR (%) 2.41 4.98 2.57(↓) 

 
 

Table 4. Contribution of High Content Variability Feature Set on the Overall Accuracy 
Measures With C_all With D+C Change 
ACC (%) 95.88 96.86 0.98(↑) 
FPR (%) 1.28 1.29 0.1(↑) 
FNR (%) 6.93 4.98 1.95(↓) 
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7. Related Work 
Regular Access Pattern Analysis Approach. The regular traffic pattern is a strong signal in 
C&C communication. Thus, many previous studies presented the premise that C&C activity 
shows regular access patterns [1, 6, 8, 10, 20]. Among them, recent research, such as 
BOTFINDER and DISCLOSURE, often used the NetFlow data, which provides an 
abstraction of TCP/UDP flows. However, we already confirmed that the regular access pattern 
is not only observed in C&C but also observed in many benign applications. Namely, studies 
that focused on the regular access pattern actually detected a simple programmatic behavior, 
including many benign automatic activities. To overcome this shortcoming, some researchers 
said that the white list or reputation system can cover the blind spot.  

Specifically, BOTFINDER used a whitelist to pre-filter the bot-like benign traffic. And 
DISCLOSURE used a number of external reputation scores for its classifier. In both works, 
the goal of using whitelist is to reduce the false positives.  

However, there are also risks to generate false negatives. In one effort to avoid 
reputation-based filtering, some attackers either purchased or rented blocks of IP space with 
good reputations that were built up over the course of several years. Thus, the attackers had 
acquired known good IP blocks and used them for C&C servers. In this case, the effectiveness 
of the reputation system might not be guaranteed. In this work, we did not consider any 
dependencies on whitelists. We provide new distinctive features to distinguish HTTP-based 
C&Cs and archive a high accuracy of more than 96% and a low false positive rates of 1.3% 
even without using whitelists. 
 
Group Behavior Analysis Approach. To maximize the damage, the attacker tries to infect as 
many hosts as possible. For example, bots have a self-propagating code designed to infect 
hosts in the same network. Using this tendency, group behavior analysis approaches [4, 8] are 
appeared. However, this tendency may not be seen prominently in a small network or those 
detection systems cannot detect a single infected host. 
 
Payload Analysis Approach. There have been several studies [2, 7, 13, 22] to identify the 
abnormal payload generated by malware. They focused on the difference in byte frequency 
between normal payloads and malicious payloads. In BotHunter [7], they measured the 
Mahalanobis distance of “Z-string,” which is the rank-ordered byte frequency of a payload 
similar to PAYL [22]. However, they mainly focused on detecting IRC-based C&Cs, 
TCP-based C&Cs or buffer overflow attacks rather than the HTTP-based C&Cs. TAMD [25] 
used both the group behavior analysis approach and the payload analysis approach. One of 
their premises was that the C&C often carries similar payloads. However, HTTP-based bots 
typically send different identification tokens or different payloads at each time. Thus, the 
payloads might not be similar even though a number of the same bots are spread in the same 
network. In contrast, our approach provides novel criteria, which are the low density and the 
high content variability, for identifying HTTP-based C&C.  

8. Discussion 
The Pros and Cons of Using HAS. Here we discuss the pros and cons of using a HAS 
compared with using NetFlow. A NetFlow is defined as an abstracted unidirectional sequence 
of packets that share specific network properties (e.g., IP source/destination addresses, and 
TCP or UDP source/destination ports), while a HAS is defined as an abstracted bidirectional 
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series of web requests generated by a heuristic methodology as introduced in Fig. 3. In order to 
extract a HAS from network traffic, Deep Packet Inspection is required. Thus, the extraction 
of a HAS consumes more time than that of NetFlow. Further, we cannot extract a HAS from 
tunneled traffic such as HTTPS using TLS/SSL, whereas NetFlow identifies even tunneled 
C&Cs. However, HAS has an advantage for analyzing the network activity of applications. 
The HTTP connections between the same end point A and B can have varying source ports, 
whereas the destination port stays the same. Therefore, for an application activity, NetFlow 
generates non-correlated multiple flows, whereas the HAS extraction generates only one HAS 
that is tightly correlated.  
 
Remark. In our current work, we decided to determine τ  through an empirical way. We 
measured the maximum interval of HTTP requests by visiting top 100 most-visited sites, 
among the experimental data in Trace-B, 100 times. When we selected Tau as 1.8 second, 
slightly longer than the maximum time interval, most of the web connections could be merged 
into HASes accurately. Also, few connections did not belong to any HASes because they 
didn't have referer information neither have the same 2nd-level domain name. Though we 
determined the parameter τ  through the heuristic way, it still requires an advanced method. It 
might be a future work. 
 
Limitation. One method an attacker might use is to utilize a large traffic volume to 
communicate with multiple C&C servers. However, this method degrades the stealth of the 
malware, and using multiple C&C servers requires increased costs for attackers. Another 
approach is to make content heterogeneity forcibly by putting the same strings or binaries in 
addition to a series of malicious content. This technique might degrade the overall accuracy. 
We developed our custom info-stealing malware that exfiltrates stolen data padded with 
constant text data. The total size of each connection had over 20 KB to evade the low density 
check. Even though the real data changed time to time, the HAS-Analyzer could not detect 
them. Though we did not find such malware yet, content heterogeneity technique might appear 
soon. To overcome this limitation,  we can re-train the HAS-Analyzer with C&C activities 
using content heterogeneity. In addition, we should find more precise features of C&C 
activities. 
 
Privacy Concern. Though we used hash-based sanitization for the content  of web connections, 
the TCP header values still remained exposed. We can also import hash-based sanitization 
[15] for hiding sensitive information of TCP headers, such as the source IP address, in order to 
preserve privacy. The mapping table between hash values and the real source IP addresses 
need to be managed by operators. 

9. Conclusion 
We introduced new features of HTTP-based C&C activities based on the analysis of the HAS. 
The HAS is a useful data structure for analyzing network activities of HTTP-based 
applications. By analyzing multiple statistics of the HAS, we identified C&C activities with a 
high accuracy and a low false positive rate. The effectiveness of the feature sets was proved in 
the feature evaluation. We are going to apply our proposed system, the HAS-Analyzer, to a 
real network environment, that is, an ISP. 
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