
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 5, May. 2014 1744
Copyright ⓒ 2014 KSII

An Enhanced Remote Data Checking
Scheme for Dynamic Updates

Lin Dong1, Jinwoo Park1, Junbeom Hur2 and Ho-Hyun Park1*
1 School of Electrical and Electronics Engineering, Chung-Ang University

84, Heukseok-ro, Dongjak-gu, Seoul 156-756, Korea
[e-mail: hohyun@cau.ac.kr]

2 School of Computer Science and Engineering, Chung-Ang University
84, Heukseok-ro, Dongjak-gu, Seoul 156-756, Korea

 [e-mail: jbhur@cau.ac.kr]
*Corresponding author: Ho-Hyun Park

Received January 21, 2014; revised April 10, 2014; accepted May 3, 2014; published May 29, 2014

Abstract

A client stores data in the cloud and uses remote data checking (RDC) schemes to check the
integrity of the data. The client can detect the corruption of the data using RDC schemes.
Recently, robust RDC schemes have integrated forward error-correcting codes (FECs) to
ensure the integrity of data while enabling dynamic update operations. Thus, minor data
corruption can be recovered by FECs, whereas major data corruption can be detected by
spot-checking techniques. However, this requires high communication overhead for dynamic
update, because a small update may require the client to download an entire file. The
Variable Length Constraint Group (VLCG) scheme overcomes this disadvantage by
downloading the RS-encoded parity data for update instead of the entire file. Despite this, it
needs to download all the parity data for any minor update. In this paper, we propose an
improved RDC scheme in which the communication overhead can be reduced by
downloading only a part of the parity data for update while simultaneously ensuring the
integrity of the data. Efficiency and security analysis show that the proposed scheme
enhances efficiency without any security degradation.

Keywords: Cloud computing, remote data checking, DPDP, R-DPDP, VLCG

http://dx.doi.org/10.3837/tiis.2014.05.014

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 5, May. 2014 1745

1. Introduction

The rising popularity of cloud computing and storage-outsourcing has led clients to
outsource their data and programs to untrusted servers. Thus, clients lose direct control of
data and programs. Clients cannot prevent some attacks and accidents involving their data.
Therefore, in the cloud computing environment, it is necessary for clients to check the
integrity of the data stored in servers [1].

Remote data checking (RDC) schemes [2] allow auditors to check the integrity of data
stored at a third-party server using spot checking. A general RDC scheme contains two
phases, store and audit. In the store phase, the client generates metadata and a modified file
and stores the modified file in the server. In the audit phase, the auditor generates challenges
and sends the challenges to the server. The server calculates the proofs of the challenges
using the modified file and sends these proofs to the auditor. Then, the auditor verifies the
received proofs using the metadata. In general RDC schemes, the client plays the role of an
auditor. RDC schemes include Provable Data Possession (PDP) [3], Proofs of Retrievability
(PoR) [4], [5], High-Availability and Integrity Layer (HAIL) [6], and Dynamic Provable
Data Possession (DPDP) [7], [8], [9], [10].

PDP, PoR, and HAIL are suitable only for static files [11], whereas DPDP can perform
dynamic updates (including insert, modify, and delete). However, both of these RDC
schemes can protect data only against major corruption of data based on spot checking.
Thus, they cannot provide protection against arbitrary small amounts of data corruption.

A robust auditing scheme [12] is introduced which mitigates arbitrary amounts of data
corruption. Robustness is usually realized by integrating forward error-correcting codes
(FECs) [13] with remote data checking mechanisms [12], [14], [15]. Thus, with minor data
corruption, there is no damage to the data because the corruption can be recovered by FECs;
on the other hand, with major data corruption, the client can easily detect corruption using
spot-checking techniques [12].

Robust Dynamic Provable Data Possession (R-DPDP) [16] is a remote auditing scheme
that adds robustness to DPDP. Two R-DPDP constructions have been proposed, the πR-D
and Variable Length Constraint Group (VLCG) schemes. πR-D [16] is an early enhancement
of the πR scheme [12]. πR-D not only provides robustness, but also supports dynamic
updates including insertions, modifications, and deletions. However, it requires high
communication overhead for insertions / deletions (a small update may demand the
download of an entire file). VLCG [16] decreases the communication overhead mainly in
two ways: i) assigning symbols to constraint groups based on the values of the symbols
instead of the indices of the symbols; ii) reducing insertion / deletion to append / modify
when updating the RS-encoded parity data. Therefore, VLCG needs to download only the
RS-encoded parity data instead of the entire file for update. However, to ensure the integrity
of the data, VLCG must also download all of the parity data including the useless data even
for small updates.

In this paper, we propose an improved RDC scheme to reduce the communication
overhead for update. In our scheme, instead of downloading all of the RS-encoded parity
data [17] for any small update, the clients download only a part of the RS-encoded parity
data. The downloaded parity data includes the data that needs to be updated and some
redundant data to avoid finding the association between symbols and constraint groups. To
ensure δ-robustness [12] (to be defined in Section 2), it is necessary to hide the association
between the symbols and constraint groups. Thus, the clients need to download not only the

1746 Lin Dong et al.: An Enhanced Remote Data Checking Scheme for Dynamic Updates

parity symbols that are in the affected constraint groups, but also some redundant portions of
the parity data.

The main contributions of this work can be summarized as follows:
1. The proposed scheme reduces communication overhead by downloading only a part of

the RS-encoded parity data for dynamic update.
2. The proposed scheme calculates the minimum download ratio of the total parity data in

order to guarantee δ-robustness.
The experimental results show that our scheme requires less communication overhead

when the update size is small relative to the file size. Further, they show that with varying
file sizes, our scheme can ensure δ-robustness by calculating and downloading the minimum
amount of data so that security is not degraded.

2. Background and Related Work
There has been substantial research on remote data checking. PDP [3] has provided a
probabilistic proof that the server can store the client’s data without retrieving it. In PDP,
before transmitting a file to the server, the client generates a piece of metadata and stores it
locally. Then, the client transmits the file to the server and deletes it locally. The client may
encrypt the file prior to the transmission to the server. Before deleting the file locally, the
client should ensure that the server has stored the file successfully. The client can achieve
this purpose through a challenge-response protocol for the data. The challenge indicates
specific blocks for which the client wants to prove its possession. When the client finds it is
necessary to check the integrity of the data stored in the server, the client sends a challenge
to the server. Instead of accessing all the blocks of the file, the client generates a random
challenge by sampling the data blocks stored in the server. The server generates the
corresponding proof based on the data and transmits it to the client. Thus, the client can
verify this proof using the metadata. This process is shown in Fig. 1. However, the PDP
scheme has an important drawback – high resource overhead. The client must store
numerous metadata that is linear in the number of challenges.

 (a) Pre-processing and storing files (b) Process of verifying server possession

Fig. 1. Protocol for provable data possession

Proof of Retrievability (PoR) [4], [5] is an auditing scheme similar to the PDP. In PoR,
instead of storing metadata, the client stores only a key that is used to encode the file. After
encrypting the file, the client generates a set of sentinel values and embeds these values into
the encrypted file. The server stores only the received file without knowing the positions of
the embedded sentinel values. The client challenges the server by specifying the positions of
a collection of sentinel values. If the server has corrupted a large fraction of the file, the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 5, May. 2014 1747

server will be unable to generate a complete proof for the challenge with high probability.
Consequently, the client knows that the original file has been corrupted. PDP and PoR are
applicable only to static files.

Until now, neither the PDP nor the PoR has been able to allow public and private
verifiability concurrently since different setup procedures and metadata sets are required.
Hanser and Slamanig [18] have proposed a simultaneous privately and publicly verifiable
PDP protocol to support both private and public verifiability simultaneously. This new
construction is based on elliptic curves, with the same setup procedure and metadata set
being used for private and public verifiability. This scheme is more efficient in terms of
storage and communication overhead, as well as computational effort for the client and the
server.

Erway et al. [7] have proposed the DPDP scheme, which supports full dynamic
operations (append, insert, delete, and modify). In DPDP, dynamic operations are realized
based on rank-based authenticated dictionaries built over a skip list and RSA tree. Although
the computational complexity increases because of the need to support dynamic updates,
DPDP is efficient practically in terms of communication and computational overhead for
update.

All of these schemes can protect data only against a large amount of data corruption. R-
DPDP is a scheme obtained by adding the robustness property to the DPDP scheme. In R-
DPDP, corrupted data can be recovered even if the corruption is minor. Because the R-
DPDP scheme is closely related to our scheme, we will explain it in the subsequent sections.

2.1 Forward Error-Correcting Codes
Forward error correction [13] is a technique used to improve data reliability in the fields of
data communication, information theory, digital signal processing, and the like. Error
correction can be performed by introducing redundant data, called error-correcting code.
Redundancy allows the receiver to detect a limited number of errors that may occur
anywhere in the message, and often to correct these errors without retransmission. Reed-
Solomon (RS) code [17] is a variation of FECs. The notation (n, k) RS code denotes an RS
code that encodes a message of k symbols into a codeword of n symbols including d = n - k
redundant symbols; thus, up to d erasures can be corrected.

2.2 Robust Dynamic Provable Data Possession
R-DPDP [12], [16] applies (n, k) RS code over the entire file to achieve robustness. It divides
the file F into k-symbol chunks, and (n, k) RS code is applied to every chunk. Therefore,
every chunk is expanded into n-symbol codewords in which the first k symbols are the
original data symbols and the following d = n - k symbols are the parity symbols
corresponding to the original data symbols. These n-symbol codewords containing k original
data symbols and their corresponding n - k parity symbols are defined as a constraint group
[12], [16] (a detailed explanation of constraint groups will be given in Example 2). RS
encoding and decoding are based on Cauchy matrices [16], [19]. In Cauchy RS updating,
modify / append operations have lower bandwidth overhead than insert / delete operations.
In [12], [16], a δ-robust auditing scheme is defined as follows:

1748 Lin Dong et al.: An Enhanced Remote Data Checking Scheme for Dynamic Updates

Definition 1. A robust auditing scheme RA is a tuple (C, T), where C is a remote data
checking scheme for a file F, and T is a transformation that yields 𝐹� when applied on F.
We say that RA provides δ-robustness when

— the auditor will detect with high probability if the server corrupts more than a δ-
fraction of 𝐹� (protection against corruption of a large portion of 𝐹�);

— the auditor will recover the data in F with high probability if the server corrupts at
most a δ-fraction of 𝐹� (protection against corruption of a small portion of 𝐹�).

Generally, the high probability in Definition 1 is almost one. Similar to the previous PDP,
POR, DPDP, and R-DPDP schemes, the client acts as an auditor. The following example
helps to understand the definition of δ-robust auditing scheme more clearly.

Example 1: In Fig. 2, (a) and (b) show the probability of detection and recovery with
varying sizes of corrupted data in two different auditing schemes. In both of these schemes,
for simple representation, we set δ = 0.015. In the first scheme, as shown in (a), the
probability of detecting the corruption is one, while the ratio of corrupted data is more than
δ, whereas in the condition that the ratio of corrupted data is not more than δ, the probability
of recovery is one. Thus, this scheme can protect data against varying sizes of corruption;
hence, the first scheme is a δ-robust auditing scheme. In this scheme, there is an overlapped
interval in the horizontal axis in which the probability of detection and recovery are both
one; any value of the horizontal axis in the overlapped interval can be δ. However, in the
second scheme, as shown in (b), if the attacker corrupts δ-fraction of the data, the probability
of detecting this corruption is about 0.85, and the probability of recovery from the corruption
is around 0.8. According to this result, the second scheme is not a δ-robust auditing scheme.
Furthermore, the second scheme cannot ensure δ-robustness irrespective of how we set the
value of δ on the horizontal axis.

(a) A scheme that can ensure δ-robustness (b) A scheme that cannot ensure δ-robustness
Fig. 2. Two schemes differing with regard to δ-robustness

In a robust auditing scheme, error detection and recovery are performed by spot checking
and RS coding, respectively. In RS coding, symbols are encoded per constraint group.
Therefore, if the relationship between symbols and a constraint group is revealed, an attacker
can corrupt the constraint group intentionally. If only a few constraint groups are damaged,

δ δ

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 5, May. 2014 1749

the damage may not be recovered; furthermore, it may not be detected by the auditing
mechanism. Then, this attack succeeds and δ-robustness is not guaranteed. Chen and
Curtmola proposed two robust DPDP schemes, πR-D and VLCG [16], both of which
guarantee δ-robustness.

2.2.1 πR-D
The πR-D scheme [16] adds robustness on the basis of the DPDP scheme. The DPDP
scheme [7] consists of four phases: Setup, Challenge, Update, and Retrieve. In the Setup
phase, parity data P is generated by applying the RS code to file F. The augmented file
D = F||P is encrypted and then pre-processed using the DPDP algorithms [7]. All other
phases except the Update phase use the DPDP algorithms directly.

The Update phase can progress with three different operations: insert, delete, and modify.
In the insert / delete operations, the data symbols to be inserted / deleted are assigned to
constraint groups. The contents of a constraint group are decided according to the indices
provided by a pseudo-random permutation (PRP) ψ [20]. Since the operations of inserting or
deleting a data symbol will affect the indices of the subsequent data symbols in the entire
file, the client needs to download the entire file F and recalculate the parity P according to a
new set of constraint groups. The data symbols to be inserted / deleted and the new parity
data is returned to the server by the client. The update bandwidth factor is α=

D
F , which

approaches one in practice [16].
In the modify operations, a client downloads the data blocks to be modified and all of the

parity data. The client decrypts P, restores the original order using ψ-1, and then updates the
parity data symbols that belong to the same constraint group with the modified data symbols.
The update bandwidth factor is α=

D
P . From the performance point of view, the update

bandwidth factor of the modify operations is much lower than that of the insert and delete
operations.

2.2.2 Variable Length Constraint Group
In the πR-D scheme, the insert / delete operations need to download the entire file F, because
PRP ψ is applied to the indices of data symbols. In order to overcome this drawback, Chen
and Curtmola proposed the VLCG scheme [16]. VLCG relies on two additional main
insights. First, a cryptographic hash function hK(b) [21] is applied to the value of symbol b to
decide the index of the constraint group to which symbol b belongs. Thus, insert / delete
operations cannot affect the constraint groups of other symbols. The cryptographic hash
function is usually assumed to be collision resistant [21]. Therefore, we assume that k
consecutive data symbols are assigned to different groups by the hash function, respectively.
Second, to minimize the bandwidth overhead, VLCG simplifies an insert operation to an
append operation, and a delete operation to a modify operation, when updating the RS-coded
parity data.

In an insert operation, VLCG updates parity symbols in the constraint group to which the
insert symbol is assigned as if the symbol were appended to the end of the data symbols in
the constraint group. A delete operation is more complex. The parity symbols in the
constraint group to which the delete symbol is assigned are updated as if the symbol were

1750 Lin Dong et al.: An Enhanced Remote Data Checking Scheme for Dynamic Updates

modified to have the value zero. A modify operation is the most complex, because if a
symbol is modified to a different new value, it may be assigned to a different constraint
group. The old symbol must be deleted from its constraint group, and the new symbol must
be inserted in a new constraint group. Appending a data symbol to the Cauchy RS code or
modifying a data symbol of the Cauchy RS code needs to download only the parity symbols
in the updated constraint group. However, to ensure δ-robustness, the client must download
all of the parity data P. Thus, the bandwidth factors of all the update operations are α=

D
P .

Example 2: For ease of presentation, we illustrate Cauchy RS encoding and decoding using
a (6, 4) RS code as an example (i.e., n = 6, k = 4, d = 2). There are four constraint groups,
and each block contains two symbols; thus, there are four parity blocks. Fig. 3 shows an
example where 16 data symbols in the original file are assigned to four constraint groups
(CG1, CG2, CG3, CG4) using a hash function hK(bi). Now, the client generates the
d = 2 (= n - k) parity symbols of each constraint group using the Cauchy RS encoding.
Consequently, each constraint group contains four original data symbols and two parity
symbols. For example, in constraint group CG1, the first four symbols 2, 7, 9, 15 are the
original data symbols and the following P1 and P2 are the two parity symbols of this
constraint group. The eight parity symbols of the four constraint groups are appended to the
end of the original file F after performing PRP ψ. Then, suppose a client wants to update
(insert, delete, and modify) a symbol bi (= 5) in the original file F. The client finds that this
symbol is located in constraint group four (CG4) using the hash function hK(5) = 4; hence,
the parity symbols P7 and P8 must be updated. However, irrespective of which parity blocks
the parity symbols P7 and P8 belong to, all the parity data must be downloaded.

Original file F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 7 9 15 P1 P2

1 6 10 13 P3 P4

4 8 11 14 P5 P6

3 5 12 16 P7 P8

P1 P2 P3 P4 P5 P6 P7 P8
PRP ψ

P6 P2 P5 P1 P7 P3 P4 P8
 The client downloads all the parity blocks 1, 2, 3, 4

Fig. 3. The method of downloading all parity blocks in VLCG

hk(5)=4
CG1:

CG2:

CG3:

CG4:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 5, May. 2014 1751

As shown above, the VLCG scheme, which is the newest R-DPDP scheme, still needs to
download all of the parity data for any small update. There has not yet been any further
effort to reduce the communication overhead for dynamic update. Therefore, in this paper,
we propose an enhanced remote data checking scheme that reduces the communication
overhead for updates. This scheme is based on the R-DPDP scheme.

3. Downloading Part of the Parity Blocks
3.1 Basic Scheme

In the πR-D and VLCG schemes, clients must download all of the parity data in the Update
phase to ensure δ-robustness. If the number of updated symbols is small, the probability of
finding the association between symbols and constraint groups becomes very low. On the
contrary, if there are many updated symbols, the probability increases. (The detailed
explanation will be given in Section 3.2.) In either case, δ-robustness is guaranteed [12],
[14].

However, we argue that when the number of updated symbols is very small, downloading
all the parity data is very inefficient with regard to communication overhead. We define the
threshold of the probability that an attack succeeds as σ (in [12], with σ set to a value less
than 1010−). If the number of updated symbols is small, the probability that an attack
succeeds can be reduced to less than σ by downloading only part of the parity data for the
updated symbols. Thus, the δ-robustness in Definition 1 can be redefined with σ as follows:

Definition 2. A robust auditing scheme RA is a tuple (C, T), where C is a remote data
checking scheme for a file F, and T is a transformation that yields 𝐹� when applied on F.
We say that RA provides δ-robustness when

— the auditor will detect with high probability (the probability of not detecting the
damage is less than σ) if the server corrupts more than a δ-fraction of 𝐹� (protection
against corruption of a large portion of 𝐹�);

— the auditor will recover the data in F with high probability (the probability of not
recovering the damage is less than σ) if the server corrupts at most a δ-fraction of 𝐹�
(protection against corruption of a small portion of 𝐹�).

In this section, we present an efficient remote data-checking scheme that downloads

parity symbols in proportion to the number of updated symbols. Our first approach is to
download only the parity symbols of the constraint groups to which the updated symbols
belong. However, when the number of updated symbols is small, the association between a
constraint group and the symbols of the group can be easily revealed. If an attacker deletes
all the updated and parity symbols of a constraint group, the deletion may not be recovered
and detected. Therefore, we need some redundancy in the downloaded parity symbols.

The second approach is to download not only the parity symbols of the constraint group
but also all the other symbols in the blocks to which the parity symbols belong. Then,
revealing the association between a constraint group and the symbols of the group can be
mitigated. In order to understand better the difference between our scheme and VLCG, the
following example is given.

1752 Lin Dong et al.: An Enhanced Remote Data Checking Scheme for Dynamic Updates

Example 3: In this example, all the conditions are the same as in Example 2. The client
needs to update the parity symbols of P7 and P8. As shown in Fig. 4, instead of
downloading all the parity symbols, the client finds the locations of the parity symbols of P7
and P8 after permutation. Then, the client downloads the blocks in which these parity
symbols are located, namely, the third and fourth blocks.

P6 P2 P5 P1 P7 P3 P4 P8

P6 P2 P5 P1 P7 P3 P4 P8

Fig. 4. The method of downloading part of parity blocks

When the number of updated symbols is small, the probability of a successful attack may
still be higher than σ despite the client downloading the parity blocks instead of parity
symbols. In order to solve this problem, we may require additional download for
redundancy. Therefore, we suggest the third approach. In the third approach, i) we set the
minimum number of parity blocks to be downloaded to ensure δ-robustness according to the
number of updated symbols, and ii) if the number of parity blocks obtained from the second
approach is less than the minimum number, we download additional parity blocks that are
randomly selected using a pseudo-random function. The next section treats a method to
calculate the minimum number of downloaded parity blocks.
The following are some notations to be used in the next section:
p is the total number of parity symbols.
f is the number of data symbols, i.e., original file symbols.
n is the number of symbols in a constraint group.
k is the number of data symbols in a constraint group.
d is the number of parity symbols in a constraint group.
g is the number of updated constraint groups.
XR is the number of corrupted parity symbols.
CR is the number of symbols in parity data checked by spot checking.
α is the update bandwidth factor defined as

α = the amount of data downloaded for updating one file block / the total number of
data at the server.

DamageR is the ratio of corrupted parity symbols among the total parity symbols.
DamageR = the number of corrupted parity symbols / the total number of parity symbols

Damagemin is the minimum ratio of corrupted parity symbols that can be detected.
DownloadR is the ratio of downloaded parity symbols among the total parity symbols.

DownloadR = the number of downloaded parity symbols / the total number of parity
symbols

Downloadmin is the minimum download ratio of parity symbols to ensure δ-robustness.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 5, May. 2014 1753

3.2 Minimum Download Ratio
We consider security only in the Update phase because all the other phases are the same as in
VLCG. During update operations, the attacker can discover the updated location of the file F
easily and know that all the parity symbols of the updated constraint groups are contained in
the downloaded parity blocks. Therefore, if the attacker corrupts the updated symbols in the
file F and the parity symbols in the locations of the downloaded parity blocks, the
probability of corrupting more than d symbols in one updated constraint group will increase.
When more than d symbols in one updated constraint group are corrupted, this constraint
group is damaged and may not be recovered [12]. Further, if this damage is not detected, the
attack succeeds.

We mentioned that downloading part of the parity data P affects the probability of
discovering the association between the updated parity symbols and the updated constraint
groups. However, we can determine the minimum download ratio of parity symbols such
that the probability of a successful attack is less than σ.

To determine the minimum download ratio of parity symbols, we will first calculate the
probability of detecting an attack and then the probability of recovering from the attack. The
client detects server misbehavior in the data blocks and parity blocks. However, according to
the collision resistance property of cryptographic hash functions, we can assure that there is
no more than one updated data symbol assigned to the same constraint group. Thus, even if
the attacker corrupts all the updated data symbols, there is only one data symbol to be
corrupted in any one constraint group. Then, we must see whether the d parity symbols in
this constraint group are corrupted. The d parity symbols of the constraint group play an
important role in the security of the constraint group in the Update phase, as will be
demonstrated later. Thus, we calculate only the probability of detecting the attack in the
parity data Pr(detectR).
By the definition of σ in Section 3.1, we have

σ≤−)(1 RdetectPr . (1)
The client detects server misbehavior in the parity data after a challenge in which it requests
for proof for CR parity symbols. According to [12], the detection probability is represented
by the following:

RC
R

R p
XdetectPr 








−−≥ 11)(. (2)

In formula (2),)(kfdp ⋅= and XR represent the number of all parity symbols and the
number of corrupted parity symbols in a file, respectively. CR denotes the number of symbols
spot-checked in the parity data .
Since pXDamage RR /= , formula (2) can be rewritten as follows:

() RC
RR DamagedetectPr −−≥ 11)(=> () RC

RR DamagedetectPr −≤− 1)(1 . (3)
To guarantee δ-robustness, formula (1) must be satisfied. If we ensure that

 () σ≤− RC
RDamage1 , (4)

then formula (1) can be established. Formula (4) can be rewritten as follows:

 RC
RDamage

1

1 σ−≥ . (5)
Through formula (5), we can determine the minimum ratio of corrupted parity symbols that
can be detected as follows:

1754 Lin Dong et al.: An Enhanced Remote Data Checking Scheme for Dynamic Updates

RC
minDamage

1

1 σ−= . (6)

If the ratio of corrupted parity data is more than Damagemin, this corruption will be detected.
However, we cannot simply regard Damagemin as the minimum download ratio Downloadmin,
because it may not be able to ensure δ-robustness. For example, in the condition of
Downloadmin = Damagemin, when the attacker corrupts part of the downloaded parity symbols
that are less than Damagemin, this corruption will not be detected, but the probability of
causing damage to the data is high. To illustrate this case, the following example is given.

Example 4: Suppose the size of the original file is 128000 * 4 KB, encoded using a (140,
128) RS code, and the update size is one symbol. If the number of symbols spot-checked is

1188 * 4 KB as in [12], then 417090102441188
140
12

=⋅⋅⋅=RC . We can calculate

5105.5 −×=minDamage using formula (6). When the client downloads
270349152000105.5 5 =××=⋅ −pDamagemin parity symbols, and an attacker corrupts half of

the downloaded parity symbols, the probability of damaging all 12 parity symbols in the
constraint group is

41044.2
4096

1
12

2703

12
2
12703

2
1

−×≈≈



















 ×=






 ⋅












 ⋅⋅
d

pDamage

d

pDamage minmin
. In this

condition, the probability of detecting this damage is very low, because the ratio of corrupted
parity data among the total parity data is less than Damagemin. In addition, the probability of
not recovering this constraint group is 41044.2 −× , which does not meet the condition of less
than σ (= 1010− [7]) in Definition 2. Thus, this attack can succeed. Therefore, the minimum
download ratio of parity blocks must be greater than Damagemin.

Fig. 5. A condition that a constraint group is damaged

Next, we can derive Downloadmin using Damagemin. As shown in Fig. 5, suppose that a

client downloads DownloadR of the total number of parity symbols and an attacker corrupts a
part of the downloaded parity symbols during update. Let Hi be the event that the ith updated
constraint group is recovered from the attack. If all d parity symbols of the ith constraint
group are in the damaged area, d + 1 symbols (d parity symbols with a single updated data
symbol) in this constraint group will be corrupted, and this constraint group cannot be
recovered. However, if not every parity symbol is damaged as the jth constraint group, the
constraint group can be recovered. Therefore, we have:








 ⋅








 ⋅

−=
d

pDownload
d

pDamage

i R

R

HPr 1)(. (7)

DownloadR

DamageR
Pi1, P i2 ,…, P id

Pj3, P j4 ,…, Pjd

Pj1, Pj2,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 5, May. 2014 1755

Let g be the number of constraint groups to be updated and Arecovery be the event that all the g
updated constraint groups are recovered. We assume that Hi and Hj for ji ≠ are mutually
independent. Then, the probability that all the g constraint groups are recovered from a
damage is represented by the following formula:

g

d
pDownload

d
pDamageg

i
irecovery R

R

HPrAPr











−==








 ⋅








 ⋅

=
∏ 1)()(

1

. (8)

Then, the probability of attacking at least one constraint group is
g

d
pDownload

d
pDamage

recoveryeryre R

R

APrAPr











−−=−=








 ⋅








 ⋅

11)(1)(cov . (9)

According to Definition 2, δ-robustness is guaranteed when the following formula is
satisfied:

cov() 1 ()re ery recoveryPr A Pr A σ= − ≤ . (10)

By combining formulae (9) and (10), the following formula must be satisfied to guarantee δ-
robustness:

cov() 1 1
R

R

gDamage p
d

re ery Download p
d

Pr A σ
⋅ 

 
 

⋅ 
 
 

 
 = − − ≤
  

. (11)

If parameters p, d and σ are fixed by initial setting of a cloud system and parameter g is
given by the amount of update, formula (11) varies with DamageR and DownloadR. As
DamageR increases and DownloadR decreases,)(recoveryAPr increases. For efficiency, we

want to set)(recoveryAPr to be the maximum, i.e., σ=)(recoveryAPr .

Meanwhile, DamageR does not have to be greater than Damagemin because the damage
can be detected. The meaningful DamageR value is less than or equal to Damagemin.
Therefore, the maximum DamageR in the formula is set to Damagemin. Recall Damagemin can
be calculated using formula (6). What remains is to minimize DownloadR. As we mentioned
in Example 4, the minimum DownloadR must be greater than Damagemin. The minimum
DownloadR can be achieved when)(recoveryAPr is maximized. According to formula (11),

{ ()}recoverymax Pr A is σ . Therefore, Downloadmin can be found using the following
formula:

σ=











−−=








 ⋅








 ⋅ g

d
pDownload

d
pDamage

recovery min

min

APrmax 11)}({ . (12)

The Downloadmin value in the above formula can be computed using numerical methods. The
following example is to compare the number of downloading parity symbols to ensure δ-
robustness between VLCG and our scheme.

1756 Lin Dong et al.: An Enhanced Remote Data Checking Scheme for Dynamic Updates

Example 5: Suppose all the parameters are the same as in Example 4, i.e., the file size is
128000 * 4 KB, encoded using a (140, 128) RS code, and the update size is one symbol.
Because VLCG downloads all the parity data, if an attacker corrupts Damagemin * p =
2,703 symbols, as in Example 4, the probability that all 12 parity symbols in the updated
constraint group are damaged such that the group cannot be recovered is

521065.711 −×=






















 ⋅
−−

g
R

d
p

d
pDamage .

This result is much smaller than σ (= 1010− [7]). In contrast, in the proposed scheme, it is
enough to download only 18,432 symbols according to the calculated Downloadmin using
formula (12). This result shows that in this example, δ-robustness can be ensured by
downloading fewer than the total number of parity symbols.

3.3 Algorithms for Downloading Part of Parity Blocks
Because our scheme is based on the VLCG scheme, we restrict our description only to the
procedure of deciding which part of the parity blocks should be downloaded. The method of
update operations itself is the same as VLCG. Additional notations to be used in our
algorithms are summarized as follows:
K is a secret key.
B is a set of updated symbols.
CG is a set of the IDs of the updated constraint groups. For example, if an updated symbol is

located in the jth constraint group, the ID of the constraint group is j.
Blocksize is the number of symbols per block.
Blockmin is the minimum number of parity blocks to be downloaded.
SL is a set of parity symbol indices requred to be updated before permutation.
SLpermuted is a set of parity symbol indices requred to be updated after permutation.
BL is a set of block indices in which the updated parity symbols are located.
BAddL is a set of block indices to be downloaded additionally if required.
BDownL is a set of block indices required to be downloaded.

An Enhanced Remote Data Checking Scheme is a collection of the following four
polynomial-time algorithms:

Algorithm 1: CG ← DecideGroups(B, K)

/* Input B consists of bi, 1≤i≤m , i.e., },...,,{ 21 mbbbB = . */

1: CG φ= // initialize CG to be empty
2: for i=1 to m
3: { })(iK bhCGCG = //)(iK bh is a cryptographic hash function

4: return CG

Algorithm 1 decides the constraint groups that symbols in B belong to using a cryptographic

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 5, May. 2014 1757

hash function)(bhK . The set of constraint group CG is initialized to be empty (Step 1). For
each symbol bi in B, the constraint group ID that bi is assigned to is determined by ()K ih b
and added to CG (Step 3). For example, suppose the updated symbols are 1 and 5 (i.e., B={1,
5}) in Fig. 3. Both symbols in B are assigned to constraint groups 2 and 4 by (1) 2Kh = and

(5) 4Kh = , respectively. As a result, CG={2, 4}.

Algorithm 2: Blockmin ← DecideBlockmin(Damagemin, g, p, d, σ, Blocksize)

/* g is calculated from the output of Algorithm 1 as CGg = where CG is the
number of elements in CG. */
1: Compute Downloadmin using formula (12) on Damagemin, g, p, d, σ
2: /min min sizeBlock Download p Block= ×  

3: return Blockmin

Algorithm 2 calculates the minimum download ratio of parity symbols Downloadmin to
ensure δ-robustness using formula (12), and the minimum number of downloaded parity
blocks Blockmin, respectively. In Step 2, the number of blocks for the minimum downloaded
parity symbols is calculated because our scheme is based on parity blocks as shown in Fig. 4
and accesing server disk is a block operation. In this algorithm, p, d, σ, Blocksize are input
parameters which are already given. Damagemin is precalculated using formula (6), and g is
calculated from the output of Algorithm 1.

Algorithm 3: BL ← CalculateParityAndBlockLocations(CG, d, K, Blocksize)

1: , ,permutedSL SL BLφ φ φ= = = // initialize SL, SLpermuted and BL to be empty

2: for each CGi∈
3: for j=1 to d

4: { }(1)SL SL i d j= − × + // Assume index starts from one

5: for each i SL∈
6: { }()permuted permuted KSL SL iψ=  //)(iKψ is a pseudo-random permutation

7: for each permutedi SL∈

8: { }sizeBL BL i Block =   

9: return BL

Algorithm 3 calculates the locations of the parity symbols after applying PRP ψ for the
parity symbols in the update constraint groups that were decided in Algorithm 1. It also
calculates the indices of blocks that the permuted parity symbols are located in the server.
Let us continue the previous example using Fig. 3. Since CG={2,4} and d=2, P3 and P4 (or
P7 and P8) are parity symbols in the constraint group 2 (or 4), respectively. Thus,
SL={3,4,7,8} (Step 2~4). In Fig. 3, P3, P4, P7 and P8 move to the 6th, 7th, 5th and 8th

1758 Lin Dong et al.: An Enhanced Remote Data Checking Scheme for Dynamic Updates

positions by PRP ψ , respectively. Thus, SLpermuted={5,6,7,8} (Step 5~6). In Fig. 4, we set
Blocksize=2, Thus, BL={3,4} (Step 7~8).

Algorithm 4: BDownL ← GenerateDownloadBlocks(Blockmin, BL, K)

1: φ=BAddL // initialize BAddL to be empty

2: if minBlock BL> // BL is the number of elements in BL

3: while minBL BAddL Block≤

4: { }KBAddL BAddL π=  /* Kπ is a pseudo-random function that

generates an integer in the range from one to / sizep Block   . */

5: BAddLBLBDownL =

6: return BDownL

If the number of blocks in BL that was calculated in Algorithm 3 is less than Blockmin,
Algorithm 4 generates additional blocks BAddL to meet the minimum number of
downloaded parity blocks using a pseudo-random function (PRF) Kπ , and integrates two
arrays of the blocks, BL and BAddL into BDownL.

3.4 δ-robustness Guarantee
In Section 3.2, we demonstrated that when the download ratio of parity data is more than
Downloadmin, δ-robustness can be ensured. Therefore, the following theorem holds:

Theorem 1: Our scheme guarantees δ-robustness.
Proof: In order to guarantee δ-robustness, both conditions of Definition 2 must be satisfied.
To satisfy the first condition of Definition 2, formula (4) should hold. The Damagemin that is
calculated by formula (6) is the minimum value of DamageR which satisfies formula (4). If
an attacker corrupts more than Damagemin fraction of 𝐹� , our scheme can detect the
corruption with high probability (more than 1-σ). Thus, our scheme satisfies the first
condition of Definition 2.
To satisfy the second condition of Definition 2, formula (11) should hold. The Downloadmin
that is calculated by formula (12) is the minimum value of DownloadR which satisfies
formula (11). Since our scheme downloads at least Downloadmin fraction of 𝐹� , it satisfies the
second condition of Definition 2. □

Next, we show that the value of δ in our scheme is the same as that in VLCG. We define
detectmin as the minimum ratio of the corruption in the parity data in the scope in which the
corruption is detectable, and recovermax as the maximum ratio of the corruption in the parity
data in the scope in which the corruption is recoverable. In Fig. 2(a), when Pr(Detect)
approaches one, the corresponding value of the horizontal axis, i.e., the ratio of corrupted
data, is set as detectmin; whereas when Pr(Recovery) begins to decline from initial value one,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 5, May. 2014 1759

the value of horizontal axis at that moment is set as recovermax. Thus, detectmin and recovermax
are determined about 0.01 and 0.04, respectively in Fig. 2(a). If a scheme ensures δ-
robustness, the δ can be any value between detectmin and recovermax.

In Section 3.2, we showed that if the corrupted ratio of the parity data is more than
Damagemin, the corruption can be detected. Thus, we can have detectmin = Damagemin.
According to formula (12), it is recoverable even when the ratio of corruption in the parity
data is equal to Damagemin. Thus, it holds that max minrecover detect≥ . This relationship
between detectmin and recovermax is also shown in Fig. 2(a). Even if the δ can be any value
between detectmin and recovermax, we set the δ as δ = min(detectmin, recovermax) = detectmin =
Damagemin. Because all of the parameters for calculating Damagemin in VLCG and in our
scheme are the same, the value of δ in our scheme is the same as that in VLCG.

3.5 Summary and Comparison

In VLCG, the bandwidth factor is
D
P=α because the client needs to download all of the

parity data in the Update phase. In contrast, in the proposed scheme, the client need not
download all of the parity data for small updates; hence, the bandwidth factor is

D
PDownloadR ⋅=a , (0 1)RDownload< ≤ , which is affected by DownloadR. The result of

DownloadR is shown in the next section, as shown in Figs. 6 and 7. For example, in a
condition where the file size is 256 MB and the block size is 4 KB, DownloadR = 0.18, while
the update size is 100 symbols. The performance and security analysis results can be
summarized as in Table 1, which implies that the proposed scheme enhances efficiency
without security degradation with regard to δ-robustness.

Table 1. Comparison of the performance among πR-D, VLCG, and our scheme

 Probability of
detection Update bandwidth Robustness

πR-D C
cbf)1(1 −−

D
F=α (insert/delete)

D
P=α (modify)

δ-robustness

VLCG C
cbf)1(1 −− D

P=α

δ-robustness

Our scheme C
cbf)1(1 −− D

PDownloadR ⋅=α
(0 1)RDownload< ≤

δ-robustness

(cbf : the fraction of the corrupted block, C: the number of symbols checked by spot checking)

4. Experimental Results
We conducted two experiments. In both of the experiments, the blocks are encoded with a
(140, 128) RS code and the block size in the server is 4 KB. The first experiment is to test
the efficiency of the communication overhead for varying parameters. The proposed scheme
reduces communication overhead for varying file sizes, owing to the partial download, as
compared to the VLCG scheme.

1760 Lin Dong et al.: An Enhanced Remote Data Checking Scheme for Dynamic Updates

Fig. 6. Communication overhead of the enhanced remote data checking scheme

As shown in Fig. 6, in the VLCG scheme, since all the parity data should be downloaded

regardless of the file size and the number of updated constraint groups, the four dotted lines
for DownloadR are coincident, and the value of DownloadR is always one, irrespective of the
change in parameters. Thus, all the parity data should be downloaded for any small update in
the VLCG scheme. However, in the proposed scheme, only the parity symbols in the blocks
the updated parity symbols belong to are downloaded. Thus, when the file sizes are
determined, the greater the number of updated constraint groups, the greater the number of
parity data that need to be downloaded. Generally, the larger the file size, the greater the
number of constraint groups. Thus, if the number of updated constraint groups is fixed, the
bigger the file size, the less the ratio of the number of blocks that need to be downloaded to
the total number of parity blocks. It needs smaller communication overhead, i.e., DownloadR,
in a larger file size. Through this experiment we can obtain the following result: when the
size of updated data is small, because of the partial download of parity data, the
communication overhead for update in the proposed scheme is less than that in the VLCG
scheme.

Fig. 7. Communication overhead for normalized g

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 5, May. 2014 1761

The result of the VLCG scheme in Fig. 7 is the same as that in Fig. 6, the four dotted
lines for DownloadR are coincident, and the value of DownloadR is always one. Through the
result in Fig. 6, we can observe that in the proposed scheme, the ratio of downloaded parity
data depends on the amount of the updated data and the file size. The communication
overhead for update becomes smaller as the update size becomes small and the file size
becomes large. However, as shown in Fig. 7, if the number of updated constraint groups is
normalized to the total constraint groups, the communication overhead for varying file sizes
is the same as well. Moreover, when the ratio of the number of updated constraint groups to
the number of total constraint groups is small, the value of DownloadR is less than one. Thus,
the efficiency of the proposed scheme depends on the proportion of updated symbols to the
file size. Through this proportion we can determine whether the communication overhead in
the proposed scheme is less than that in the VLCG scheme.

Fig. 8. δ-robustness guarantee

The second experiment is to test whether our scheme ensures δ-robustness and to

compare our scheme and the VLCG scheme in terms of the probability of detection or
recovery. In Fig. 8, there is only one line for the probability of detecting corruption, because
it is the same in both schemes. Recall our scheme uses the same formula, i.e., formula (2), to
calculate the probability of detecting corruption as VLCG. In contrast, the lines for the
probability of recovery are numerous because they vary with different g values and schemes.
When Pr(detection) approaches one, we set the value of the horizontal axis, i.e., the ratio of
deleted blocks over the total parity blocks as detectmin, whereas when Pr(recovery) has held
one but begins to decline, we set the value of horizontal axis as recovermax. We can observe

max minrecover detect≥ from Fig. 8, as from Section 3.4. In the figure, although two recovermax

detectmin recovermax,g=1,our scheme recovermax,g=1,VLCG

1762 Lin Dong et al.: An Enhanced Remote Data Checking Scheme for Dynamic Updates

(recovermax,g=1,our scheme and recovermax,g=1,VLCG) for only g=1 are shown, there must be two
recovermax for each g.

There is an overlapped interval in the horizontal axis in which both Pr(detection) and
Pr(recovery) are one between detectmin and recovermax. According to Fig. 2, both schemes
ensure δ-robustness. Any value of the horizontal axis in the overlapped interval can be δ. In
Section 3.4, the minimum value in the overlapped interval is set to δ and is the same as
detectmin = min(detectmin, recovermax). This δ value is the same in both VLCG and our
scheme. The overlapped interval is shorter in our scheme than in VLCG. Actually, the
amount of downloading parity data is affected by recovermax. As recovermax is smaller, the
amount of downloading parity data decreases. Because our scheme has smaller recovermax
than VLCG, it has smaller communication overhead. In the figure, the smaller the g value,
the shorter the overlapped interval. Therefore, our scheme is more efficient for small g
values as it was claimed in Section 3.1.

Summarizing the second experiment, when an attacker corrupts a maximum of δ-fraction
of the parity data, the client can recover the data with high probability. When the attacker
corrupts more than a δ-fraction of the parity data, the client can detect the attack with high
probability. Therefore, both schemes can ensure δ-robustness. The only difference between
the two schemes is that the value of recovermax in our scheme is less than that of the VLCG
scheme. The recovermax affects the amount of downloading parity data. Therefore, we could
calculate Downloadmin in Section 3.2, whereas it is the total parity data in VLCG. Our
scheme is more efficient for small g values.

5. Conclusion and Future Work
In the VLCG scheme, all of the parity data must be downloaded for update operations to

ensure δ-robustness. In this paper, we proposed an Enhanced Remote Data Checking Scheme
to reduce the communication overhead for update operations. In the proposed scheme, the
client downloads only part of the parity data for update operations. The downloaded parity
data include not only the parity data of the updated constraint groups but some redundant
parts of the parity data as well to avoid discovering the association between symbols and
constraint groups.

To include some redundancy, the client downloads all symbols in the blocks in which the
updated parity symbols are located. However, if the number of updated symbols is small, this
redundancy is insufficient to hide the association. Therefore, we presented a method to add
more redundancy. By calculating the minimum download ratio of the parity symbols, the
proposed scheme can ensure δ-robustness in the condition of downloading only a part of the
parity data. If the number of all symbols in the blocks in which the updated parity symbols
are located is less than the minimum download ratio of the total parity symbols, we select
some additional blocks randomly among all the parity blocks by a pseudorandom function.

In addition, we found that the δ value in our scheme is the same as Damagemin, which is
the δ value in VLCG as well. This means that our scheme maintains the same security level
as VLCG while it downloads fewer parity data. To summarize, the proposed scheme reduces
the communication overhead for update operations without any security degradation.

From the efficiency point of view, our experiment showed that it requires less
communication overhead when the update size is smaller relative to the file size. From the
security point of view, our experiment showed that the proposed scheme can ensure δ-
robustness for varying parameters. A graph based on the experiment showed that there is an

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 5, May. 2014 1763

overlapped interval in the horizontal axis in which both Pr(detection) and Pr(recovery) are
one. This means that the proposed scheme guarantees δ-robustness. In addition, the graph
showed that the δ value (detectmin) in the proposed scheme is the same as the value of δ in the
VLCG scheme. The only difference between the two schemes is that the value of recovermax
in our scheme is less than that of the VLCG scheme, because the downloaded ratio of parity
data in VLCG is more compared to our scheme.

In the proposed scheme, the client plays the role of an auditor. It is possible to permit a
third-party auditor (TPA), trusted by both the server and client, to check the integrity of the
outsourced data [22], [23]. In future work, it may be interesting to incorporate the TPA
technique into our scheme for the purpose of public auditing. We considered dynamic
updates only for a single client / server. However, files in multiple servers can be accessed
by multiple clients. Reducing communication overhead for dynamic updates in the multiple
client / server environment is also intended for future work.

Acknowledgement
This research was supported by the Chung-Ang University Research Scholarship Grants and
the National Research Foundation of Korea (NRF) grant funded by the Korea government
(MSIP) (No. 2013R1A2A2A01005559 and 2010-0022851) in 2013.

References

[1] H. Takabi, J. Joshi and G. Ahn, "Security and Privacy Challenges in Cloud Computing
Environments," IEEE Security and Privacy, vol. 8, no. 6, pp. 24-31, November, 2010.
Article (CrossRef Link)

[2] Z. Xiao and Y. Xiao, "Security and Privacy in Cloud Computing," IEEE
Communications Surveys & Tutorials, vol. 15, no. 2, pp. 843-859, July, 2013.
Article (CrossRef Link)

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson and D. Song,
"Provable data possession at untrusted stores," in Proc. of 14th ACM Conference on
Computer and Communications Security, pp. 598-609, 2007. Article (CrossRef Link)

[4] A. Juels and B. S. Kaliski, "PORs: Proofs of retrievability for large files," in Proc. of the
14th ACM Conference on Computer and Communications Security, pp. 584-597, 2007.
Article (CrossRef Link)

[5] H. Shacham and B. Waters, "Compact proofs of retrievability," in Proc. of Asiacrypt,
vol 5350 of LNCS, pp. 90-107, December, 2008 Article (CrossRef Link)

[6] K. D. Bowers, A. Juels and A. Oprea, "HAIL : a high-availability and integrity layer for
cloud storage," in Proc. of 16th ACM Conference on Computer and Communications
Security, pp. 187-198, 2009. Article (CrossRef Link)

[7] C. Erway, A. Kupcu, C. Papamanthou and R. Tamassia, "Dynamic provable data
possession," in Proc. of 16th ACM Conference on Computer and Communications
Security, pp. 213-222, 2009. Article (CrossRef Link)

[8] M. T. Goodrich and R. Tamassia, "Efficient authenticated dictionaries with skip lists and
commutative hashing," Johns Hopkins Information, January, 2001.
Article (CrossRef Link)

http://dx.doi.org/10.1109/MSP.2010.186
http://dx.doi.org/10.1109/SURV.2012.060912.00182
http://dx.doi.org/10.1145/1315245.1315318
http://dx.doi.org/10.1145/1315245.1315317
http://dx.doi.org/doi:10.1007/978-3-540-89255-7_7
http://dx.doi.org/10.1145/1653662.1653686
http://dx.doi.org/10.1145/1653662.1653688
http://www.cs.jhu.edu/%7Egoodrich/cgc/pubs/hashskip.pdf

1764 Lin Dong et al.: An Enhanced Remote Data Checking Scheme for Dynamic Updates

[9] M. T. Goodrich, R. Tamassia and A. Schwerin, "Implementation of an authenticated
dictionary with skip lists and commutative hashing," in Proc. of DARPA Information
Survivability Conference & Exposition II, pp. 68-82, 2001. Article (CrossRef Link)

[10] C. Papamanthou, R. Tamassia and N. Triandopoulos, "Authenticated hash tables," in
Proc. of 15th ACM Conference on Computer and Communications Security, pp. 437-
448, 2008. Article (CrossRef Link)

[11] G. Ateniese, R. D. Pietro, L. V. Mancini and G. Tsudik, "Scalable and efficient provable
data possession," in Proc. of the 4th International Conference on Security and Privacy
in Communication, Article No. 9, 2008. Article (CrossRef Link)

[12] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z. Peterson and D.
Song, "Remote data checking using provable data possession," ACM Transactions on
Information and System Security, vol. 14, no. 1, Article No. 12, 14 May, 2011.
Article (CrossRef Link)

[13] Wikipedia, http://en.wikipedia.org/wiki/Forward_error_correction
[14] R. Curtmola, O. Khan and R. Burns, "Robust remote data checking," in Proc. of 4th

ACM International Workshop on Storage Security and Survivability, pp. 63-68, 2008.
Article (CrossRef Link)

[15] K. D. Bowers, A. Juels and A. Oprea, "Proofs of retrievability: Theory and
implementation," in Proc. of the 2009 ACM Workshop on Cloud Computing Security,
pp. 43-54, 2009. Article (CrossRef Link)

[16] B. Chen and R. Curtmola, "Robust dynamic provable data Possession," in Proc. of 32nd
International Conference on Distributed Computing Systems Workshops, pp. 515-525,
2012. Article (CrossRef Link)

[17] I. S. Reed and G. Solomon, "Polynomial codes over certain finite fields," Journal of the
Society for Industrial and Applied Mathematics, vol. 8, no. 2, pp. 300-304, 1960.
Article (CrossRef Link)

[18] C. Hanser and D. Slamanig, "Efficient Simultaneous Privately and Publicly Verifiable
Robust Provable Data Possession from Elliptic Curves," in Proc. of International
Conference on Security and Cryptography, pp. 15-26, 2013. Article (CrossRef Link)

[19] J. S. Plank, S. Simmerman and C. D. Schuman, Jerasure: A library in C/C++ facilitating
erasure coding for storage applications – Version 1.2, University of Tennessee, Tech.
Rep. CS-08-627, 2008. Article (CrossRef Link)

[20] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Chapman & Hall/CRC,
2008.

[21] Wikipedia, http://en.wikipedia.org/wiki/Cryptographic_hash_function
[22] C. Wang, Q. Wang, K. Ren and W. Lou, "Privacy-preserving public auditing for data

storage security in cloud computing," in Proc. of IEEE INFOCOM, pp. 1-9, March
2010. Article (CrossRef Link)

[23] Q. Wang, C. Wang, J. Li, K. Ren and W. Lou, "Enabling public verifiability and data
dynamics for storage security in cloud computing," in Proc. of the 14th European
Conference on Research in Computer Security, pp. 355-370, 2009.
Article (CrossRef Link)

http://dx.doi.org/doi:10.1109/DISCEX.2001.932160
http://dx.doi.org/10.1145/1455770.1455826
http://dx.doi.org/doi:10.1145/1460877.1460889
http://dx.doi.org/10.1145/1952982.1952994
http://en.wikipedia.org/wiki/Forward_error_correction
http://dx.doi.org/10.1145/1456469.1456481
http://dx.doi.org/10.1145/1655008.1655015
http://dx.doi.org/doi:10.1109/ICDCSW.2012.57
http://dx.doi.org/10.1137/0108018
https://eprint.iacr.org/2013/392.pdf
http://jerasure2.googlecode.com/svn/trunk/jerasure3/documentation/paper.pdf
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://dx.doi.org/doi:10.1109/INFCOM.2010.5462173
http://dx.doi.org/doi:10.1007/978-3-642-04444-1_22

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 5, May. 2014 1765

Lin Dong received the BS degree from Huaiyin Normal University, China, and
Konkuk University, Seoul, Korea in 2012 and the MS degree in Electronics and
Electrical Engineering from Chung-Ang University, Seoul, Korea in 2014. Her
research interests include cryptology and cloud computing security.

Jinwoo Park received the BS degree from Chung-Ang University, Seoul,
Korea in 2013. He is currently pursuing his MS degree in School of Electrical and
Electronics Engineering, Chung-Ang University, Seoul, Korea. His research
interests include big data processing, data analytics and internet security.

Junbeom Hur received the B.S. degree in computer science from Korea
University in 2001, the M.S. and Ph.D. degrees in computer science from KAIST
in 2005 and 2009, respectively. He has been in the University of Illinois at
Urbana-Champaign as a postdoctoral researcher from 2009 to 2011. He is
currently an assistant professor in the school of computer science and engineering
at the Chung-Ang University in Korea. His research interests include information
security, mobile computing security, cyber security, and applied cryptography.

Ho-Hyun Park received the BS degree from Seoul National University, Seoul,
Korea in 1987 and the MS and Ph.D. degrees from KAIST in 1995 and 2001,
respectively. From 1987 to 2002, he worked at Samsung Electronics as a
principal engineer. He is currently a professor in School of Electronics and
Electrical Engineering, Chung-Ang University, Seoul, Korea. His research
interests include multimedia processing, big data and internet security.

