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Abstract 
 

There is an intuitive connection between signcryption and key agreement. Such a connector 

may lead to a novel way to construct authenticated and efficient group key agreement 

protocols. In this paper, we present a primary approach for constructing an authenticated 

group key agreement protocol from signcryption. This approach introduces desired properties 

to group key agreement. What this means is that the signcryption gives assurance to a sender 

that the key is available only to the recipient, and assurance to the recipient that the key indeed 

comes from the sender. Following the generic construction, we instantiate a distributed 

two-round group key agreement protocol based on signcryption scheme given by Dent [8]. We 

also show that this concrete protocol is secure in the outsider unforgeability notion and the 

outsider confidentiality notion assuming hardness of the Gap Diffie-Hellman problem. 
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1. Introduction 

Secure group communication is of great importance for many collaborative and distributed 

applications, such as video conferencing, collaborative computation, file sharing via internet, 

secure group chat, group purchase of encrypted content and so on. In order to achieve secure 

group communications in such scenarios, a group key for fast encryption and decryption must 

be shared only by group members. Group communication messages are encrypted with the 

group key, and thus a group member can collaborate with other members without worrying 

about information leakage. An authenticated key agreement protocol aims at ensuring that no 

entity other than group members can possibly compute the agreed session key. This kind of 

protocols is secure against active adversaries. We know that active adversaries are more 

powerful since they are assumed to have a complete control of the communication channel. 

Hence, it is essential for a group key agreement (GKA) protocol to be resistant against attacks 

from active adversaries. This calls for authenticated key agreement protocols. 

The main features we would like to find in a GKA scheme are security and efficiency, in the 

presence of an active adversary. The typical approach to the problem [1-4] requires some data 

to go through the complete set of parties, which by sequentially adding some private 

contribution, “build” the actual key in a linear number of rounds of communication. The main 

problem with this approach is, of course, that it may lead to very slow protocols. To improve 

on communication complexity, the natural solution is to try to design a scheme that allows for 

simultaneous sending of contributions. The signcryption based Authenticated GKA protocol 

in this paper is designed with the above concept. 

Signcryption, introduced by Zheng [5], is an asymmetric cryptographic primitive that 

provides both privacy and authenticity at greater efficiency than the generic composition of 

signature and encryption schemes. Zheng [6] later observed that a signcryption scheme can be 

used as a key transport protocol by simply choosing a new key and sending it in a signcrypted 

message. Choudary [7] defined a security model for this construction. However, they did not 

present how to extend these notions to the group setting. Actually, signcryption scheme can 

also be used to construct group key agreement protocols with two rounds. This approach also 

introduces desired properties to group key agreement. What this means is that the signcryption 

gives assurance to the sender that the key is available only to the intended recipient, and 

assurance to the recipient that the key came from the intended sender. The main purpose of this 

paper is to define a primary approach for constructing an authenticated group key agreement 

protocol from signcryption. We also give a concrete authenticated group key agreement 

scheme based on signcryption. 

2. Paper Organization 

The rest of the paper is organized as follows: We outline our main contributions in Section 3 

and survey the related works in Section 4. Next, a primary generic construction idea of an 

unforgeable GKA protocol from signcryption is presented in Section 5, followed by a concrete 

protocol from signcryption scheme of Dent [8] in Section 6. Then, the security analysis is 

given in Section 7. This paper is finally concluded in Section 8. 
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3. Our Contribution 

In this paper, we consider a different approach to the existing solutions of group key 

agreement, namely to incorporate the signcryption into the design of group key agreement. As 

we will show in this paper, the adoption of signcryption key establishment to the group 

scenario is not very straightforward. Nonetheless, by constructing a recursive chain from 

signcryption and then extracting group key from this recursive chain, we obtain an 

unforgeable group key agreement protocol. In fact, an unforgeable GKA protocol means an 

authenticated GKA protocol that is secure with unforgeability. The unforgeability makes the 

recipient be assured that the key indeed comes from the intended sender and does not undergo 

any modification. To support our idea, we prove that our scheme is secure in the outsider 

unforgeability notion and the outsider confidentiality notion assuming hardness of the Gap 

Diffie-Hellman (GDH) problem. 

4. Related Work 

Group key agreement (GKA) is the core issue of secure group communication. Up to now, it is 

still an elusive open problem to construct an efficient GKA protocol. Since the publication of 

two-party Diffie-Hellman (DH) key exchange in 1976 [9], various solutions have been 

proposed to extend Diffie-Hellman key exchange to multi-party key agreement, such as 

[10][11][12][13][14][15]. Wu et al. [16] proposed the first one-round asymmetric GKA 

protocol. However, none of the prior arts is given a property of unforgeability. Katz, J. and 

Yung, M. [17] utilized a compiler to transform the well-known BD protocol [12] to an 

authenticated protocol that is secure against an active adversary. Gorantla, M. et al. [18] 

leveraged an mKEM (multi key encapsulation mechanism [19]) to achieve an authenticated 

GKA protocol, in which by using mKEM each group member encapsulates a random nonce 

and broadcast it as its contribution towards the session key. Instead of these traditional 

solutions, we will present how to construct a mutual authenticated group key agreement 

protocol from signcryption schemes by constructing an ordered key chain and a recursive 

relation. Our concept grew out of a search for mutual authenticated GKA schemes that is 

secure with the unforgeability and a research on key establishment from signcryption schemes 

that are reviewed as follows. 

    Zheng who introduced the notion of signcryption later observed that a signcryption scheme 

can be used as a key transport protocol by simply choosing a new key and sending it in a 

signcrypted message [6]. This intuitively gives the desired properties for key establishment 

since the signcryption gives assurance to the sender that the key is available only to the 

recipient, and vice versa. This merit is also desired in GKA. In this paper, we will use 

signcryption to construct a mutual authenticated group key agreement protocol. What follows 

are the prior arts that are more germane to our work. Dent [8][20] discussed how a 

signcryption KEM can be used as a one-pass key establishment protocol. Bjørstad and Dent 

[21] proposed the concept of signcryption tag-KEM and claimed that better key establishment 

mechanisms can be built with signcryption tag-KEM. M. Choudary Gorantla et al. [7] define 

security notions and show how signcryption and one-pass key establishment can be related 

under those notions. Dent [22] discussed some aspects about key transport protocols and key 

agreement protocols from signcryption techniques, including security models, entity 

authentication and key compromise impersonation attacks. However, none of these papers 

mentioned about any relations between group key agreement and signcryption. Actually, 
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group key agreement protocols can also be built from signcryption schemes, which is the main 

purpose of this paper. 

5. Group Key Agreement from Signcryption 

We now consider the generic construction for an authenticated two-round group key 

agreement protocol by using signcryption algorithms. What follows is the main idea. All 

group participants 1 2, , , nU U U  are organized in an ordered chain and 
1iU 
 is the successor 

of iU . The symmetric session key computed in a signcryption algorithm is used as the shared 

secret between the participant 
iU  and its successor 

1iU 
, 1, ,i n . Specifically, the 

outgoing message of the signcryption algorithm becomes the key encapsulation, and the 

session key computation process at the receiver 
1iU 
 in the signcryption algorithm can be used 

as the decapsulation algorithm to retrieve the symmetric key. The signcryption gives 

confidentiality protection and origin authentication to the group key agreement protocol which 

includes the following two rounds. 

Round 1. Let 1 2{ , , , }nU U U U  be the set of protocol participants. All the participants 

1 2, , , nU U U  run the following process. The participant 
iU  sends signcryption message 

i  

to its successor 1iU  , 1, ,( 1)i n  . The participant nU  sends signcryption message n  to 

1U . This process is presented in the following Fig. 1.  

1nU  nU 1U
3

4U2U
1U

1
2

n

3U
1n 

 
Fig. 1: Signcryption message sending process 

The above process can be simultaneous and parallel. 

Round 2. From the signcryption messages, the participants perform the following steps: 

 (1) The successor 1iU  , 1, ,( 1)i n  , verify the validity of the signcryption message i  

from iU  ( 1U  verifies n ); 

(2) The participants iU , 2, ,i n , compute the secret 1,i ik  ( 1U  computes ,1nk ), which is 

the session secret computed by a sender 1iU   and its successor iU  in the signcryption 

algorithm. We can present this via the following Fig. 2.  

1nU  nU 1U
3,4k

4U2U
1U

1,2k
2,3k

,1nk

3U
1,n nk 

 
Fig. 2: Shared secret between a participant and its successor 

(3) The participants iU , 2, ,i n , compute and broadcast iX , where 

1 1, session 1 , 1 session( , ) ( , )i i i i iX H k ID H k ID   . Note that the first participant 1U  computes and 

broadcasts 1 1 ,1 session 1 1,2 session( , ) ( , )nX H k ID H k ID  . Here, 1( )H   is a one-way hash function 

and sessionID  is the public ephemeral information that consists of participants’ identities and a 

nonce, aiming to make the protocol secure against known-key attacks. 

Finally, with secret , 1i ik  , the participant iU ( 1, , )i n  compute iB  and further get all jB  

( 1, , )j n  as the following Fig. 3: 
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iB

iU
Secret key

, 1i ik 

1iX 

1iB  2iB  1nB 
nX

nB1iB 
iX

2iB 
1iX 

2B1B 2X 3X
2iX 

3B
 

Fig. 3: Participant 
iU  obtains all secrets by using its secret key 

Then, the participant 
iU ( 1, , )i n  compares Bi-1 and 1 1. session( , )i iH k ID . If 

1 1 1. session( , )i i iB H k ID  , each user computes the group session key 1 1 2( || || || )i nK H B B B . 

Obviously, 1 2 nK K K   . What this means is that all the participants agree on a common 

group session key. 

A member revocation: Assume that a participant xU (1 )x n   leaves the group. Then 

group members change the group size into (n−1). The participants 1xU   and 1xU   respectively 

remove the shared values 1,x xk   and , 1x xk   with xU . The participant 
1xU 
 becomes the new 

successor of participant 1xU  . Aiming to update group key, the participant 1xU   needs to send 

new signcryption message 1x 
  to its new successor 1xU  . Then, the participant 1xU   verifies 

the validity of the signcryption message 
1x 

  and computes the secret 1, 1x xk    which is a new 

shared secret between 1xU   and its new successor 1xU  . Each entity jU  that follows xU  

changes their index to (j−1). Then, from Step (3) of Round 2, all the (n−1) participants 

implement the above protocol to get a new group session key. 

A new member join: Assume that a new entity joins the group of which size is n. Then, the 

new participant 1nU  , becomes the successor of participant nU  and the participant 1U  

becomes the successor of participant 1nU  . The participant nU  sends signcryption message 

n   to its new successor 1nU   while 1nU   sends signcryption message 1n   to 1U . From the 

signcryption message n  , the new participant 1nU   verifies the validity of the signcryption 

message and computes the secret , 1n nk   which is the new shared secret between nU  and its 

new successor 1nU  . The first participant 1U  updates its secret with 1,1nk  . Then, from step (3) 

of round 2, the participants in the group implement the above protocol to get a new group 

session key. 

6. A Concrete Construction from Signcryption Scheme of Dent   

This section will present a concrete GKA protocol from the signcryption scheme given by 

Dent [8]. First, let (G, P, q) be the system parameters, where G is a cyclic additive group with 

a prime order q and P is an arbitrary generator of G. In reality, G is cyclic additive group 

E(GF(q)) on elliptic curve E. We assume that E is a supersingular elliptic curve. The discrete 

logarithm problems (DLP) in G are intractable. The protocol includes the following two 

rounds. 

Round 1. Let 1 2{ , , , }nU U U U  be the set of protocol participants. We assume that 

[1, , 1]ix q   is the secret key of the participant iU  with identity iID  ( 1, ,i n ), and 

i iY x P G   is the corresponding public key. The participants iU  ( 1, ,i n ) perform the 
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following steps: 

(1) Randomly choose 
iC G ; 

(2) Compute , 1 2 1 1( , , )i i i i i i ik H ID ID xY C    ; 

(3) Send signcryption message ( , )i i iID C   to its successor 
1iU 
, 1, ,( 1)i n  . The 

participant 
nU  sends signcryption message ( , )n n nID C   to its successor 

1U . This process 

is synchronous and parallel.  

Round 2. Using the signcryption message 1i   from 1iU  , The participants iU , 2, ,i n , 

performs the following steps: 

(1) Compute the secret 1, 2 1 1 1( , , )i i i i i i ik H ID ID xY C      which is a shared secret computed 

by a sender 1iU   and its successor iU  from signcryption algorithm. The first participant 1U  

computes ,1 2 1 1( , , )n n n nk H ID ID x Y C  .  

(2) Compute and broadcast 1 1, session 1 , 1 session( , ) ( , )i i i i iX H k ID H k ID   . The first participant 

1U  computes 1 1 ,1 session 1 1,2 session( , ) ( , )nX H k ID H k ID  .  

Finally, each participant 
iU ( 1, , )i n  uses the shared secret , 1i ik  ( nU  uses ,1nk ) to get all 

jB  ( 1, , )j n  as the following algorithms:  

When j i , 

1 . 1 session( , )i i iB H k ID ; 

1 1i i iB X B   ; 

2 2 1i i iB X B    ; 

; 

1n n nB X B   . 

When j i , 

1i i iB X B   ; 

2 1 1i i iB X B    ; 

; 

1 2 2B X B  . 

Here, sessionID  is the public ephemeral information that consists of participants’ identities and a 

nonce, aiming to make the protocol secure against known-key attacks.  

Next, each participant iU ( 1, , )i n  verifies if 1 2 3 1n nX X X X X      equals to zero. 

If not, output an error symbol ⊥ and abort. Thus, each participant can find false broadcast 

messages by this verifying. If it does, the participant iU  computes the session key 

1 1 2( || || || )i nK H B B B . This will be the common group session key agreed by all participants. 

7. Security Consideration 

7.1 Security Notions 

A signcryption group key agreement SGKA is specified by four polynomial-time algorithms: 

common-key-gen, participant-key-gen, encapsulation and decapsulation.   

Common-key-gen: It is a probabilistic polynomial time (PPT) algorithm that takes the 

security parameter as input and outputs the common/public parameters used in the scheme. 
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These parameters include description of the underlying groups and hash functions used. 

Participant-key-gen: For the security notions defined in this paper we distinguish the 

algorithm participant-key-gen as sender-key-gen and receiver-key-gen respectively. Here a 

sender is 
iU  and the corresponding receiver is its successor 

1iU 
, 1, ,i n . Sender-key-gen 

is a PPT algorithm that takes the common/public parameters as input and outputs the 

private-public key pair (
ssk , spk ) of the sender. Receiver-key-gen is a PPT algorithm that 

takes the common/public parameters as input and outputs the private-public key pair 

( rsk , rpk ) of the receiver. 

Encapsulation: This is a PPT algorithm that takes the common/public parameters, a 

sender’s private key 
ssk  and a receiver’s rpk  as input. It returns a session key   and its 

encapsulation  .  

Decapsulation: It is a deterministic polynomial-time algorithm that takes the 

common/public parameters, a sender’s public key spk , a receiver’s private key rsk  and an 

encapsulation   as input. It outputs either a session key   or an error symbol ⊥. 

 In the security model for a signcryption key agreement SKA, the adversary is given the 

power to obtain encapsulations of a sender created for a receiver through a flexible 

encapsulation oracle (FEO) [23]. The adversary is also given access to a flexible decapsulation 

oracle (FDO) [23] that decapsulates a given encapsulation created for a receiver by a sender. 

The set of participants is 1 2{ , , , }nU U U  and the participant 1iU   is the successor of the 

participant iU . The participant iU  is the sender and its successor 1iU   is the corresponding 

receiver. Let ( ix , iY ) be the private-public key pair used by a sender iU  for encapsulation and 

( 1ix  , 1iY  ) be the private-public key pair used by its successor 1iU   for decapsulation. Here, 

1, ,i n . 

The challenger initially fixes the set of participants 1 2{ , , , }nU U U  and their key pairs. The 

adversary is given all the public keys of the participants initially so that it can choose the 

public keys from the given group when accessing the oracles. The behavior of a sender’s FEO 

and a receiver’s FDO is described as follows. 

FEO: On receiving rpk , FEO returns a pair ( , ), where   is an encapsulation of   

generated using ssk  and rpk . The adversary may choose 1iY  as the receiver’s public key, i.e., 

1r ipk Y  , and then , 1i ik  , i  . 

FDO: On receiving  , FDO returns a session key   or an error symbol ⊥  after 

performing decapsulation on   using rsk  and spk . The adversary may choose iY  as the 

sender’s public key, i.e., s ipk Y , and then i  , , 1i ik  . 

Here the participant 1iU   is the successor of the participant iU  ( 1, , )i n . 

    Insider confidentiality. An insider adversary CCA  against confidentiality of SKA is 

assumed to have knowledge of all key pairs except the private key of the receiver 1iU   used for 

decapsulation. The goal of CCA  is to break the confidentiality of encapsulations created for 

1iU   by iU . It is given access only to FDO as the oracle FEO can be simulated with the 

knowledge of iU ’s private key used for encapsulation. We call this notion as security 

FDO-IND-CCA2. 
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Challenge Phase: After adaptively asking the FDO queries, CCA  outputs a public key spk  . 

The challenger generates a valid session key, encapsulation pair  (
0 , * ) using the private 

key 
ssk   corresponding to 

spk   and 
1iU 
’s public key 

1iY 
. It selects a key 

1  randomly from 

the session key distribution. It then chooses {0,1}Rb  and gives (
b , * ) as the challenge. 

     CCA can continue its execution except asking the FDO(
spk  , * ) query that trivially 

decides the guess. However, an FDO query on *  using a public key s spk pk   is still 

allowed. 

Guess Phase: Finally, CCA  outputs a bit b  and wins the game if b b  . The advantage of 
CCA  in winning the FDO-IND-CCA2 game is  

CCAA ,SKA
Adv 2 Pr[ ] 1b b    . 

Outsider confidentiality. For outsider confidentiality the adversary is assumed to know all 

the private keys except iU ’s private key used for encapsulation and 
1iU 
’s private key used 

for decapsulation. The goal of the adversary in this notion is to break the confidentiality of 

encapsulations created by 
iU  for 

1iU 
. The adversary must be given access to both FEO and 

FDO. We call this notion FEO/FDO-IND-CCA2. After adaptively asking the FEO and FDO 

queries, the challenge and guess phases are carried on as described above. The advantage of an 

adversary in winning the FEO/FDO-IND-CCA2 game is also defined in the same way as 

above. 

Outsider unforgeability. An outsider adversary CMA  against unforgeability of SKA is 

assumed to know all private keys except iU ’s private key used for encapsulation and 1iU  ’s 

private used for decapsulation. The goal of CMA  is to forge a valid session key and 

encapsulation pair ( * , * ) such that *  is an encapsulation of *  created by iU  for 1iU  . 

It is given access to both FEO and FDO. 

After querying FEO and FDO adaptively, CMA  produces a forgery ( * , * ) . It wins the 

game if decapsulation( iy , 1ix  , * ) = * ≠⊥. We call this notion FEO/FDO-sUF-CMA for 

strong unforgeability against outsider attacks. The advantage of CMA  in winning the 

FEO/FDO-sUF-CMA game is the probability of CMA  outputting a valid trivial restriction for 

( * , * ). What this means is that ( * , * ) was never an output of FEO. 

Insider unforgeability. An insider adversary against unforgeability of SKA is assumed to 

know all the private keys except iU ’s private key used for encapsulation. The goal of the 

adversary in this notion is to forge a valid encapsulation created by iU  for 1iU  . It is given 

access only to FEO as the key for decapsulation are known to the adversary. We call this 

notion FEO-sUF-CMA for strong unforgeability against insider attacks. After adaptively 

querying the FEO, the adversary outputs a forgery ( *, *, *)rpk . It wins FEO-sUF-CMA 

game if decapsulation( iy , *rsk , * )= * ≠⊥. The advantage of the adversary in winning the 

FEO-sUF-CMA game is the probability of outputting a valid trivial restriction for 

( *, *, *)rpk . What this means is that ( * , * ) was never an output of FEO. 

7.2 Security Analysis 
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The proposed group key agreement scheme from signcryption includes two processes: to 

construct a recursive key chain from signcryption and to extract group key from the recursive 

chain. Actually, computing group key from recursive chain is only a series of additions 

modulo 2. Accordingly, the security proof is focused on the process of constructing a recursive 

chain from signcryption, and its security follows the following three lemmas. Here, Lemma 2 

gives the authentication of the proposed scheme, while Lemma 3 combined with Claim 1 

presents the confidentiality of it. Both are outsider security. Lemma 2 gives assurance to the 

recipient 1iU   that the key indeed comes from the intended sender iU , and Lemma 3 gives 

assurance to a group member iU  that the key is available only to the intended recipient, i.e., its 

successor 
1iU 
. The proof of the Lemmas is provided in the appendix. 

Claim 1: Given 1 , 1( , )i i i sessionB H k ID , it is difficult to find , 1i ik  , the session secret between a 

sender iU  and its successor 
1iU 
, where 1, ,i n . This is derived from the assumption that 

1( )H   is a one-way hash function, i.e., given a hash value h , it is difficult to find any message 

m  such that 1( )h H m . 

Lemma 2: The signcryption key agreement SKA is secure in the outsider unforgeability 

notion in the random oracle model assuming hardness of the Gap Diffie Hellman (GDH) 

problem in the group G.  

Lemma 3: The signcryption key agreement SKA is secure in the outsider confidentiality 

notion in the random oracle model assuming hardness of the GDH problem in the group G.  

8. Conclusion 

In this paper, we suggest a primary approach for construction of group key agreement protocol 

from signcryption. This approach introduces the desirable property of mutual authentication. 

We have proved that our scheme is secure in the outsider unforgeability notion and the 

outsider confidentiality notion assuming hardness of the GDH problem. The following Table 1 

depicts a comparison with some typical schemes in terms of security and efficiency.  

    Here, “Rounds” is the total number of rounds and a round means that each party sends one 

message and can broadcast simultaneously. The entries “Au.”, “FS.” and “MA.” respectively 

indicate the desirable properties of authentication, forward secrecy and mutual authentication. 

The terms “Ucasts” and “Bcasts” respectively denote the total number of unicast messages and 

broadcast messages of all members. Similarly, “U. Size” and “B. Size” respectively represent 

the cumulative unicast message size and the cumulative broadcast message size of each 

member. The abbreviation “Comp. costs” means computational costs of each member 

measured by “Exp.”, “ModM.” or “SM.” respectively representing modular exponentiations, 

modular multiplications and scalar multiplications of ECC (Elliptic Curve Cryptography). In 

addition, we use “Sig.” and “Ver.” to denote signing and verifying operations of digital 

signatures. 

Table 1. Comparison with some typical schemes 

 Y. Kim et al.[14] M. Steiner [15] 

IKA.2 

Katz, J. et al. [17] Gorantla, M. 

et al. [18] 

Ours 

Rounds 2 n+1 3 1 2 

Au. No No Yes Yes Yes 

FS. No No Yes No No 

MA. No No No No Yes 

Ucasts.  0 2n-3 0 0 n 
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Bcasts. n+1 2 2n n n 

U. size 0 2n-3 0 0 1 

B. size (2n-1) for i=1; 

(n-i+1) for others  

n+1 2
 

n+1 1 

Comp. 

costs  

(3n-2) Exp.  (2n+1) Exp. 3Exp.+(nlog2n)ModM.+

2 Sig.+n Ver. 

2n Exp. 2 SM. 

    It can observed from the table that our protocol is the most efficient GKA scheme with 

authentication, since it has the smallest message sizes as well as the lowest computational 

costs for each member. Although the protocol of Gorantla, M. et al. [19] needs only one round, 

it is not mutual authentication, that is, the recipient is not assured that the contributions come 

from the intended sender. Our protocol needs two rounds of communication, whereas the 

application of signcryption enables it to give assurance to the sender that the key is available 

only to the intended recipient, and vice versa. 

    It still remains an open problem to derive a one-round group key agreement protocol from 

signcryption. After all, it is inconvenient to require all the parties to stay online concurrently to 

implement a two-round protocol. 
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Appendix: Proof of Lemmas. 

Proof of Lemma 2: In what follows we will show that if there exists a polynomial time 

adversary CMA  against the unforgeability of the SKA with non-negligible advantage, then 

we can construct a polynomial time algorithm GDH  which solves the Gap Diffie-Hellman 

(GDH) problem with the same advantage as CMA . This action can fully prove Lemma 2. 

Here we make the GDH problem solve the Computational Diffie-Hellman (CDH) with the 

assistance of a decisional Diffie-Hellman oracle DDHO . 

Let A aP , B bP . The problem instance A , B  is given to GDH  aiming to find the 

value abP . The process shown below is that GDH  runs CMA  and simulates the answers to 

the queries made by CMA . 

– Hash: For Hash queries, Initially GDH  has an empty list 
2

L  that stores the past returned 

hash values. On input 1( , , )i i iID ID X , GDH  first checks if there is an existing entry 

1 , 1( , , , )i i i i iID ID X k   for some , 1i ik   in 
2

L . If so, it returns this , 1i ik  ; otherwise it accesses 

the global encapsulation list L  and acts as the following: 

if 1 , 1( , , , )i i i i iID ID C k L    for some , 1i ik   and iC  values  then 

compute i i iT X C   

if DDH 1( , , ) Truei i iO Y Y T   then 

if iY A  and 1iY B   then  
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     return 
iT  as solution to the GDH challenger and exit 

else  

return , 1i ik   to CMA  

update 
2 2 1 , 1|| ( , , , )i i i i iL L ID ID X k     

end 

else 

      select , 1i ik   randomly from the key distribution and return it to CMA  

update 
2 2 1 , 1|| ( , , , )i i i i iL L ID ID X k     

end 

else 

select , 1i ik   randomly from the key distribution and return it to CMA  

update 
2 2 1 , 1|| ( , , , )i i i i iL L ID ID X k     

end 

– FEO: GDH  initially starts with an empty encapsulation list L . On input ( 1,i iY Y  ) GDH  

first selects 
iC G . It then checks each entry 1 , 1( , , , )i i i i iID ID X k   in 

2
L to see if 

DDH 1( , , ) Truei i iO Y Y T   for the same ( 1,i iY Y  ) as the input to FEO. If so, it fetches the 

corresponding , 1i ik   from 
2

L , otherwise it selects , 1i ik   randomly from the key 

distribution. It returns , 1( , )i i ik C  to CMA . Finally, L  is updated to 

1 , 1|| ( , , , )i i i i iL L ID ID C k    . 

– FDO: On input 1( , , )i i iY Y C , GDH  first checks if there is an entry 

1 , 1( , , , )i i i i iID ID C k L   . If so, it returns the corresponding key , 1i ik  . Otherwise, it acts as 

the following: 

   if 
21 , 1( , , , )i i i i i HID ID X k L    for some iX  then 

compute i i iT X C   

if DDH 1( , , ) Truei i iO Y Y T   then 

if i AY P  and 1i BY P   then  

       return iT  as solution to the GDH challenger and exit 

else  

           take corresponding , 1i ik   from 
2

L  and return it to CMA  

           update 1 , 1|| ( , , , )i i i i iL L ID ID C k     

end 

else 

select , 1i ik   randomly from the key distribution and return it to CMA  

update 1 , 1|| ( , , , )i i i i iL L ID ID C k     

end 

else 

select , 1i ik   randomly from the key distribution and return it to CMA  

update 1 , 1|| ( , , , )i i i i iL L ID ID C k     

end 
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Answering the GDH challenger: Eventually, CMA  outputs a forgery , 1( , )i i ik C
   as an 

encapsulation created by 
iU  for 

1iU 
. For the forgery to be valid under the outsider 

unforgeabilioty notion FEO/FDO-sUF-CMA, 
iC  must be a valid encapsulation of , 1i ik 

 . If 

iC  is a valid encapsulation of , 1i ik 
  then CMA  must have queried the Hash with 

corresponding keying material, in which case GDH  would have answered the GDH 

challenger already. Hence, the advantage of GDH  to solve the GDH problem is the same as 

the advantage of CMA . 

Proof of Lemma 3: As defined in Section 7.1, for outsider confidentiality, the adversary 
CCA is given all the private keys except 

iU ’s private key used for encapsulation and 
1iU 
’s 

private key used for decapsulation. The goal of CCA is to break the confidentiality of 

encapsulations created by 
iU  for 

1iU 
. In what follows we will show that if there exists a 

polynomial time adversary CCA  against the confidentiality of the SKA with non-negligible 

advantage, then we can construct a polynomial time algorithm GDH  which solves the Gap 

Diffie-Hellman (GDH) problem with the same advantage as CCA . This action can fully prove 

Lemma 3.  

Let A aP , B bP . The problem instance A , B  is given to GDH  aiming to find the 

value abP . The process shown below is that GDH  runs CCA  and simulates the answers to 

the queries defined in the same way as above.   

Answering the GDH challenger: After adaptively asking the FEO and FDO queries, CCA   

outputs a public key iY  . The challenger gives ( , 1

b

i ik  , 'iC ) as the challenge, in which a 

{0,1}Rb . When 0b  , 0

, 1i ik   is a valid session key, i.e., encapsulation pair  ( 0

, 1i ik  , 'iC )  using 

the private key ix  and 1iU  ’s public key 1iY  ; when 1b  , 1

, 1i ik   is randomly selected from the 

session key distribution.   

    Finally, CCA  outputs a bit b  as its guess. Suppose 0b  , then CCA  must have queried 

the Hash with corresponding keying material, in which case CCA  would have already 

answered the GDH challenger. Hence, the advantage of GDH  to solve the GDH problem is 

the same as the advantage of CCA .  

 

 

Dr. Xixiang Lv studied in Xidian University, Peoples R China, from 1997 to 2007, and 

received her respective M.S. and Ph.D. in cryptography in 2004 and 2007. She is now an 

associate professor of Xidian University, Peoples R China. Her research interests lie in 

information security and wireless network security. 

 

 

 

 

 

 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6,  NO. 12, Dec 2012                                3351 

 

Dr. Hui Li received his BE from Fu Dan University, Peoples R China, in 1990, and his Ph.D. 

in Communication and Electronic Engineering from Xidian University, Peoples R China, in 

1998. Prof. Li has published around 50 academic papers in the areas of information security 

and coding theory. His research interests include information security, coding theory and 

wireless network security. 
 

 


