
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 12, Dec 2012 3338

Copyright ⓒ 2012 KSII

This work was sponsored by the National Natural Science Foundation of China (Grant No. 61202388), the

National Science & Technology Pillar Program (2008BAH22B03, 2007BAH08B01) and the Fundamental

Research Funds for the Central Universities (K5051201019).

http://dx.doi.org/10.3837/tiis.2012.12.017

Group Key Agreement From Signcryption

Xixiang Lv and Hui Li
State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an, Peoples R China

[e-mail: xxlv@mail.xidian.edu.cn; lihui@mail.xidian.edu.cn]

* Corresponding author: Xixiang Lv

Received August 12, 2012; revised October 4, 2012; accepted October 30, 2012;

published December 27, 2012

Abstract

There is an intuitive connection between signcryption and key agreement. Such a connector

may lead to a novel way to construct authenticated and efficient group key agreement

protocols. In this paper, we present a primary approach for constructing an authenticated

group key agreement protocol from signcryption. This approach introduces desired properties

to group key agreement. What this means is that the signcryption gives assurance to a sender

that the key is available only to the recipient, and assurance to the recipient that the key indeed

comes from the sender. Following the generic construction, we instantiate a distributed

two-round group key agreement protocol based on signcryption scheme given by Dent [8]. We

also show that this concrete protocol is secure in the outsider unforgeability notion and the

outsider confidentiality notion assuming hardness of the Gap Diffie-Hellman problem.

Keywords: Secure group communication, Group key agreement, Signcryption

mailto:xxlv@mail.xidian.edu.cn

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 12, Dec 2012 3339

1. Introduction

Secure group communication is of great importance for many collaborative and distributed

applications, such as video conferencing, collaborative computation, file sharing via internet,

secure group chat, group purchase of encrypted content and so on. In order to achieve secure

group communications in such scenarios, a group key for fast encryption and decryption must

be shared only by group members. Group communication messages are encrypted with the

group key, and thus a group member can collaborate with other members without worrying

about information leakage. An authenticated key agreement protocol aims at ensuring that no

entity other than group members can possibly compute the agreed session key. This kind of

protocols is secure against active adversaries. We know that active adversaries are more

powerful since they are assumed to have a complete control of the communication channel.

Hence, it is essential for a group key agreement (GKA) protocol to be resistant against attacks

from active adversaries. This calls for authenticated key agreement protocols.

The main features we would like to find in a GKA scheme are security and efficiency, in the

presence of an active adversary. The typical approach to the problem [1-4] requires some data

to go through the complete set of parties, which by sequentially adding some private

contribution, “build” the actual key in a linear number of rounds of communication. The main

problem with this approach is, of course, that it may lead to very slow protocols. To improve

on communication complexity, the natural solution is to try to design a scheme that allows for

simultaneous sending of contributions. The signcryption based Authenticated GKA protocol

in this paper is designed with the above concept.

Signcryption, introduced by Zheng [5], is an asymmetric cryptographic primitive that

provides both privacy and authenticity at greater efficiency than the generic composition of

signature and encryption schemes. Zheng [6] later observed that a signcryption scheme can be

used as a key transport protocol by simply choosing a new key and sending it in a signcrypted

message. Choudary [7] defined a security model for this construction. However, they did not

present how to extend these notions to the group setting. Actually, signcryption scheme can

also be used to construct group key agreement protocols with two rounds. This approach also

introduces desired properties to group key agreement. What this means is that the signcryption

gives assurance to the sender that the key is available only to the intended recipient, and

assurance to the recipient that the key came from the intended sender. The main purpose of this

paper is to define a primary approach for constructing an authenticated group key agreement

protocol from signcryption. We also give a concrete authenticated group key agreement

scheme based on signcryption.

2. Paper Organization

The rest of the paper is organized as follows: We outline our main contributions in Section 3

and survey the related works in Section 4. Next, a primary generic construction idea of an

unforgeable GKA protocol from signcryption is presented in Section 5, followed by a concrete

protocol from signcryption scheme of Dent [8] in Section 6. Then, the security analysis is

given in Section 7. This paper is finally concluded in Section 8.

3340 Xixiang Lv et al.: Group Key Agreement from Signcryption

3. Our Contribution

In this paper, we consider a different approach to the existing solutions of group key

agreement, namely to incorporate the signcryption into the design of group key agreement. As

we will show in this paper, the adoption of signcryption key establishment to the group

scenario is not very straightforward. Nonetheless, by constructing a recursive chain from

signcryption and then extracting group key from this recursive chain, we obtain an

unforgeable group key agreement protocol. In fact, an unforgeable GKA protocol means an

authenticated GKA protocol that is secure with unforgeability. The unforgeability makes the

recipient be assured that the key indeed comes from the intended sender and does not undergo

any modification. To support our idea, we prove that our scheme is secure in the outsider

unforgeability notion and the outsider confidentiality notion assuming hardness of the Gap

Diffie-Hellman (GDH) problem.

4. Related Work

Group key agreement (GKA) is the core issue of secure group communication. Up to now, it is

still an elusive open problem to construct an efficient GKA protocol. Since the publication of

two-party Diffie-Hellman (DH) key exchange in 1976 [9], various solutions have been

proposed to extend Diffie-Hellman key exchange to multi-party key agreement, such as

[10][11][12][13][14][15]. Wu et al. [16] proposed the first one-round asymmetric GKA

protocol. However, none of the prior arts is given a property of unforgeability. Katz, J. and

Yung, M. [17] utilized a compiler to transform the well-known BD protocol [12] to an

authenticated protocol that is secure against an active adversary. Gorantla, M. et al. [18]

leveraged an mKEM (multi key encapsulation mechanism [19]) to achieve an authenticated

GKA protocol, in which by using mKEM each group member encapsulates a random nonce

and broadcast it as its contribution towards the session key. Instead of these traditional

solutions, we will present how to construct a mutual authenticated group key agreement

protocol from signcryption schemes by constructing an ordered key chain and a recursive

relation. Our concept grew out of a search for mutual authenticated GKA schemes that is

secure with the unforgeability and a research on key establishment from signcryption schemes

that are reviewed as follows.

 Zheng who introduced the notion of signcryption later observed that a signcryption scheme

can be used as a key transport protocol by simply choosing a new key and sending it in a

signcrypted message [6]. This intuitively gives the desired properties for key establishment

since the signcryption gives assurance to the sender that the key is available only to the

recipient, and vice versa. This merit is also desired in GKA. In this paper, we will use

signcryption to construct a mutual authenticated group key agreement protocol. What follows

are the prior arts that are more germane to our work. Dent [8][20] discussed how a

signcryption KEM can be used as a one-pass key establishment protocol. Bjørstad and Dent

[21] proposed the concept of signcryption tag-KEM and claimed that better key establishment

mechanisms can be built with signcryption tag-KEM. M. Choudary Gorantla et al. [7] define

security notions and show how signcryption and one-pass key establishment can be related

under those notions. Dent [22] discussed some aspects about key transport protocols and key

agreement protocols from signcryption techniques, including security models, entity

authentication and key compromise impersonation attacks. However, none of these papers

mentioned about any relations between group key agreement and signcryption. Actually,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 12, Dec 2012 3341

group key agreement protocols can also be built from signcryption schemes, which is the main

purpose of this paper.

5. Group Key Agreement from Signcryption

We now consider the generic construction for an authenticated two-round group key

agreement protocol by using signcryption algorithms. What follows is the main idea. All

group participants 1 2, , , nU U U are organized in an ordered chain and
1iU 
 is the successor

of iU . The symmetric session key computed in a signcryption algorithm is used as the shared

secret between the participant
iU and its successor

1iU 
, 1, ,i n . Specifically, the

outgoing message of the signcryption algorithm becomes the key encapsulation, and the

session key computation process at the receiver
1iU 
 in the signcryption algorithm can be used

as the decapsulation algorithm to retrieve the symmetric key. The signcryption gives

confidentiality protection and origin authentication to the group key agreement protocol which

includes the following two rounds.

Round 1. Let 1 2{ , , , }nU U U U be the set of protocol participants. All the participants

1 2, , , nU U U run the following process. The participant
iU sends signcryption message

i

to its successor 1iU  , 1, ,(1)i n  . The participant nU sends signcryption message n to

1U . This process is presented in the following Fig. 1.

1nU  nU 1U
3

4U2U
1U

1
2

n

3U
1n 

Fig. 1: Signcryption message sending process

The above process can be simultaneous and parallel.

Round 2. From the signcryption messages, the participants perform the following steps:

 (1) The successor 1iU  , 1, ,(1)i n  , verify the validity of the signcryption message i

from iU (1U verifies n);

(2) The participants iU , 2, ,i n , compute the secret 1,i ik  (1U computes ,1nk), which is

the session secret computed by a sender 1iU  and its successor iU in the signcryption

algorithm. We can present this via the following Fig. 2.

1nU  nU 1U
3,4k

4U2U
1U

1,2k
2,3k

,1nk

3U
1,n nk 

Fig. 2: Shared secret between a participant and its successor

(3) The participants iU , 2, ,i n , compute and broadcast iX , where

1 1, session 1 , 1 session(,) (,)i i i i iX H k ID H k ID   . Note that the first participant 1U computes and

broadcasts 1 1 ,1 session 1 1,2 session(,) (,)nX H k ID H k ID  . Here, 1()H  is a one-way hash function

and sessionID is the public ephemeral information that consists of participants’ identities and a

nonce, aiming to make the protocol secure against known-key attacks.

Finally, with secret , 1i ik  , the participant iU (1, ,)i n compute iB and further get all jB

(1, ,)j n as the following Fig. 3:

3342 Xixiang Lv et al.: Group Key Agreement from Signcryption

iB

iU
Secret key

, 1i ik 

1iX 

1iB  2iB  1nB 
nX

nB1iB 
iX

2iB 
1iX 

2B1B 2X 3X
2iX 

3B

Fig. 3: Participant
iU obtains all secrets by using its secret key

Then, the participant
iU (1, ,)i n compares Bi-1 and 1 1. session(,)i iH k ID . If

1 1 1. session(,)i i iB H k ID  , each user computes the group session key 1 1 2(|| || ||)i nK H B B B .

Obviously, 1 2 nK K K   . What this means is that all the participants agree on a common

group session key.

A member revocation: Assume that a participant xU (1)x n  leaves the group. Then

group members change the group size into (n−1). The participants 1xU  and 1xU  respectively

remove the shared values 1,x xk  and , 1x xk  with xU . The participant
1xU 
 becomes the new

successor of participant 1xU  . Aiming to update group key, the participant 1xU  needs to send

new signcryption message 1x 
 to its new successor 1xU  . Then, the participant 1xU  verifies

the validity of the signcryption message
1x 

 and computes the secret 1, 1x xk   which is a new

shared secret between 1xU  and its new successor 1xU  . Each entity jU that follows xU

changes their index to (j−1). Then, from Step (3) of Round 2, all the (n−1) participants

implement the above protocol to get a new group session key.

A new member join: Assume that a new entity joins the group of which size is n. Then, the

new participant 1nU  , becomes the successor of participant nU and the participant 1U

becomes the successor of participant 1nU  . The participant nU sends signcryption message

n  to its new successor 1nU  while 1nU  sends signcryption message 1n  to 1U . From the

signcryption message n  , the new participant 1nU  verifies the validity of the signcryption

message and computes the secret , 1n nk  which is the new shared secret between nU and its

new successor 1nU  . The first participant 1U updates its secret with 1,1nk  . Then, from step (3)

of round 2, the participants in the group implement the above protocol to get a new group

session key.

6. A Concrete Construction from Signcryption Scheme of Dent

This section will present a concrete GKA protocol from the signcryption scheme given by

Dent [8]. First, let (G, P, q) be the system parameters, where G is a cyclic additive group with

a prime order q and P is an arbitrary generator of G. In reality, G is cyclic additive group

E(GF(q)) on elliptic curve E. We assume that E is a supersingular elliptic curve. The discrete

logarithm problems (DLP) in G are intractable. The protocol includes the following two

rounds.

Round 1. Let 1 2{ , , , }nU U U U be the set of protocol participants. We assume that

[1, , 1]ix q  is the secret key of the participant iU with identity iID (1, ,i n), and

i iY x P G  is the corresponding public key. The participants iU (1, ,i n) perform the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 12, Dec 2012 3343

following steps:

(1) Randomly choose
iC G ;

(2) Compute , 1 2 1 1(, ,)i i i i i i ik H ID ID xY C    ;

(3) Send signcryption message (,)i i iID C  to its successor
1iU 
, 1, ,(1)i n  . The

participant
nU sends signcryption message (,)n n nID C  to its successor

1U . This process

is synchronous and parallel.

Round 2. Using the signcryption message 1i  from 1iU  , The participants iU , 2, ,i n ,

performs the following steps:

(1) Compute the secret 1, 2 1 1 1(, ,)i i i i i i ik H ID ID xY C     which is a shared secret computed

by a sender 1iU  and its successor iU from signcryption algorithm. The first participant 1U

computes ,1 2 1 1(, ,)n n n nk H ID ID x Y C  .

(2) Compute and broadcast 1 1, session 1 , 1 session(,) (,)i i i i iX H k ID H k ID   . The first participant

1U computes 1 1 ,1 session 1 1,2 session(,) (,)nX H k ID H k ID  .

Finally, each participant
iU (1, ,)i n uses the shared secret , 1i ik  (nU uses ,1nk) to get all

jB (1, ,)j n as the following algorithms:

When j i ,

1 . 1 session(,)i i iB H k ID ;

1 1i i iB X B   ;

2 2 1i i iB X B    ;

;

1n n nB X B   .

When j i ,

1i i iB X B   ;

2 1 1i i iB X B    ;

;

1 2 2B X B  .

Here, sessionID is the public ephemeral information that consists of participants’ identities and a

nonce, aiming to make the protocol secure against known-key attacks.

Next, each participant iU (1, ,)i n verifies if 1 2 3 1n nX X X X X     equals to zero.

If not, output an error symbol ⊥ and abort. Thus, each participant can find false broadcast

messages by this verifying. If it does, the participant iU computes the session key

1 1 2(|| || ||)i nK H B B B . This will be the common group session key agreed by all participants.

7. Security Consideration

7.1 Security Notions

A signcryption group key agreement SGKA is specified by four polynomial-time algorithms:

common-key-gen, participant-key-gen, encapsulation and decapsulation.

Common-key-gen: It is a probabilistic polynomial time (PPT) algorithm that takes the

security parameter as input and outputs the common/public parameters used in the scheme.

3344 Xixiang Lv et al.: Group Key Agreement from Signcryption

These parameters include description of the underlying groups and hash functions used.

Participant-key-gen: For the security notions defined in this paper we distinguish the

algorithm participant-key-gen as sender-key-gen and receiver-key-gen respectively. Here a

sender is
iU and the corresponding receiver is its successor

1iU 
, 1, ,i n . Sender-key-gen

is a PPT algorithm that takes the common/public parameters as input and outputs the

private-public key pair (
ssk , spk) of the sender. Receiver-key-gen is a PPT algorithm that

takes the common/public parameters as input and outputs the private-public key pair

(rsk , rpk) of the receiver.

Encapsulation: This is a PPT algorithm that takes the common/public parameters, a

sender’s private key
ssk and a receiver’s rpk as input. It returns a session key  and its

encapsulation  .

Decapsulation: It is a deterministic polynomial-time algorithm that takes the

common/public parameters, a sender’s public key spk , a receiver’s private key rsk and an

encapsulation  as input. It outputs either a session key  or an error symbol ⊥.

 In the security model for a signcryption key agreement SKA, the adversary is given the

power to obtain encapsulations of a sender created for a receiver through a flexible

encapsulation oracle (FEO) [23]. The adversary is also given access to a flexible decapsulation

oracle (FDO) [23] that decapsulates a given encapsulation created for a receiver by a sender.

The set of participants is 1 2{ , , , }nU U U and the participant 1iU  is the successor of the

participant iU . The participant iU is the sender and its successor 1iU  is the corresponding

receiver. Let (ix , iY) be the private-public key pair used by a sender iU for encapsulation and

(1ix  , 1iY ) be the private-public key pair used by its successor 1iU  for decapsulation. Here,

1, ,i n .

The challenger initially fixes the set of participants 1 2{ , , , }nU U U and their key pairs. The

adversary is given all the public keys of the participants initially so that it can choose the

public keys from the given group when accessing the oracles. The behavior of a sender’s FEO

and a receiver’s FDO is described as follows.

FEO: On receiving rpk , FEO returns a pair ( ,), where  is an encapsulation of 

generated using ssk and rpk . The adversary may choose 1iY  as the receiver’s public key, i.e.,

1r ipk Y  , and then , 1i ik  , i  .

FDO: On receiving  , FDO returns a session key  or an error symbol ⊥ after

performing decapsulation on  using rsk and spk . The adversary may choose iY as the

sender’s public key, i.e., s ipk Y , and then i  , , 1i ik  .

Here the participant 1iU  is the successor of the participant iU (1, ,)i n .

 Insider confidentiality. An insider adversary CCA against confidentiality of SKA is

assumed to have knowledge of all key pairs except the private key of the receiver 1iU  used for

decapsulation. The goal of CCA is to break the confidentiality of encapsulations created for

1iU  by iU . It is given access only to FDO as the oracle FEO can be simulated with the

knowledge of iU ’s private key used for encapsulation. We call this notion as security

FDO-IND-CCA2.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 12, Dec 2012 3345

Challenge Phase: After adaptively asking the FDO queries, CCA outputs a public key spk  .

The challenger generates a valid session key, encapsulation pair (
0 , *) using the private

key
ssk  corresponding to

spk  and
1iU 
’s public key

1iY 
. It selects a key

1 randomly from

the session key distribution. It then chooses {0,1}Rb and gives (
b , *) as the challenge.

 CCA can continue its execution except asking the FDO(
spk  , *) query that trivially

decides the guess. However, an FDO query on * using a public key s spk pk  is still

allowed.

Guess Phase: Finally, CCA outputs a bit b and wins the game if b b  . The advantage of
CCA in winning the FDO-IND-CCA2 game is

CCAA ,SKA
Adv 2 Pr[] 1b b    .

Outsider confidentiality. For outsider confidentiality the adversary is assumed to know all

the private keys except iU ’s private key used for encapsulation and
1iU 
’s private key used

for decapsulation. The goal of the adversary in this notion is to break the confidentiality of

encapsulations created by
iU for

1iU 
. The adversary must be given access to both FEO and

FDO. We call this notion FEO/FDO-IND-CCA2. After adaptively asking the FEO and FDO

queries, the challenge and guess phases are carried on as described above. The advantage of an

adversary in winning the FEO/FDO-IND-CCA2 game is also defined in the same way as

above.

Outsider unforgeability. An outsider adversary CMA against unforgeability of SKA is

assumed to know all private keys except iU ’s private key used for encapsulation and 1iU  ’s

private used for decapsulation. The goal of CMA is to forge a valid session key and

encapsulation pair (* , *) such that * is an encapsulation of * created by iU for 1iU  .

It is given access to both FEO and FDO.

After querying FEO and FDO adaptively, CMA produces a forgery (* , *) . It wins the

game if decapsulation(iy , 1ix  , *) = * ≠⊥. We call this notion FEO/FDO-sUF-CMA for

strong unforgeability against outsider attacks. The advantage of CMA in winning the

FEO/FDO-sUF-CMA game is the probability of CMA outputting a valid trivial restriction for

(* , *). What this means is that (* , *) was never an output of FEO.

Insider unforgeability. An insider adversary against unforgeability of SKA is assumed to

know all the private keys except iU ’s private key used for encapsulation. The goal of the

adversary in this notion is to forge a valid encapsulation created by iU for 1iU  . It is given

access only to FEO as the key for decapsulation are known to the adversary. We call this

notion FEO-sUF-CMA for strong unforgeability against insider attacks. After adaptively

querying the FEO, the adversary outputs a forgery (*, *, *)rpk . It wins FEO-sUF-CMA

game if decapsulation(iy , *rsk , *)= * ≠⊥. The advantage of the adversary in winning the

FEO-sUF-CMA game is the probability of outputting a valid trivial restriction for

(*, *, *)rpk . What this means is that (* , *) was never an output of FEO.

7.2 Security Analysis

3346 Xixiang Lv et al.: Group Key Agreement from Signcryption

The proposed group key agreement scheme from signcryption includes two processes: to

construct a recursive key chain from signcryption and to extract group key from the recursive

chain. Actually, computing group key from recursive chain is only a series of additions

modulo 2. Accordingly, the security proof is focused on the process of constructing a recursive

chain from signcryption, and its security follows the following three lemmas. Here, Lemma 2

gives the authentication of the proposed scheme, while Lemma 3 combined with Claim 1

presents the confidentiality of it. Both are outsider security. Lemma 2 gives assurance to the

recipient 1iU  that the key indeed comes from the intended sender iU , and Lemma 3 gives

assurance to a group member iU that the key is available only to the intended recipient, i.e., its

successor
1iU 
. The proof of the Lemmas is provided in the appendix.

Claim 1: Given 1 , 1(,)i i i sessionB H k ID , it is difficult to find , 1i ik  , the session secret between a

sender iU and its successor
1iU 
, where 1, ,i n . This is derived from the assumption that

1()H  is a one-way hash function, i.e., given a hash value h , it is difficult to find any message

m such that 1()h H m .

Lemma 2: The signcryption key agreement SKA is secure in the outsider unforgeability

notion in the random oracle model assuming hardness of the Gap Diffie Hellman (GDH)

problem in the group G.

Lemma 3: The signcryption key agreement SKA is secure in the outsider confidentiality

notion in the random oracle model assuming hardness of the GDH problem in the group G.

8. Conclusion

In this paper, we suggest a primary approach for construction of group key agreement protocol

from signcryption. This approach introduces the desirable property of mutual authentication.

We have proved that our scheme is secure in the outsider unforgeability notion and the

outsider confidentiality notion assuming hardness of the GDH problem. The following Table 1

depicts a comparison with some typical schemes in terms of security and efficiency.

 Here, “Rounds” is the total number of rounds and a round means that each party sends one

message and can broadcast simultaneously. The entries “Au.”, “FS.” and “MA.” respectively

indicate the desirable properties of authentication, forward secrecy and mutual authentication.

The terms “Ucasts” and “Bcasts” respectively denote the total number of unicast messages and

broadcast messages of all members. Similarly, “U. Size” and “B. Size” respectively represent

the cumulative unicast message size and the cumulative broadcast message size of each

member. The abbreviation “Comp. costs” means computational costs of each member

measured by “Exp.”, “ModM.” or “SM.” respectively representing modular exponentiations,

modular multiplications and scalar multiplications of ECC (Elliptic Curve Cryptography). In

addition, we use “Sig.” and “Ver.” to denote signing and verifying operations of digital

signatures.

Table 1. Comparison with some typical schemes

 Y. Kim et al.[14] M. Steiner [15]

IKA.2

Katz, J. et al. [17] Gorantla, M.

et al. [18]

Ours

Rounds 2 n+1 3 1 2

Au. No No Yes Yes Yes

FS. No No Yes No No

MA. No No No No Yes

Ucasts. 0 2n-3 0 0 n

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 12, Dec 2012 3347

Bcasts. n+1 2 2n n n

U. size 0 2n-3 0 0 1

B. size (2n-1) for i=1;

(n-i+1) for others

n+1 2

n+1 1

Comp.

costs

(3n-2) Exp. (2n+1) Exp. 3Exp.+(nlog2n)ModM.+

2 Sig.+n Ver.

2n Exp. 2 SM.

 It can observed from the table that our protocol is the most efficient GKA scheme with

authentication, since it has the smallest message sizes as well as the lowest computational

costs for each member. Although the protocol of Gorantla, M. et al. [19] needs only one round,

it is not mutual authentication, that is, the recipient is not assured that the contributions come

from the intended sender. Our protocol needs two rounds of communication, whereas the

application of signcryption enables it to give assurance to the sender that the key is available

only to the intended recipient, and vice versa.

 It still remains an open problem to derive a one-round group key agreement protocol from

signcryption. After all, it is inconvenient to require all the parties to stay online concurrently to

implement a two-round protocol.

References

[1] G. Ateniese, M. Steiner and G. Tsudik, “New multi-party authentication services and key

agreement protocols”, IEEE Selected Areas in Communications, vol. 18, no. 4, pp. 628-639, 2000.

Article (CrossRef Link)

[2] M. Bellare and P. Rogaway, “Entity authentication and key distribution”, in Proc. of Crypto ’93,

LNCS 773, pp. 232-249, Springer, 1993.

Article (CrossRef Link)

[3] S. Blake-Wilson and A. Menezes, “Authenticated Diffie-Hellman key agreement protocols”, in

Proc. of SAC ’98, LNCS 1556, pp. 339-361, Springer, 1998. Article (CrossRef Link)

[4] E. Bresson, O. Chevassut and D. Pointcheval, “Provably authenticated group Diffie-Hellman key

exchange – the dynamic case”, in Proc. of Asiacrypt ’01, pp. 290-309, Springer-Verlag, 2001.

Article (CrossRef Link)

[5] Y. Zheng, “Digital Signcryption or How to Achieve Cost (Signature & Encryption) << Cost

(Signature) + Cost (Encryption)”, in Proc. of CRYPTO 1997, LNCS 1294, pp. 165-179, Springer,

Heidelberg, 1997. Article (CrossRef Link)

[6] Y. Zheng, “Shortened Digital Signature, Signcryption and Compact and Unforgeable Key

Agreement Schemes”, Technical report, A submission to IEEE P1363 Standard Specifications for

Public Key Cryptography, 1998. Article (CrossRef Link)

[7] M. Choudary Gorantla, Colin Boyd, Juan Manuel Gonzalez Nieto, “On the Connection Between

Signcryption and One-pass Key Establishment”, In Galbraith, Steven (Ed.) Cryptography and

Coding: 11th IMA International Conference, 18-20th, 2007. Article (CrossRef Link)

[8] A. Dent, “Hybrid Signcryption Schemes with Outsider Security”, in Proc. of ISC 2005, LNCS

3650, pp. 203-217, Springer, Heidelberg, 2005. Article (CrossRef Link)

[9] W. Diffie and M. Hellman, “New Directions in Cryptography”, IEEE Transactions on Information

Theory, vol. 22, no. 6, pp. 644-654, 1976. Article (CrossRef Link)

[10] A. Joux, “A One Round Protocol for Tripartite Diffie-Hellman”, Journal of Cryptology, vol. 17, no.

4, pp. 263-276, 2004. Article (CrossRef Link)

[11] D. Boneh, and A. Silverberg, “Applications of Multilinear Forms to Cryptography”,

Contemporary Mathematics 324, pp.71-90, 2003. Article (CrossRef Link)

[12] M. Burmester and Y.G. Desmedt, “A Secure and Efficient Conference Key Distribution System”,

in Proc. of EUROCRYPT 1994, LNCS 950, pp. 275-286, Springer, Heidelberg, 1995. Article

(CrossRef Link)

[13] E. Bresson, O. Chevassut, and D. Pointcheval, “Dynamic Group Diffie-Hellman Key Exchange

http://dx.doi.org/10.1109%2F49.839937
http://dx.doi.org/10.1007%2F3-540-48329-2_21
http://dx.doi.org/10.1007%2F3-540-48329-2_21
http://dx.doi.org/10.1007%2F3-540-48329-2_21
http://link.springer.com/chapter/10.1007%2F3-540-48892-8_26?LI=true%23
http://dx.doi.org/10.1007%2F3-540-45682-1_18
http://dx.doi.org/10.1007%2FBFb0052234
http://grouper.ieee.org/groups/1363/StudyGroup/Hybrid.html
http://eprints.qut.edu.au/view/person/Boyd,_Colin.html
http://eprints.qut.edu.au/view/person/Gonzalez_Nieto,_Juan.html
http://dx.doi.org/10.1007%2F978-3-540-77272-9_17
http://dx.doi.org/10.1007%2F11556992_15
http://dx.doi.org/10.1109%2FTIT.1976.1055638
http://dx.doi.org/10.1007%2Fs00145-004-0312-y
http://dx.doi.org/10.1090%2Fconm%2F324%2F05731
http://dx.doi.org/10.1007%2FBFb0053443
http://dx.doi.org/10.1007%2FBFb0053443

3348 Xixiang Lv et al.: Group Key Agreement from Signcryption

under Standard Assumptions”, in Proc. of Eurocrypt 2002, LNCS 2332, pp.321-336, 2002. Article

(CrossRef Link)

[14] Y. Kim, A. Perrig and G. Tsudik, “Communication-Efficient Group Key Agreement. Information

Systems Security”, in Proc. of the 17th International Information Security Conference IFIP

SEC’01, 2001. Article (CrossRef Link)

[15] M. Steiner, “Secure group key agreement”, Ph.D. Thesis, Naturwissenschaftlich-Technischen

Fakultät I der Universität des Saarlandes, March 2002. Article (CrossRef Link)
[16] Qianhong Wu, Yi Mu, Willy Susilo, Bo Qin, and Josep Domingo-Ferrer, “Asymmetric Group Key

Agreement”, in Proc. of EUROCRYPT 2009, LNCS 5479, pp. 153-170, 2009. Article (CrossRef

Link)

[17] Katz, J., Yung, M., “Scalable Protocols for Authenticated Group Key Exchange”, in Proc. of

CRYPTO 2003, LNCS 2729, pp. 110-125, Springer, Heidelberg, 2003. Article (CrossRef Link)

[18] Gorantla, M., Boyd, C., González Nieto, J. and Manulis, M, “Generic one round group key

exchange in the standard model”, in Proc. of Information, Security and Cryptology-ICISC 2009,

LNCS 5984, pp. 1-15, Springer-Verlag Berlin Heidelberg, 2010. Article (CrossRef Link)

[19] Smart, N.P., “Efficient Key Encapsulation to Multiple Parties”, in Proc. of the Fourth Conference

on Security in Communication Networks (SCN'04), LNCS 3352, pp. 208-219, Springer,

Heidelberg, 2005. Article (CrossRef Link)

[20] A. Dent, “Hybrid Signcryption Schemes with Insider Security”, in Proc. of ACISP 2005, LNCS

3574, pp. 253-266, Springer, Heidelberg, 2005. Article (CrossRef Link)

[21] Tor E. Bjørstad and Alexander W. Dent, “Building Better Signcryption schemes with Tag-KEMs”,

in Proc. of Public Key Cryptography (PKC 2006), LNCS 3958, pp. 491-507, Springer-Verlag,

2006. Article (CrossRef Link)

[22] Alexander W. Dent, “Key establishment using signcryption techniques", In: Dent AW, Zheng Y

editors, Practical Signcryption, pp. 217-240, Springer-Verlag, 2010. Article (CrossRef Link)

[23] Yoshida M., Fujiwara T., “On the Security of Tag-KEM for Signcryption”, Electronic Notes in

Theoretical Computer Science, vol. 171, no. 1, pp. 83-91, Elsevier, 2007. Article (CrossRef Link)

Appendix: Proof of Lemmas.

Proof of Lemma 2: In what follows we will show that if there exists a polynomial time

adversary CMA against the unforgeability of the SKA with non-negligible advantage, then

we can construct a polynomial time algorithm GDH which solves the Gap Diffie-Hellman

(GDH) problem with the same advantage as CMA . This action can fully prove Lemma 2.

Here we make the GDH problem solve the Computational Diffie-Hellman (CDH) with the

assistance of a decisional Diffie-Hellman oracle DDHO .

Let A aP , B bP . The problem instance A , B is given to GDH aiming to find the

value abP . The process shown below is that GDH runs CMA and simulates the answers to

the queries made by CMA .

– Hash: For Hash queries, Initially GDH has an empty list
2

L that stores the past returned

hash values. On input 1(, ,)i i iID ID X , GDH first checks if there is an existing entry

1 , 1(, , ,)i i i i iID ID X k  for some , 1i ik  in
2

L . If so, it returns this , 1i ik  ; otherwise it accesses

the global encapsulation list L and acts as the following:

if 1 , 1(, , ,)i i i i iID ID C k L   for some , 1i ik  and iC values then

compute i i iT X C 

if DDH 1(, ,) Truei i iO Y Y T  then

if iY A and 1iY B  then

http://dx.doi.org/10.1007%2F3-540-46035-7_21
http://dx.doi.org/10.1007%2F3-540-46035-7_21
http://dx.doi.org/10.1007%2F0-306-46998-7_16
http://scidok.sulb.uni-saarland.de/volltexte/2004/239/
http://dx.doi.org/10.1007%2F978-3-642-01001-9_9
http://dx.doi.org/10.1007%2F978-3-642-01001-9_9
http://link.springer.com/chapter/10.1007%2F978-3-540-45146-4_7?LI=true%23
http://dx.doi.org/10.1007%2F978-3-642-14423-3_1
http://dx.doi.org/10.1007%2F978-3-540-30598-9_15
http://dx.doi.org/10.1007%2F11506157_22
http://dx.doi.org/10.1007%2F11745853_32
http://dx.doi.org/10.1007%2F978-3-540-89411-7_11
http://dx.doi.org/10.1016%2Fj.entcs.2006.11.011

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 12, Dec 2012 3349

 return
iT as solution to the GDH challenger and exit

else

return , 1i ik  to CMA

update
2 2 1 , 1|| (, , ,)i i i i iL L ID ID X k   

end

else

 select , 1i ik  randomly from the key distribution and return it to CMA

update
2 2 1 , 1|| (, , ,)i i i i iL L ID ID X k   

end

else

select , 1i ik  randomly from the key distribution and return it to CMA

update
2 2 1 , 1|| (, , ,)i i i i iL L ID ID X k   

end

– FEO: GDH initially starts with an empty encapsulation list L . On input (1,i iY Y ) GDH

first selects
iC G . It then checks each entry 1 , 1(, , ,)i i i i iID ID X k  in

2
L to see if

DDH 1(, ,) Truei i iO Y Y T  for the same (1,i iY Y ) as the input to FEO. If so, it fetches the

corresponding , 1i ik  from
2

L , otherwise it selects , 1i ik  randomly from the key

distribution. It returns , 1(,)i i ik C to CMA . Finally, L is updated to

1 , 1|| (, , ,)i i i i iL L ID ID C k    .

– FDO: On input 1(, ,)i i iY Y C , GDH first checks if there is an entry

1 , 1(, , ,)i i i i iID ID C k L   . If so, it returns the corresponding key , 1i ik  . Otherwise, it acts as

the following:

 if
21 , 1(, , ,)i i i i i HID ID X k L   for some iX then

compute i i iT X C 

if DDH 1(, ,) Truei i iO Y Y T  then

if i AY P and 1i BY P  then

 return iT as solution to the GDH challenger and exit

else

 take corresponding , 1i ik  from
2

L and return it to CMA

 update 1 , 1|| (, , ,)i i i i iL L ID ID C k   

end

else

select , 1i ik  randomly from the key distribution and return it to CMA

update 1 , 1|| (, , ,)i i i i iL L ID ID C k   

end

else

select , 1i ik  randomly from the key distribution and return it to CMA

update 1 , 1|| (, , ,)i i i i iL L ID ID C k   

end

3350 Xixiang Lv et al.: Group Key Agreement from Signcryption

Answering the GDH challenger: Eventually, CMA outputs a forgery , 1(,)i i ik C
  as an

encapsulation created by
iU for

1iU 
. For the forgery to be valid under the outsider

unforgeabilioty notion FEO/FDO-sUF-CMA,
iC must be a valid encapsulation of , 1i ik 

 . If

iC is a valid encapsulation of , 1i ik 
 then CMA must have queried the Hash with

corresponding keying material, in which case GDH would have answered the GDH

challenger already. Hence, the advantage of GDH to solve the GDH problem is the same as

the advantage of CMA .

Proof of Lemma 3: As defined in Section 7.1, for outsider confidentiality, the adversary
CCA is given all the private keys except

iU ’s private key used for encapsulation and
1iU 
’s

private key used for decapsulation. The goal of CCA is to break the confidentiality of

encapsulations created by
iU for

1iU 
. In what follows we will show that if there exists a

polynomial time adversary CCA against the confidentiality of the SKA with non-negligible

advantage, then we can construct a polynomial time algorithm GDH which solves the Gap

Diffie-Hellman (GDH) problem with the same advantage as CCA . This action can fully prove

Lemma 3.

Let A aP , B bP . The problem instance A , B is given to GDH aiming to find the

value abP . The process shown below is that GDH runs CCA and simulates the answers to

the queries defined in the same way as above.

Answering the GDH challenger: After adaptively asking the FEO and FDO queries, CCA

outputs a public key iY  . The challenger gives (, 1

b

i ik  , 'iC) as the challenge, in which a

{0,1}Rb . When 0b  , 0

, 1i ik  is a valid session key, i.e., encapsulation pair (0

, 1i ik  , 'iC) using

the private key ix  and 1iU  ’s public key 1iY  ; when 1b  , 1

, 1i ik  is randomly selected from the

session key distribution.

 Finally, CCA outputs a bit b as its guess. Suppose 0b  , then CCA must have queried

the Hash with corresponding keying material, in which case CCA would have already

answered the GDH challenger. Hence, the advantage of GDH to solve the GDH problem is

the same as the advantage of CCA .

Dr. Xixiang Lv studied in Xidian University, Peoples R China, from 1997 to 2007, and

received her respective M.S. and Ph.D. in cryptography in 2004 and 2007. She is now an

associate professor of Xidian University, Peoples R China. Her research interests lie in

information security and wireless network security.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 12, Dec 2012 3351

Dr. Hui Li received his BE from Fu Dan University, Peoples R China, in 1990, and his Ph.D.

in Communication and Electronic Engineering from Xidian University, Peoples R China, in

1998. Prof. Li has published around 50 academic papers in the areas of information security

and coding theory. His research interests include information security, coding theory and

wireless network security.

