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Abstract 
 

Recent advances in cognitive radio technology have drawn immense attention to higher layer 

protocols above medium access control, such as transmission control protocol (TCP). Most 
proposals to improve the TCP performance in cognitive radio (CR) networks have assumed 

that either all nodes are in CR networks or the TCP sender side is in CR links. In those 

proposals, lower layer information such as the CR link status could be easily exploited to 

adjust the congestion window and improve throughput. In this paper, we consider a TCP 
network in which the TCP sender is located remotely over the Internet while the TCP receiver 

is connected by a CR link. This topology is more realistic than the earlier proposals, but the 

lower layer information cannot be exploited. Under this assumption, we propose an enhanced 
TCP protocol for CR networks called TCP for cognitive radio (TCP-CR) to improve the 

existing TCP by (1) detection of primary user (PU) interference by a remote sender without 

support from lower layers, (2) delayed congestion control (DCC) based on PU detection when 

the retransmission timeout (RTO) expires, and (3) exploitation of two separate scales of the 
congestion window adapted for PU activity. Performance evaluation demonstrated that the 

proposed TCP-CR achieves up to 255% improvement of the end-to-end throughput. 

Furthermore, we verified that the proposed TCP does not deteriorate the fairness of existing 
TCP flows and does not cause congestions. 
 

 

Keywords:  TCP, Congestion control, cognitive radio networks 

 

http://dx.doi.org/10.3837/tiis.2012.09.020


2324                                                                Yang et al.: Improving Performance of Remote TCP in Cognitive Radio Networks 

 

1. Introduction 

Along with significant demands on wireless resources, cognitive radio (CR) technology has 

recently received much attention. In cognitive radio networks (CRN), secondary (or 

unlicensed) users can periodically search and identify available channels in their spectrum of 
operation. Based on sensing results, secondary users (SUs) dynamically tune their transceivers 

to an identified channel to communicate among themselves without disturbing the primary (or 

licensed) users (PUs). When a SU detects a PU, the SU must release the channel to the PU and 
continue to use another available channels, if any. This is due to the basic principle that the 

PUs have the exclusive right to occupy the channel [1]. 

Recent researches on CRNs have concentrated on performance improvement in physical 
and MAC layers, such as optimization of channel sensing, efficient channel allocation, and 

channel sharing, because they have focused primarily on maximizing bandwidth capacity. 
However, CRN research also requires development of higher layer protocols, such as within 

the transport layer, in order to support application-level quality of service (QoS). 

Transmission control protocol (TCP) is one of the most popular transport layer protocols. 
One aspect of TCP is that it reduces the transmission rate when a packet is lost, because it 

regards the packet loss as an indicator of congestion [2]. In CRN, however, loss of a packet 
might also be due to PU arrival. For example, suppose that a TCP sender is remotely located 

over the Internet, while the access network for a TCP receiver is based on a CR link. We 

assume an AP is wired to the Internet and provides wireless access to the TCP receiver. Under 
this topology, the PU may cause communication to cease between the TCP receiver (SU) and 

the AP (SU). In this case, the end-to-end TCP transmission rate decreases and the end-to-end 

delay increases since the TCP starts congestion control. In our experiment, we observed that 
the end-to-end throughput  of the TCP

1
 decreases for the following reason. When the PU 

arrives, the AP or the receiver must release the channel licensed to the PU,  and it attempts to 

find an alternative channel from a candidate specrum set. However, if the attempt is not 

successful, the AP or the receiver must cease its communication. In this case, the round trip 
time (RTT) of the TCP becomes longer, which invokes a retransmission timeout (RTO). Thus, 

the TCP miscomprehends this event as serious congestion and drops the congestion window to 

1, resulting in decreased throughput. Segments transmitted from the TCP sender exeeding the 
AP capacity may be lost, resulting in AP overflow, since the CR link is blocked. 

Existing TCP protocols for CRNs have assumed that either all nodes are in CR networks 
[7][8]  or the TCP sender side is in CR links [9][10]. In those proposals, lower layer 

information such as CR link status could be easily exploited to adjust the congestion window 

so that the throughput can be maximized. However, this situation does not apply to our 
problem, in which the TCP sender is located remotely and connected by wire-line over the 

Internet, while the access network for the TCP receiver is based on a CR link. This topology is 

a more realistic deployment scenario, in which the lower layer information is not useful. 
Slingerland et al. [4] also concluded that TCP performance in our scenario is significantly 

deteriorated. To our best knowledge, our research is the first work targeting TCP performance 

improvement in this topology scenario. 

Exploiting lower layer information is still possible in this topology. However, this study 
determines not to utilize the lower layer information due to the following two reasons. First, 

                                                        
1 We used the TCP-SACK [12] for the experiment. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 9, Sep 2012                                      2325 

 

transmitting the CR link status to the remote sender is not always possible without extra 

components or channels. When a PU appears, the TCP connection is blocked and thus the 
status information cannot be transmitted through the connection. To be able to always transmit 

information, there should be an extra mechanism other than the end-to-end TCP connection, 

where some extra channels or components never blocked by PU activity should be involved. 

Second, although the status can be always transmitted, incorrectness caused by transmission 
delay is inevitable. Therefore, it is concluded that a simple approach purely localized to TCP 

may be less correct but more practical than utilizing the lower layer information. 

In this paper, we propose a new TCP protocol called TCP for cognitive radio (TCP-CR) for 
CRNs. In TCP-CR, the TCP sender detects PU arrival without support from the lower layer 
protocols. Based on the PU detection, we propose two techniques: delayed congestion control 

(DCC) and dual-phase congestion window (DPCW). The DCC scheme is performed 

whenever the RTO expires. The RTO may occur when the PU arrives. In this case, performing 

congestion control will degrade the TCP throughput performance, as explained above. If the 
RTO is caused by congestion, the TCP sender should perform congestion control. Thus, 

TCP-CR delays perfoming congestion control on the RTO until it can determine if PU 

interference is involved. Furthermore, we introduce DPCW, since transmitting TCP segments 
while the PU remains on the channel can be too aggressive. The DPCW scheme uses two 

separate scales of a congestion window: the window is adjusted to the size of the AP buffer in 

additive increase and multiplicative decrease (AIMD) fashion when the PU remains on the 

channel, and the ordinary TCP-SACK is applied when the PU vacates the channel. 

Most of the existing TCP protocols for the CRN do not mention how they react on 
interrupting events not related with PU, such as wireless link errors. In contrast, our proposed 

protocol takes into account congestion, wireless link errors, and PU arrivals. We validate that  

TCP-CR responds properly to all those events. 

The rest of this paper is organized as follows. Section 2 describes related work. Section 3 

considers the characteristics and problems in the existing designs of TCP over CRNs. In 
Section 4, we propose algorithms of the TCP-CR to improve the end-to-end throughput in the 

CRN. Extensive performance evaluation of the proposed algorithms is given in Section 5. 

Finally, in Section 6 we offer conclusions of our work and indications for future research. 

2. Related Work 

Recently, several performance evaluations of existing TCP over cognitive radio networks 
(CRNs) were conducted [4][5][6]. Slingerland et al. [4] concluded that the TCP-Reno can 

work well in the following situation: an unlimited buffer is available at the AP and the TCP 

receiver employs the selective acknowledgment (SACK) option. In practice, however, the 
capacity of the AP buffer is limited, and thus AP overflow may occur. Issariyakul et al. [5] 

also illustrated the performance of TCP in the CRN. They found that the TCP in the CRN has 

to cope with losses caused by PU arrivals; otherwise performance is significantly deteriorated. 
However, their research did not address wireless link errors such as bit errors, and in fact it is 

necessary to consider that link errors can be caused by wireless transmission impairments as 

well as the losses due to PU arrival. Felice et al. [6] investigated an extension of the ns2 

simulator [11] to support a realistic simulation of the CRN by developing a model of PU 
activities and SU spectrum management functionality. Moreover, they provided an analysis of 

TCP performance over the CRN. They discovered that PU behavior and the channel sensing 
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interval are important factors in deciding the optimal end-to-end performance. However, they 

did not provide a scheme for performance improvement of TCP over the CRN. 

Protocols for improving performance of TCP over the CRN were proposed in [7][8][9][10]. 

These protocols assumed the underlying technology to be either all CRNs [7][8] or CR links 
on the TCP sender side [9][10]. Luo et al. [7] studied an optimal TCP throughput based 

multi-channel access scheme over the CRN and formulated the channel access process over 

the CRN as a stochastic system. They improved performance by using a cross layer design 
approach in which they jointly condered a modulation and coding scheme in the physical layer 

and frame size in the MAC layer. In [8], the parameters of physical and MAC layers over the 

CRN were jointly optimized to maximize TCP throughput, modeling the CR system as a 
partially observable Markov decision process (POMDP). They argued that the design 

parameters of the CRN significantly impact TCP performance, improving it substantially if 

low layer parameters of the CRN are optimized jointly. Chowdhury et al. [9] proposed a 

window-based transport protocol which adapts the existing TCP rate control algorithm to 
interact with the physical and network layers. In this protocol, the TCP sender at the source 

node maintains information about the network state and adjusts its transmission rate based on 

updates from the intermediate nodes and feedback from the destination. However, this 
approach does not cope appropriately with cases in which the intermediate nodes are removed 

or the routing path is reconfigured. Sarkar et al. [10] proposed a protocol for the transport layer 

of the CRN that uses a cross layer approach to serve delay-tolerant applications and to adjust 

the congestion window by considering spectrum sensing and bandwidth variations. 

As mentioned above, most TCP protocols for the CRN have assumed that either all 
network devices are connected by CR links or that at least the TCP sender is connected by a 

CR link. In this scenario, lower layer information such as  PU activity could be easily exploited 

at the TCP sender. However, a more practical deployment of CR technology would be that the 
TCP sender or server is remotely connected over wire-line Internet while the TCP receiver or 

client accesses the wire-line Internet via CR technology. In this case, the lower layer 

information at the TCP receiver is not helpful to the TCP sender due to long RTT. Therefore, 

the TCP sender needs a different technique to detect PU arrival at the TCP receiver. 

3. Observations and Characteristics of Existing TCP in CRN 

We assume the following regarding network environments and PU activity:  

 The TCP sender is located remotely and connected by wire-line over the Internet, 
while the access network for the TCP receiver is based on a CR link. 

 Traffic is generated from the TCP sender to the TCP receiver (SU). 

 Packets from SUs (TCP receivers or APs) may collide with packets from PUs. 

 PU activity follows the exponential on/off model. 

Fig. 1 shows our scenario in which the SUs (TCP receivers) and SU APs opportunistically 
transmit their data over a channel that is not used by a PU. When they detect the signal of a PU 

or a PU base station, the SUs and SU APs must release the channel [8]. Using this method of 

CR channel access, the TCP receivers can download a large variety of traffic from the  remote 

TCP sender over the Internet. At times, data transmitted between an SU receiver and an SU AP 
may be blocked by a PU. To account for this, we represent PU behavior with an exponential 

on/off model in which the “on” duration (corresponding to PU arrival) is exponentially 

distributed with mean TON, and the “off” duration (SU communication time) is exponentially 
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distributed with mean TOff [5]. Furthermore, in contrast to most existing TCP protocols for CR 

[4][5][6][7][8][9][10], we include wireless link errors in our analysis of the TCP-CR. 

 

 

Fig. 1. Experimental environment considered in our scenario 

Previous research has studied topologies such as 1) all TCP sender and receiver 

connections are via CR links [6][7][8] or 2) the CR access network is located on the TCP 

sender side [5][10]. In those scenarios, the TCP sender can obtain CR link status from the 
lower layers through cross-layering approaches. However, in our scenario, which is more 

realistic to the existing Internet, the intermediate nodes cannot relay the CR link status to the 

TCP sender.  

 

 

Fig. 2. Congestion windows vs. simulation time with or without PU arrival  

(wired link bandwidth=10Mbps; CR link bandwidth=10Mbps; propagation delay of wired 

link=100msec; propagation delay of CR link=1 μs; size of TCP window=64Kbytes;  

TCP segment size=1Kbytes; FER=0.1; TON=1.0; TOFF=1.0) 

 

To analyze the behavior of existing configurations with the remote TCP sender connected via 
a CR link, we used the ns-2 simulator [11]. We measured the congestion window of the 
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TCP-SACK [12] with and without PU arrival. Fig. 2 shows the congestion window versus 

simulation time. The TCP-SACK without PU arrival (in red) has a mostly higher congestion 
window than with PU arrival (in blue). In this simulation, we assume FER=0.1. We observe 

that the congestion window of the TCP-SACK drops to 1 at most occurrences of PU arrival 

(marked by dots) in Fig. 2. This may be an overreaction, since the PU may vacate the channel 

while the congestion window remains low. Therefore, the existing TCP is not suited to the 
given scenario. 

TCP congestion control is originally designed to operate in wired networks, and it is not 
appropriate for the CRN. In the CRN, the RTO may expire and the congestion window may 

drop to 1 when a PU arrives. This hyperreactive congestion control causes end-to-end 
throughput degradation. Since the underlying MAC protocol searches for an alternative 

channel, the blocking time at  the TCP sender might be shorter in the CR link than that of  the 

network-wide congestion in the wired network. Traditional congestion control is not necessary 

in this case, but rather is harmful to throughput performance. Instead, we propose that TCP 
throughput can be improved by making TCP congestion control insensitive. More specifically, 

the TCP may delay adjusting the congestion window until it detects that PU arrivals have 

actually occured. This may also reduce the TCP transmission rate under PU arrival such that 
the TCP sender sufficiently fills the AP buffer. 

In this paper, we analyze various symptoms considering congestion, wireless link errors, 
and PU arrivals based on the simulation results. Table 1 shows these symptoms perceived at 

the TCP sender along with actual network events. This provides key insight for our approach. 

Table 1. CR symptoms and Our Approaches 

 Case I Case II Case III 

Actual Events in CR 

Networks 

PU arrival 

Link 

Error 
Congestion Transmission 

Blockage or Packet 

Drop 

AP Overflow 

Symptoms 

perceived at TCP 

Sender  

RTO, 

Duplicate ACK 
RTO 

Duplicate 

ACK 

RTO, 

Duplicate ACK 

Our Approach 
Delayed Congestion 

Control (DCC) 

Dual-Phase 

Congestion 

Window (DPCW) 

Existing Congestion Control 

Additional 

Information for 

Our Approach 

Points of PU Arrival 
Points of PU Arrival 

and Departure 
- 

 

In the CRN, there can be transmission blockages, packet drops, or AP overflow when there is 
a PU on the CR link. There also occur link errors or congestions as usual. Traditionally, TCP 

protocols have considered a duplicate ACK as a symptom of wireless link errors, and RTO and 
duplicate ACKs have been regarded as being casued by  congestion [2]. Existing TCP 

protocols cope well with these events, so our TCP protocol exploits existing mechanisms such 

as TCP-SACK or TCP Westwood [14] for Case III in Table 1. However, based on our 

experiment and [6][9][10], we observe that two types of symptoms arise due to PU arrivals: 
RTO alone or RTO with duplicate ACK. 
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Transmission blockage or packet drop can cause RTO and duplicate ACKs to occur as shown 
for Case I in Table 1. The transmission blockage is created because the SU cannot transmit 
ACKs while the PU occupies the channel. Once a PU starts occupying the channel, the packets 

sent to the SU should remain in the AP buffer because the AP should  not use the channel. 

Then the RTO of the TCP sender expires, and the TCP sender considers it as a packet loss 

caused by congestion. This situation can be considered to be a premature timeout. In this 
situation, the end-to-end delay between the TCP sender and receiver suddenly increases, and 

the ACKs cannot be transmitted until the PU vacates the channel. At that time, the RTO of the 

TCP sender should be delayed to prevent unnecessary congestion control. On the other hand, 
packet drop may be caused by collision with packets generated by a PU arrival. This event 

provokes the RTO, and congestion control is performed, although the network actually is not 

yet congested. In this case, congestion control is not necessary. To resolve transmission 
blockage or packet drop, therefore, our approach is to delay congestion control (DCC); the 

TCP sender immediately retransmits the lost packet(s) but postpones the TCP timeout decision 

until verifying whether the PU is invloved. 

AP overflow entails RTO only for Case II in Table 1. The AP overflows in the CRN occur 
when the network is congested or when the packets sent to the SU cannot be released at the AP 
buffer while the PU occupies the channel. In this case, the existing TCP does not work well 

because it reacts after the AP overflows occur. To alleviate AP overflows in the CRN, as much 

traffic should be generated as the AP buffer can hold. Thus, we propose a dual-phase 

congestion control scheme which uses two separate scales of a window adapted for PU activity 
and inactivity phases. 

The existing TCP cannot distinguish between these events, and so an aggressive 
congestion control could degrade TCP performance. To resolve this problem, we incorporate a 

scheme to detect PU activity first. The details of our approach for performance improvements 
are explained in section 4.2. 

4. TCP for Cognitive Radio (TCP-CR) 

In this section, we describe the proposed TCP-CR to improve end-to-end throughput based on 

PU detection, delayed congestion control, and two-phase congestion window.  

4.1 PU Detection 

For the remote TCP, it may not be possible to precisely detect PU arrival at the CR link; a 

delay of about one-half of the RTT is inevitable. Unless the PU has some deterministic 

characteristic, such as a period, precise detection is not feasible without help from the lower 
layers to distinguish PU arrival from interference (e.g., jitter or congestion) in the network 

caused by other traffic. However, we have developed a simple and somewhat coarse 

approximate detection algorithm for PU arrival. The method and its engineering decisions are 
described below.   

When a PU arrives on the channel being used by the TCP, ACKs from the TCP receiver are 
piled up in the AP buffer at the lower layer. In this situation, the TCP sender suffers from ACK 

drought because it cannot receive ACKs until the PU vacates the channel. Once the PU leaves, 

ACKs piled up in the buffer are transmitted in a burst, so the TCP sender suffers from ACK 
burst. In this manner, in the TCP sender, the ACK receptions become repeatedly droughty and 

bursty. By recognizing this unique pattern, the TCP sender can detect PU activities. A state 

diagram of PU activities is shown in Fig. 3.  
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Fig. 3. State diagram of PU activities 

In our TCP-CR, there are preconditions for detection of PU activities as follows. First, 
ACK drought may also happen via a non-CR link, so the remote TCP should be made aware 

that the other side is a CR link. This study assumes that this knowledge is transmitted in the 

optional header at the connection setup phase. Second, an ACK drought requires there to be an 
outstanding segment from the TCP sender, hence any ACK drought without an outstanding 

segment should be ignored.  

There should be a guideline to determine whether the ACK drought is caused by PU arrival, 
because ACKs can be delayed for some time if user sending requests are sporadic or there is 

jitter in the network transmission. For this guideline, the TCP sender measures the elapsed 
time since the last ACK reception (the duration of ACK drought). If it is shorter than a certain 

threshold dACK_Drought  (i.e., if an ACK is received within dACK_Drought), then the TCP sender 

decides that no PU has arrived on the channel. If the length of ACK drought is longer than 
dACK_Drought (i.e., if an ACK is not received within dACK_Drought),  then the TCP sender decides it 

has detected a PU arrival. The parameter dACK_Drought should be carefully designed. If it is too 

long, PU interference shorter than dACK_Drought cannot be detected (detection failure) since 

ACKs after PU departure can be received before dACK_Drought. If the threshold is too short, the 
TCP sender may erroneously decide it has detected a PU (false detection).  

To determine dACK_Drought, our study introduces the notion of the minimum PU interference 
time defined as the length of time during which the TCP sender cannot avoid experiencing 

transmission blockage due to CR characteristics. In the CR system, spectrum sensing is 

performed periodically to detect any PU arrivals, and this is perceived as interference from the 
viewpoint of the TCP sender regardless of PU arrival. Thus, the spectrum sensing time can be 

seen as the minimum PU interference time. We determined the minimum PU interference time 

to be 25 msec according to IEEE 802.22 which describes the wireless standard for cognitive 
radio [13]. 

Another factor affecting dACK_Drought is the end-to-end propagation delay between the TCP 
sender and receiver. In the remote TCP, a delay of one-half of the RTT is inevitable. If 

dACK_Drought is shorter than one-half of the RTT, there are concerns about false detection 

because dACK_Drought is not long enough for an ACK to arrive. Therefore, dACK_Drought is given by 

 

 _ max , -ACK Droughtd theminimum PU interferencetime one half the RTT                 (1)  

 

The main condition that detects PU departure is an ACK burst. If the number of ACKs in a 
burst is larger than a certain threshold nACK_Burst, then it is decided that the PU has vacated the 

channel. The range of nACK_Burst should be [1, number of outstanding segments]. Larger values 
of nACK_Burst lead to higher probability of successful detection but more time to detect PU 

departure. We determined nACK_Burst to be 1 in order to detect quickly. In other words, when an 

ACK is received at the TCP sender, we decide simply that the PU has left the CR link. 
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In order to check the appropriateness of  our PU detection, the correctness of PU detection 
is defined in a simple way as follows. 

 

# #
1

#

of False Detection of Detection Failure
Correctness of Detection

of PU ON

 
   

 

       (2) 

 

We measure the correctness of detection while varying the variance of transmission delay 
as shown in Fig. 4. When there is little variance in delay, most detection errors come from 

detection failure; PU interference whose duration time is smaller than one half of delay may 

not be detected. False detections occur more frequently with larger delay variance because an 
ACK delayed longer than the average might be misinterpreted as ACK drought. The majority 

of errors is still detection failure. Overall, the correctness decreases as delay variance 

increases. 

 

 

Fig. 4. The correctness of PU detection 

It is difficult to understand the side-effect of detection error in detail without knowing the 

reactions on PU detection, which will be explained later. However, one can understand the 

principle that detection failure makes TCP-CR behave like the conventional TCPs while false 

detection may cause some overreactions. This means that detection failure may not do any 
harm but reduce improvement on TCP performance. False detection may generate some 

negative effects; for example, a timeout caused by congestion is misinterpreted as PU 

interference and the congestion window is not decreased. However, this negative effect is 
limited because false detection is soon corrected on arrival of ACK.  

Although 80% of correct detection may look low, one should note that there exists 
inevitable delay between the CR link and the remote TCP. Our detection method is somewhat 

conservative in the sense that reducing negative effects is the first concern rather than 

improving the correctness of detection. Experiments on a lot of scenarios have confirmed that 
our simple detection method almost always gives better performance than other alternatives 

with respect to end-to-end throughput and fair network sharing. 

4.2 Delayed Congestion Control Scheme 

Originally, when the RTO of the TCP sender expires, the existing TCP performs two functions 

simultaneously: (1) retransmission to recover a lost segment and (2) congestion control to 
alleviate the congestion. However, if the RTO of the TCP sender is caused not by congestion 
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but by PU arrival, the second function of the congestion control creates performance 

degradation. To prevent this problem, our TCP-CR separates the above two functions, as 
shown in Fig. 5. 

In the proposed delayed congestion control (DCC) scheme, when an ACK is received at 
the TCP-CR sender, an ACK drought timer is set. According to dACK_Drought, the RTO of the 

TCP sender can expire before or after the ACK drought timer. When the RTO of the TCP 

sender expires before the ACK drought timer, the sender cannot identify whether that is 
caused by congestion or PU arrival. Therefore, the TCP-CR sender retransmits the lost 

segment immediately and then postpones congestion control until it can determine whether the 

PU has arrived. If the sender detects PU arrival (i.e., the ACK drought timer expires), it 
decides that the previous RTO expiration was caused by the PU arrival, and then it avoids 

congestion control by holding the current congestion window (CW) as the previous one. If an 

ACK arrives before the ACK drought timer expires, the TCP sender determines that the 

previous RTO expiration was not caused by a PU, and thus it performs traditional congestion 
control by setting the current CW to 1. We show the detailed procedure in Fig. 6. 

 

 

Fig. 5. An example of delayed congestion control scheme 

On the other hand, when the RTO of the TCP-CR sender expires after the ACK drought timer 
expires, it can be determined immediately that the RTO expiration was caused by PU arrival. 

In this case, the TCP-CR sender retransmits the lost segment and avoids congestion control by 

holding the current CW as the previous one simultaneously. In this case, the TCP-CR sender 
does not postpone congestion control. 

Meanwhile, if duplicate ACKs are received at the TCP-CR sender as soon as the PU 
vacates the channel, it means that there was a previous packet drop(s) due to the PU arrival 

(collision among PU- and SU-generated packets). In this situation, the TCP-CR sender 

retransmits the lost segment but does not perform congestion control, because the previous 
packet drop was not caused by congestion. 

In this approach, side effects from congestion might be of concern. The TCP-CR does not 
perform congestion control promptly, holding the current CW as the previous one when the 
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RTO expires. This aggressive approach may deteriorate congestion if it occurs. To resolve this 

concern, we employ the dual-phase congestion window scheme. This technique is explained in 
detail in section 4.3. 

 

 

Fig. 6. Flow chart for delayed congestion control scheme 

4.3 Dual-Phase Congestion Window 

Traditional TCP congestion control operates independently from PU activities; the TCP 

sender generates data continuously according to the congestion window (CW) size, even if the 

PU arrives on the channel and the AP
2
 cannot send any buffered frames. Eventually, this may 

cause overflow at the AP. To avoid  AP overflows, the TCP sender should generate as much 

data as the AP buffer can hold. However, it should also fully utilize the available bandwidth 

when there is no PU interference. To manage this, the TCP-CR uses the dual-phase congestion 
window (DPCW) approach. 

The rationale behind this approach is that the behaviors of a CR link vary significantly 
depending on PU presence on the channel. Thus, it is insufficient to estimate capacity based on 

only one scale of the congestion window. The packets sent to the SU (i.e., TCP-CR receiver) 

pass through the CR link while the PU vacates the channel. This is a typical issue of estimating 
available bandwidth of a link, and it has been well addressed by the existing TCP congestion 

control [2]. On the other hand, the packets sent to the SU are accumulated in the AP buffer 

while the PU occupies the channel. The issue is how to estimate the buffer size at the AP.  
After the PU vacates the channel, the link behavior returns not smoothly but rather abruptly to 

the previous mode without the PU. Therefore, the TCP-CR controls the transmission rate with 

two separate scales of the window, adapted to the PU activity. 

The DPCW scheme introduces a new window called the PU window (PW), as shown in 
Fig. 7, in addition to the existing CW. While the PU vacates the channel, the existing CW is  
used to estimate a combined share of the link and the AP buffer. When the PU occupies the 

                                                        
2 Refer to SU AP in Fig. 1. 
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channel, the PW is utilized instead of the CW to maintain the number of outstanding  to fill the 

AP buffer without overflow. The PW also operates by using an additive increase 
multiplicative decrease (AIMD) approach, like the CW. The TCP-CR adjusts the transmission 

rate to the CW when a PU does not exist on the channel, and it adjusts the rate to the PW when 

a PU does exist on the channel. 

 

 

Fig. 7. Dual phase congestion window (PW: PU window) 

As mentioned in section 4.2, this approach plays a major role in resolving the concerns about 

the aggressiveness of the DCC scheme. In the DPCW technique, the value of the PW is usually 
lower than the value of the CW, since the TCP-CR sender maintains the PW as the AP buffer 

fill level. This cautious approach prevents the DCC scheme from aggravating congestion or 

AP overflows. 

Remarks: As mentioned, our detection algorithm can generate errors due to false detection 
and detection failure. False detection error may exacerbate the congestion because it causes 
the TCP-CR sender to keep the transmission rate by holding the CW. However, this detection 

error is not continuous, because it can be corrected after receiving an ACK. Therefore, the side 

effects for false detection error are not fatal. 

 Detection failure occurs when the TCP sender cannot detect the arrival of a PU in the CR 
link. This detection error may obstruct TCP performance improvement because it causes the 
TCP-CR sender to perform congestion control, when there is no actual congestion. This can 

occur if the length of PU occupancy on the CR link is shorter than dACK_Drought. 

5. Performance Evaluation 

In this section, we evaluate performance of the proposed scheme compared with the 

TCP-SACK [12] under the experiment environment shown in Fig. 1. The simulation was 
performed using the ns2 simulator with the simulation parameters listed in Table 2. We 

assumed that PU activity followed the exponential on/off model described in section 3. The 

PU occupation rate, defined by TON / (TON + TOFF), was set variably to 10-90%. We measured 
the end-to-end throughput of TCP and the TCP retransmission rate, defined as follows: 

 End-to-end throughput of TCP: the goodput measured at the TCP sender  

 TCP retransmission rate: the number of retransmitted segments per total transmitted 

segments at the TCP sender 

5.1 The End-to-End Throughput and Retransmission Rate 

In this subsection, we measure the end-to-end throughput and the TCP retransmission rate 
while varying the frame error rate (FER) (Fig. 8) and the PU occupation rate (Fig. 9). Fig. 8 

shows the end-to-end throughput and the TCP retransmission rate when the PU occupancy rate 
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is 50%. We observe that the DCC scheme has higher end-to-end throughputs than the 

TCP-SACK because it can keep larger CW values by avoiding unnecessary CW cut downs 
(for FER = 0% and 1%). However, this aggressive scheme increases the TCP retransmission 

rate and aggravates network congestion. Thus, we used the DPCW scheme to reduce the TCP 

retransmission rate by alleviating AP overflows. As seen in Fig. 8, the TCP-CR with 

integrated DCC and DPCW schemes shows the highest end-to-end throughput and also 
reduces the network congestion; this can be done simultaneously because the schemes interact 

orthogonally.  

Table 2. Simulation Parameters 

Parameter Value 

Link Bandwidth 
Wired Link 10 Mbps 

CR Link 10 Mbps 

Propagation Delay 
Wired Link 100 ms 

CR Link 1μs 

Size of TCP Window 64 Kbytes 

TCP Segment Size 1 Kbytes 

Frame Error Rate (FER) Variable 

Application Protocol FTP 

PU Occupation Rate Variable 

 

 

Fig. 8. The end-to-end throughputs and TCP retransmission rate (PU occupancy rate = 50%) 
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Fig. 9. The end-to-end throughputs vs. the PU occupation rate 

Fig. 9 shows the end-to-end throughput versus the PU occupancy rate. The end-to-end 

throughputs of the TCP-CR are higher than those of the TCP-SACK because the TCP-CR 

prevents unnecessary congestion control and alleviates AP overflows. Although the difference 
between their end-to-end throughputs becomes smaller as the PU occupancy rate increases, the 

results demonstrate that the proposed scheme achieves substantial throughput enhancement; 

for example, compared to the TCP-SACK, the TCP-CR  achieves 397% throughput 
enhancement when the PU occupancy rate is 90%, and it achieves 255% throughput 

enhancement on average. 

5.2 Link Bandwidth Sharing 

In this subsection, we consider the scenario that the bandwidth is shared by TCP-CR and 

TCP-SACK flows, in order to verify that the TCP-CR does not degrade the performance of 

existing TCPs. This is a concern because the TCP-CR is opportunistic and somewhat 
aggressive. We chose the experimental condition of uncongested environments. The 

experimental setup is shown in Fig. 10. Fig. 10 (a) shows the case in which two TCP-SACK 

senders (TCP-SACKA and TCP-SACKB) share the bandwidth, while Fig. 10 (b) shows the 
case in which the bandwidth is shared by TCP-CR and TCP-SACKA. This simulation setup is 

intended to determine how TCP-SACKA in Fig. 10 experiences bandwidth sharing. 
 

 

Fig. 10. Two different experiment setups for bandwidth sharing 

The results are shown in Fig. 11. We observe similar end-to-end throughputs of TCP-SACKA 

(solid line) for the two cases (Fig. 11 (a) and Fig. 11 (b) for FER=1%). This means that the 
performance of the TCP-SACK is not affected by the presence of the TCP-CR. The TCP-CR 

provides better end-to-end throughput than the existing TCP in both cases, consistent with the 
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results of section 5.1. Therefore we see that the TCP-CR improves its performance not by 

preempting other TCP’s bandwidth but by utilizing extra bandwidth unused by the 
TCP-SACK. 

 

 

Fig. 11. Bandwidth sharing between TCP-CR and TCP-SACK (FER=1%) 

5.3 Congestion Control 

In this subsection, we investigate how the TCP-CR reacts when the network is congestive. To 

construct congested environments, we deployed additional TCP-SACK senders to cause 
congestion, as shown in Fig. 12. We added 4 pairs of TCP-SACK nodes at C(S) and C(R) to 

create congestion in the wired link. In this setup, the TCPs send traffic from C(S) to C(R) and 

perform congestion control of the TCP-SACK. We set the FER to 1% in the CRN and the 
bandwidth of the intermediate link to 1 Mb/s. We considered two cases as in section 5.2; i.e., 

the bandwidth was shared by two TCP-SACK senders (TCP-SACKA and TCP-SACKB) or by 

TCP-CR and TCP-SACKA senders. 
 

 

Fig. 12. Topology for fairness experiments in congested environments 

The results are shown in Table 3. The average end-to-end throughputs of C(S) are similar in 
the two cases during the congested period. This result means that the TCP-CR does not 

aggravate congestion by cutting down CW in a congested period. 

 

Table 3. Congestion Control of TCP-CR in Congested Environments (FER=1%) 
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Scenarios 
Throughputs of TCP-CR and 

Existing TCP(bits/s) 

Average Throughput of C(S) 

(bits/s) 

TCP-SACKA→SUA 

TCP-SACKB→SUB 

(TCP-SACKA, TCP-SACKB) 

(16,329, 16,825) 
114,989 

TCP-SACKA→SUA 

TCP-CR→SUCR 

(TCP-SACKA, TCP-CR) 

(16,717, 17,003) 
115,277 

 

To analyze the TCP-CR congestion control mechanism in detail, we observe the variations of 
the CW shown in Fig. 13. This shows traces of the CW values of the TCP-CR and 

TCP-SACKA. The experiment first starts the uncongested status when C(S) is inactive. After 

300 seconds, C(S) generates traffic and creates congestion for 500 seconds, which causes the 
CWs of the TCP-CR and TCP-SACKA to decrease from about 300 to 800 seconds. This is 

because the TCP-CR decreases the transmission rate when the network is congested. On the 

other hand, the TCP-CR increases the CW and thus has a higher CW than the TCP-SACKA 

during uncongested periods. This can improve the end-to-end throughput of the TCP-CR 
compared with the TCP-SACK, enabling the TCP-CR to dynamically adapt to different 

network environments. 

 

 

Fig. 13. Variations of congestion window with time (FER: 1%, simulation time: 1000 seconds)  

6. Conclusion 

Most existing TCP protocols for the CRN have assumed that either all network devices are 

connected by CR links or that at least the TCP sender is connected via a CR link. In this 

situation, lower layer information such as PU activity was easily exploited by the TCP sender. 
However, in more practical deployments of CR technology, the TCP sender or server is 

remotely located over wire-line Internet, while the TCP receiver or client accesses the 

wire-line Internet via CR technology. In this case, lower layer information at the TCP receiver 
is not helpful to the TCP sender due to the long RTT.  
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In this paper, we have considered a TCP network in which the TCP sender is located 

remotely over the Internet while the TCP receiver is connected via a CR link. For this scenario, 
we proposed an enhanced TCP protocol for CR networks called TCP for cognitive radio 

(TCP-CR). In the TCP-CR, the TCP sender detects PU arrival without support from lower 

layer protocols. Based on PU detection, we proposed two techniques: delayed congestion 

control (DCC) and a dual-phase congestion window (DPCW).  
Performance evaluation demonstrated that the proposed TCP-CR achieves 255% 

improvement in end-to-end throughput on average. We also validated that the proposed 

TCP-CR does not deteriorate fairness, maintains existing TCP flows, and does not increase 
congestion. 

As a first step to address the CR link problem at the remote TCP, this study has validated 

the solution approach through simulation experiments. Some mathematical results based on 
performance analysis will give more precise understanding of this problem. As a more 

practical approach, exploiting the behavior pattern of PU will be promising. Most CR links 

have some periodic properties such as spectrum sensing. Using these properties, a somewhat 

proactive congestion control might be possible. 
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