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Abstract 
 

We propose a scheme to reduce the overhead associated with channel state information (CSI) 

feedback required for opportunistic scheduling in wireless access networks. We study the case 

where CSI is partially overheard by mobiles and thus one can suppress transmitting CSI 

reports for time varying channels of inferior quality. We model the mechanism of feedback 

suppression as a Bayesian network, and show that the problem of minimizing the average 

feedback overhead is NP-hard. To deal with hardness of the problem we identify a class of 

feedback suppression structures which allow efficient computation of the cost. Leveraging 

such structures we propose an algorithm which not only captures the essence of seemingly 

complex overhearing relations among mobiles, but also provides a simple estimate of the cost 

incurred by a suppression structure. Simulation results are provided to demonstrate the 

improvements offered by the proposed scheme, e.g., a savings of 63-83% depending on the 

network size. 
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1. Introduction 

In this paper we study an approach to reduce the overhead associated with channel state 

information (CSI) feedback in wireless access networks exploiting spectral and temporal 

opportunism. Previous approaches have focused on fully decentralized setups where CSI at 

each node is not available to any other user when feedback is transmitted. In this work we 

study the case where the system CSI is partially observable by users prior to feedback, e.g., 

certain subsets of users can overhear each other’s CSI feedback. The following describes how 

users’ CSI can be shared among a subset of users. For concreteness we focus on a wideband 

access network adopting OFDM, e.g., 802.11n. We refer to the smallest unit of resource 

consisting of subcarriers allocatable to an individual user as a resource block (RB). We 

consider an access point (AP) and a set of nodes within its coverage area. If the AP intends to 

transmit to a group of nodes, it requests CSI for all the RBs for each node in the group. 

Consider a subset of nodes which are within transmission range of each other, say nodes A and 

B. Suppose A has provided CSI for all of the RBs. If B overhears the CSI fed back from A it 

can choose to transmit CSI only for the RBs which have ‘superior’ SNR values to those of A 

since all ‘inferior’ RBs would in principle be ignored upon reception at the AP. We study a 

scheme where each node makes binary decisions on whether or not to send feedback by 

comparing its RBs’ CSI to those previously overheard. 

An example is depicted in Fig. 1. Assume SNR takes values from .  There are 

four nodes , ,  and . Nodes ,  and  are adjacent to one another where  is adjacent only 

to . The order of reporting has been fixed to . Firstly  transmits feedback for all 

the RBs.  Upon overhearing 's feedback,  transmits feedback only for RBs that have a higher 

SNR than those of : the SNR values of 1
st
 and 4

th
 RBs are suppressed. Similar rules apply for 

nodes  and . As for node  since it cannot overhear previously transmitted SNR values at the 

1
st
, 5

th
 and 6

th
 RBs by  and , and because  is silent with respect to those RBs,  is forced to 

transmit feedback for those RBs although they turn out to be inferior to those reported earlier 

to the AP. Let us define the overhead as the total number of bits fed back to the AP. If we 

assume it costs  bits to report the SNR of an RB, the overhead of the feedback exploiting 

overhearing in Fig. 1 is 17  as opposed to 24  in the full feedback case. 
 

 

Fig. 1. An example feedback suppression procedure. The left shows the overhearing relations: 

nodes ,  and  are neighbors of one another where  is adjacent only to . The right shows the 

feedback reports by the four nodes. Each number represents the SNR for the corresponding RB index. 
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The shaded numbers represent the suppressed feedback for the corresponding RBs, e.g., the report of 

Node  contains only four SNR values. 

Our goal is to minimize the average total number of bits fed back to the AP, i.e., the average 

overhead. The total number of RBs per transmission time slot is denoted by m. Assume that the 

AP has infinitely backlogged queues serving a total of n users. Suppose under a feedback 

suppression scheme the probability of feedback transmission from user k for RB i is denoted 

by ,   and . Assuming  bits are required to describe CSI of an RB for 

user k, the objective is to minimize 

 

Note  represents different numbers of bits per transmission required in describing SNR 

information/channel gains for each user capturing the heterogeneities among users, e.g., 

capabilities for different user equipment. For instance low-end devices may have a limited 

choice in the available modulation and coding schemes compared to high-end devices, thus 

would need less number of bits to describe CSI. 

The key problem addressed in this paper is finding the optimal order in which nodes provide 

feedback to the AP. We show that the relationships of suppression among nodes induced by a 

given feedback order can be represented as a directed acyclic graph (DAG). We assign a set of 

random variables (RVs) associated with the event of feedback transmission to each vertex of 

the DAG, from which we model the system as a Bayesian network (BN) [1]. The BN encodes 

the joint probability distribution of the feedback transmissions for a given feedback order, and 

computing (1) corresponds to a marginalization of such joint distribution. Unfortunately such 

marginalization problems are NP-hard in general [1]. Recognizing the intractability of the 

problem we propose an approximation algorithm. We first show that (1) can be computed 

efficiently if the DAG is singly connected. A DAG is singly connected, or a polytree, if there 

exists at most one directed path between any two nodes. We identify a class of DAGs which 

have more complex structure however allow an efficient computation of the associated 

overhead. Based on these findings we propose an algorithm called Greedy Quantile-Based 

Sequential Feedback (G-QBSF) which captures the essence for significant savings in overhead. 

We show the efficacy of the proposed algorithm via simulation. 

There has been a substantial amount of research devoted to feedback overhead reduction in 

wireless access networks using adaptive OFDMA, e.g., [2][3][4]. Notably using opportunistic 

splitting one can achieve a constant overhead in terms of the average time consumed for 

feedback [5] however the scheme involves coordination overhead. The work in [6], and then 

[7] propose schemes to eliminate coordination overheads incurred at the basestation through 

optimizing thresholds associated with contention probability. None of the above mentioned 

work, however, addresses the possibility of leveraging overhearing users’ CSI to reduce 

overheads. 

Given the SNR value of a neighbor’s RB, how does a node decide if its RB quality is ‘better’ 

than its neighbors’? If the decision were to be based on the absolute SNR values, the 

heterogeneity in channel conditions may cause rate starvation to some nodes. As a fair 

resource allocation to users with heterogeneous fading statistics we adopt max-quantile (MQ) 

scheduling which was studied in [8][9][10]. The quantile is defined to be the instantaneous 

SNR evaluated at the distribution function of the SNR. The idea behind MQ scheduling is to 

select a user with the highest rate relative to its own distribution. Thus MQ scheduling is fair in 

terms of opportunism even when the channel distributions of the users are heterogeneous. Also 
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the MQ scheduling is known to maximize the sum throughput for asymptotically large number 

of users, and to be robust to measurement errors in CSI [10]. In our paper we apply the MQ 

scheduling to both time and frequency resources, i.e., for each RB, the AP schedules a user 

with the maximum quantile.  

This paper is organized as follows: In Section 2 we describe the system model and the 

proposed scheme. The problem formulation using a BN model is discussed in Section 3. 

Section 4 characterizes computationally tractable structures, then a greedy heuristic leveraging 

such structures is proposed. In Section 5 we discuss measurement distortions which can occur 

in our model. Section 6 presents simulation results, and Section 7 concludes the paper. 

2. The Proposed Scheme 

We assume a block-fading model where the channel gain of an RB is fixed during a common 

coherence time . The channel gain is renewed in an i.i.d. manner every  time units and the 

AP requests CSI feedback at the beginning of each coherence time. We assume that the SNR 

distributions are independent, not necessarily identical, across users and RBs. The SNR for 

user i and RB j has the same distribution as a continuous RV  with a continuous distribution 

function . The quantile of an instantaneous SNR γ of jth RB for user i is defined to be 

. MQ scheduling for a given RB operates as follows: in the time duration 

 for any integer k, and some RB index j where , the 

following user is scheduled: 

 

where  is the realization of the SNR of RB j for user i at time t, and 
 
denotes the 

distribution function of  . Since  is continuous,  is uniformly distributed on 

. 

In order to compute the quantile of an overheard SNR value, each node needs to know the 

distributions of SNR of its neighboring nodes. Hence we assume each node keeps track of the 

SNR distribution of the RBs of its neighbors. A node ‘measures’ the SNR of a particular 

neighbor by sampling the overheard SNR values transmitted by the neighbor. A node 

estimates the SNR distribution based on the empirical distribution of the SNR measurements. 

For such method, it has been shown in [10] that the storage overhead associated with 

measurements of channel distributions grows only linearly with the number of neighbors (and 

RBs). However there are two issues: firstly, since the nodes selectively transmit feedback, i.e., 

poor SNR values are likely to be suppressed often, the overheard information tends to be 

biased. We study how to correct such bias in Section 5. Secondly, for dense networks, it can be 

burdensome to measure SNR values and track SNR distributions of all the neighbors. Hence 

we propose an alternative scheme with reduced measurement overheads in Section 6.  

We model the overhearing relation among the nodes by an undirected graph  

where  and  denote the set of vertices and edges respectively. 

An edge  between two nodes captures the fact that these nodes can overhear each 

other’s feedback. The set of all edges in E which are incident on vertex v is denoted by . The 

AP is assumed to be fully aware of the overhearing graph of its associated nodes. 

The following is an outline of the proposed scheme.  
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BEGIN PROCEDURE 

(1) The AP notifies the nodes of the order in which feedback transmissions are to be 

made.  

(2) The nodes respond, if at all, in the specified order, transmitting their SNRs for 

RBs over the entire frequency band. Each turn of SNR reporting is called a stage.  

(3) For each RB every node can decode the feedback transmitted by adjacent nodes 

and decides whether to transmit its own feedback by comparing the quantiles of its 

SNRs with those previously overheard.  

(4) A node transmits feedback for an RB only if its SNR’s quantile is higher than 

those of the overheard SNRs. 

END PROCEDURE 

In order to estimate the potential reduction in overhead achievable by the proposed scheme, 

we present a lower bound on the mean overhead as follows. 

Lemma 1: The expected overhead (1) under the proposed scheme is lower bounded by  

 

Proof: See appendix.  

Now suppose , . The bound implies that one roughly needs  

bits for feedback as opposed to  for full diversity gain when  is a complete graph. This 

suggests that exploiting overheard information may lead to substantial savings in overhead 

when  is dense. 

3. Problem Formulation 

Unless all nodes overhear each other, the order of feedback transmissions will affect the mean 

overhead, which we investigate in the sequel. Note that, since we have adopted quantiles as a 

measure for channel quality, nodes are effectively comparing i.i.d. uniform RVs associated 

with the quantiles of RBs over the entire frequency band at every time slot. By symmetry it is 

clear that we can assume  for the sake of simplicity of analysis and simulation regarding 

determining the ‘best’ feedback order. Thus we assume henceforth that there is only one RB 

per time slot. 

We formulate the problem using a probabilistic graphical model as follows. In our scheme 

the feedback transmission by a node will influence the overhearing neighbors’ feedback 

transmissions, and such random influence will propagate throughout the network. The 

precedence relations of influences are determined by the given order of feedback 

transmissions. Such mechanism naturally introduces modeling by a Bayesian network (BN) 

[1]. A BN is defined as a directed acyclic graph (DAG) where each vertex represents an RV (or 

a set of RVs) associated with the event of interest. The influence of a vertex on another is 

signified by the direction of the arc associated with the vertices. Such influence is quantified 

by a conditional distribution involving RVs associated with neighboring vertices. Namely a 

BN consists of (i) a DAG, (ii) RVs represented by vertices and (iii) the conditional 

distributions associated with vertices [1]. In the following we formally introduce the BN 

model and its associated elements. 
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Fig. 2-(a) An overhearing graph .   

Fig. 3-(b) A directed graph  as an orientation of  induced by . 

Let  denote a permutation of  representing a feedback order, and  denote the -th 

element of , i.e., the index of the node associated with the -th feedback stage. For a given 

undirected graph , a directed graph  is said to be an orientation of  if it is obtained by 

assigning certain directions to the edges of . Let us denote a directed arc from  to  by . 

By  we denote the orientation of  such that  implies that  transmits feedback 

earlier than  according to . An example of the construction of  based on the order of 

feedback  is illustrated in Fig. 2 where . Fig. 2-(b) shows how the relations 

of causal influence are represented by a DAG.  

The set of arcs induced by  is denoted by . Clearly  is a directed acyclic graph 

(DAG) due to the strict ordering nature of . For some  consider a pair of RVs  

where  is an RV indicating whether node  will transmit feedback, and  is the SNR of the 

RB. Let us denote the set of parents of  in  by . We can write 

 

where  denotes the distribution of the SNR of the RB for node i. We define 

. Due to the independence of 's, clearly  depends only on   for 

. We construct a BN with the above setup as follows: (i) the DAG is given by , 

(ii) we associate the vertex  with the RV , (iii) the conditional density involving  is 

given as follows. Consider a vector . We will denote the joint event 

of  by . With slight abuse of notation we will denote the density 

of  at  conditional on  by . When , we have that 

 and , thus by definition . Since  depends 

only on  the joint distribution of  is given by 

 

From the uniform distribution of  and the definition of  we have the following 

conditional distribution: 
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Thus we have the conditional density 

  

where  is the Dirac delta function, i.e.,  is a mixture of continuous and discrete RV. 

Namely  is assumed to be continuous, however the probability of suppression at node , 

i.e.,  can be positive, and also note that . 

This completes the construction of BN model. 

With slight abuse of notation let us denote the RV indicating whether node  will transmit 

feedback for a given directed graph  by . We define the problem of determining the 

optimal feedback order that minimizes (1) as follows. 

Problem 1: Define  as the cost function that maps a directed graph to average overhead, 

i.e., 

 

for a given directed graph . Denote the set of all possible permutations of  nodes by .  Our 

objective is to find . 

We show that Problem 1 for general overhearing graphs is NP-hard as follows. Computing 

 corresponds to a marginalization of the joint distribution  

of . Such marginalization involving BNs associated with continuous RVs is 

known to be NP-hard [11], thus finding  is also NP-hard. 

4. Optimization and Approximations 

The difficulties associated with Problem 1 are twofold: (i) given a DAG computing the cost 

given by (2), and (ii) determining the optimal permutation . To deal with those we will 

identify a class of DAGs of which the cost can be efficiently computed. We will then introduce 

so-called virtual suppression graphs (VSG) which belong to such a class. VSGs serve as a 

means to find a good permutation, and are intended for a simple estimation of the average 

overhead as well, which we discuss in the sequel. 

4.1 Networks allowing efficient computation of the cost 

Given a feedback order , we will show that the cost of the associated DAG can be computed 

in polynomial time if the DAG satisfies the following condition. 

Condition 4.1: Suppose  satisfies the following for every node .  
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(1) For any two nodes in , there are no common ancestors in .  

(2) There are no other directed paths between any two nodes in  except through 

the arcs in the subgraph induced by .  

Let us consider an important special case of Condition 4.1 where a DAG is a polytree or 

singly connected: it is easy to show that a polytree satisfies Condition 4.1. In the following we 

show that the cost of such DAGs can be iteratively computed, i.e., one can iteratively evaluate 

the probability of feedback transmission for every node. We also show that the computation 

involves polynomial multiplications which can be efficiently carried out, e.g., by using FFT. 

Lemma 2: Without loss of generality assume . Suppose the DAG 

associated with the BN induced by a given transmission sequence  is singly connected.  Then 

the probability of transmission for node  can be iteratively computed as follows: 

 

with the distribution function  given by 

 

where  and . Further the integrands in (3) and (4) are products 

of polynomial functions with rational coefficients. 

 Proof: See appendix.           ■ 

By using Lemma 1 and certain properties of the graphs satisfying Condition 4.1, we show 

that the cost of DAGs satisfying Condition 4.1 can be computed in polynomial time as follows. 

Theorem 1: The computation of the cost of  satisfying Condition 4.1 has the worst case 

complexity of  where  is the maximum degree of the underlying 

undirected graph . 

Proof: See appendix.           ■ 

In the proof of Theorem 1, we provide a computation method for the cost. 

Note that Condition 4.1 simply states certain properties of a BN having an efficient 

computational structure, specifically when the BN represents a sequence of events which are 

related by the maximum of certain RVs, which is shown in the proof of Theorem 1. Condition 

4.1 also characterizes DAG structures which are possibly ‘dense’ and multiply connected, thus 

the computation of the cost is seemingly difficult, however can be completed in polynomial 

time. In the following we leverage DAGs possessing these properties so as to find a good 

permutation. 

4.2 A Heuristic to Determine a Good Permutation 

Our objective is to construct a permutation  which represents the feedback order. We start 

from an empty permutation and successively add a node to  at each step.   At each step we 

also incrementally build a DAG called virtual suppression graph (VSG) denoted by 

 as follows. Once a node  is selected to be added to , we convert certain edges 

from  into directed arcs which are then added to  where initially . Note that if we 

consider the cost of , or  defined by (2), one can always decrease  by adding arcs to 
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. Our approach is that, we greedily select  such that adding arcs associated with  to  

maximizes (with random tie-breaking) such decrease in the cost of . 

When assessing a candidate node , we do not orient all edges in , otherwise it may be 

difficult to compute the cost of the resulting , especially when  is dense. Meanwhile we 

would like to orient as many edges as possible in order for  to better capture the overhearing 

relations given by  To this end we propose that, for a candidate  and every edge 

, the arc  be added to  only if  meets Condition 4.1, 

otherwise  is excluded from further consideration. Thus  will be an orientation of a 

spanning subgraph of  satisfying Condition 4.1. Once  is finalized, however, the actual 

feedback suppression will be based on , i.e., overhearing opportunities are fully 

exploited. The cost associated with a VSG serves as an estimate on how good a feedback order 

is. Denote the DAG after adding arcs associated with the candidate  by . The decrease in 

the cost from  to  can be computed as:  

 

where  denotes the children of  under . This is easily seen since the difference 

between  and  is the presence of arcs emanating from . The algorithm is outlined in Fig. 4. 

Due to the greedy nature of successively determining the feedback order, we will refer to the 

proposed algorithm as Greedy Quantile-Based Sequential Feedback (G-QBSF). An example 

illustrating the implication of G-QBSF as well as simulation results are presented in Section 6. 

 

Fig. 4. The description of the proposed algorithm. A binary operator  is defined as the operation 

of adding  to  such that  where  is the length of . 
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5. Measurement Distortions 

In the proposed scheme the distribution of the overheard SNR values may not match the true 

distribution, since high SNR values are more likely to have been transmitted due to 

comparison of the quantiles of neighboring nodes' SNR. Thus the distribution of overheard 

SNR tends to be biased, and it is necessary to undo such biases. 

Suppose that for some ,  is known to . Suppose nodes make measurements 

only if the parent's feedback is not suppressed. To model this let us consider a random variable 

 which has the distribution function . Denote the RV 

representing the measured SNR value by  and denote its distribution function by . 

Lemma 3: We have that 

 

 Proof: See appendices.          ■ 

Now suppose a node has independently measured (e.g., at times with intervals greater than the 

coherence time) node 's SNR values   times where the measurements at  time is denoted 

by  for . Consider an empirical estimator  for  given by 

 

From (5) it is clear that we would like to use the following simple estimator for the distribution 

of : 

 

By using the estimator (7) we mean that, when we overhear an SNR sample from , we first 

compute the empirical quantile given by (6), and then we apply  to it so as to estimate 

the true quantile. From  it is easily seen that  is a smooth polynomial function 

with an inverse, thus the second step involves solving a polynomial equation, which can be 

easily carried out using, e.g., Newton's method. From the smoothness of  the functional 

law of large numbers dictates that (7) will converge pointwise to  as k tends to infinity 

[12]. 

Suppose the network satisfies Condition 4.1: the AP can compute  as stated in the 

proof of Theorem 1. Since  are polynomial functions and depend only on the network 

topology, the orders and coefficients of the polynomials  can be updated to the nodes 

for only one time under fixed topology. Note when  is known, we can remove the bias 

as described above. 

However, if the network does not meet Condition 4.1, the exact distributions of  will be 

difficult to find. In that case we introduce two phases for the feedback: measurement phase and 

normal phase. We fix an integer  and let the measurement phase be at every . The rest 

of the time normal feedback is performed. At each measurement phase we let the feedback be 

based on the VSG , i.e., each node ignore feedback from an arc that is not in . In 

measurement phases, the feedback structure always meets Condition 4.1, thus we can use the 

above mentioned correction method for measurement distortions. 
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6. Numerical and Simulation Results 

6.1 A Numerical Example 

Fig. 5-(a) shows an example of an overhearing graph  Note that  contains many cycles, 

thus computing the cost of an orientation of  does not appear simple. Assume  for 

. We will apply a multi-start method, specifically Greedy Randomized Adaptive 

Search Procedure (GRASP) [13] to our scheme compensating for ‘bad’ starts often made by 

greedy heuristics. Fig. 5-(b) shows the suppression graph after applying the algorithm. The 

resulting VSG  satisfying Condition 4.1 consists of the arcs in solid line, yielding the 

permutation . As stated above  is meant for determining π, and 

the actual suppressions occur through the solid and dotted arcs. We see  extends to a 

significant portion of , in particular incorporates almost all the edges associated with nodes 

transmitting in the earlier stages. Note that such nodes are likely to contribute more to the 

overall cost savings when compared to those transmitting later and thus are subject to more 

suppression, which is the key idea behind the algorithm. 

The optimal order has been found by an exhaustive search over 10! permutations. In this 

example the optimal order gives cost of 4.01 where our scheme yields the cost of 4.10 which is 

very close to the optimal cost. A random ordering yields 5.26 on average, and it costs 10 

without overhearing: our scheme saves the overhead by 22% and 59% compared to random 

ordering and the full feedback respectively. The results from more extensive simulation are 

provided in the following section. 

 

 
Fig. 5-(a) An example of overhearing graph  for .  

Fig. 6-(b) The virtual suppression graph  after applying the proposed algorithm.  is an 

orientation of a spanning subgraph of  where the arcs of  are represented in solid arrows. 

6.2 Simulation Results 

In our simulation we generated random overhearing graphs  such that, the adjacency 

between pairs of nodes was determined by i.i.d. Bernoulli RVs with probability 0.5. We 

associate an i.i.d. uniform RV with each node representing its quantile for the SNR of the RB. 

We consider two cases where uniform and nonuniform weights are assigned to users. 

Nonuniform weights are selected randomly from {1, 2, 3, 4} which is the set representing the 

number of bits required to describe the SNR of the RB of users in heterogeneous channel 

environments. For instance a low-end device mostly using QPSK as the modulation scheme 

will likely need fewer bits for feedback than high-end devices using up to 256 QAM. 
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Fig. 7. Performance of the proposed scheme with uniform and non-uniform weights. Note the 

change on the scale in  axis from 20 and above.  

1) Greedy QBSF:  The plot in Fig. 7 exhibits the performance in terms of the average overhead. 

Since the true optimal order is hard to find even via numerical methods for large n, we adopt an 

extensive search using simulated annealing (SA). We resort to the solutions obtained by SA as 

a reference for the ‘optimal’ order. The costs obtained by SA are represented by the curve 

labelled ‘SA’. For our scheme the savings as compared to full feedback range from 63–81% 

and 70–83% with uniform and nonuniform weights respectively. The gain increases with n, 

which is similar to what we have observed from the lower bound result, i.e., the overhead 

grows at slower rates than that for full feedback as n increases. The savings relative to random 

ordering (labelled ‘Rand’) is on the order of 24–26% for our scheme and 24–36% for SA. With 

nonuniform weights the gains relative to random ordering span 33–36% and 34–48% for our 

scheme and SA respectively: we observe that the proposed scheme is more effective with 

nonuniform weights which introduce more variability into the system, and thus careful 

ordering of feedback becomes crucial. 

2) Measurement Overhead Reduction by Branching QBSF: If  is dense, it can be burdensome 

to measure quantiles from all neighbors. To alleviate this we propose Branching QBSF 

(B-QBSF) algorithm which we describe next. A branching is a DAG where each node has at 

most one parent. We would like to find a branching whose undirected version is a subgraph of 

 so that every node to make measurements from at most one neighbor, and all other neighbors 

are ignored. The problem reduces to finding the minimum cost branching of . However 

unlike Chow-Liu trees [14] our objective function is not decomposable, thus the problem 

remains hard.  Hence in B-QBSF we heuristically construct a branching which maximizes the 

myopic cost reduction in a similar way to the algorithm outlined in Fig. 4, however we simply 

modify Step 7 such that we check if an arc assignment to candidate node  preserves the 

branching property of . 
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Fig. 8. Performance of B-QBSF. The curve labelled (1) ‘Savings’ represent the cost reduction 

achieved relative to full feedback. (2) ‘vs. G-QBSF’ represents the ratio of the overhead by G-QBSF 

relative to B-QBSF. (3) ‘Reduction ratio’ represents the reduction in the number of overhearing 

neighbors relative to G-QBSF. 

The performance of the B-QBSF algorithm is shown in Fig. 8. B-QBSF incurs 28%-60% 

more overhead than G-QBSF (‘vs. G-QBSF’ curve), and this relative performance degrades 

with increasing . This is partly because in our simulations the number of edges in  grows 

quadratically in  whereas the output of B-QBSF is a branching whose number of arcs grows 

at most linearly in . By contrast the number of neighbors which overhear by B-QBSF is 

61-87% less than that by G-QBSF (‘Reduction ratio’ curve) whereas about 50% gain relative 

to full feedback can be still achieved (‘Savings’ curve), which renders B-QBSF an attractive 

lightweight alternative to G-QBSF. 

7. Conclusion 

In this paper we have proposed a scheme to reduce feedback overhead in opportunistic 

scheduling by exploiting overhearing. We have shown that the problem of finding an optimal 

order for feedback can be formulated as a Bayesian network problem. We proposed a heuristic 

based on the conditions under which the computation of the overhead becomes tractable, 

which we have identified using the properties of max quantile scheduling. Future work 

includes extensions to data fusion in sensor networks, e.g., central station collecting maximum 

value among readings among a group of sensors of which the local traffic has dependency 

possibly from multi-hop relaying to which a BN model may be applicable. 

Appendix 

Proof of Lemma 1 

Clearly the best case is where  is a complete graph. Since for each RB we compare quantiles, 

we are interested in the stochastic ordering of i.i.d. uniform RVs. When   is a complete graph, 
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the nodes overhear all other nodes. Hence for a given RB of a neighbor at -th stage 

, the probability that the RB will have better quantile than the previously 

overheard  RBs is given by  where the RV  denotes the maximum of  

i.i.d. uniform RVs. Since  has the following probability density function 

 

Thus we have that, for , . Since we only consider the quantiles of 

the RBs, by symmetry the result applies to all the RBs, and the result follows. 

Proof of Lemma 2 

The singly connectedness of BN up to node  ensures that the observed quantiles  of the 

parents of node  are mutually independent. Also note  is a mixture of a continuous and a 

discrete random variable since  has a probability mass at , i.e., 

. Hence we have that  

 

where .  Since  are independent for , we have that 

. Thus we have that 

 

As for the distribution function  we have the following: 

 

For any  the distribution function  is a polynomial function. This can be shown by 

induction as follows. For distribution function of the first transmitter, i.e., Node 1, it clearly 

holds that . Now suppose  is a polynomial function for some . Then 

from (4)  is a constant plus integration of product of polynomial functions up to 

stage-  nodes, thus clearly  is also a polynomial function. For example if Node 2 is a 

child node of Node 1, then using (4), 
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and so on. 

Proof of Theorem 1 

Suppose that  satisfies Condition 4.1. For , define a set  consisting of all arcs 

 such that both  and  are in . We remove arcs in  from , and denote 

the resulting DAG by , i.e., . Note that when  is a polytree, 

 for all . Let us define . For notational simplicity let us 

denote the distribution function of  by . Also denote the distribution function of  by . 

Lemma 4:  Suppose Condition 4.1 holds, then for any , the distribution of the 

maximum of  for  is given by
 

 

Proof: Suppose that the feedback is performed according to . Without loss of generality 

let  where  denotes the number of parents of Node . In , there are no 

directed paths between any two nodes in  due to the removal of  and 2) of Condition 4.1. 

Moreover, due to 1) of Condition 4.1, any two nodes in  do not share any ancestor. Thus 

the feedback transmissions from Node 's parents in  will be mutually independent. In 

, the probability of transmission at node  is determined by 

 

Since , , are mutually independent, the distribution of (9) is given by (8). 

Now suppose that the feedback is performed according to the original DAG . We 

claim that the two RVs  and  are identically 

distributed. To see this note that the arcs in  causes feedback suppressions only among those 

in , however all the transmissions, if any, which incur suppression are overheard by . 

Namely  and  have the identical distribution function, which 

completes the proof.         ■ 

From Lemma 2 and 4, one can compute  as follows. 

 

where  is the th parent of Node . Hence in order to evaluate  we need to compute  

for . We explain how  is computed as follows. Note Lemma 4 states that 

we can remove  from the graph  and compute the distribution of  from the 

resulting graph which we denote by . However,  can be also obtained from removing 

 from , or equivalently, removing  from . In other words, there is no 

causal influence from any node in  to  in , i.e., the influences from the nodes in 

 to Node  are absent. Hence  can be computed similar to computing  by 
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considering only the influences from , i.e., 

 

We assume that the functions ,  in the integrand of (11) had been computed 

earlier and  are available when computing (11): similarly the polynomials , 

, are also stored for later use. We repeat the computation (11) for 

. Then , , are used in (10) to compute . This 

summarizes how we compute the cost of any DAG which satisfies Condition 4.1.  

Finally we discuss the complexity of the above computation. By using induction one can 

easily show that, the order of  is at most . Note we compute (11) for  times which is 

no more than . For each computation of (11) we multiply at most  polynomials of order . 

Thus the multiplication of at most  polynomials of the order at most  is done for a total of at 

most ( +1) times. The complexity of computing (11) which involves the multiplication of at 

most  polynomials of degree at most  is at most  [15]. Considering the 

factor  at each stage, the worst case complexity is given by  per 

stage. Thus if we consider the entire stages, the overall complexity is  given by 

 , which completes the proof. 

Proof of Lemma 3 

Note that  represents the quantile of  measured in terms of the distribution function of , 

i.e., 

 

thus (5) follows. 
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