
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 4, April 2011 763
Copyright @ 2011 KSII

A preliminary version of this paper appeared in ISVC 2010, Las Vegas, USA. This version includes paper texture
effects, enhanced feature lines and video processing.
This study was supported by a research grant from Sangmyung University in 2009..

DOI: 10.3837/tiis.2011.04.008

Texture-based Hatching for Color Image
and Video

Heekyung Yang1 and Kyungha Min2

1 Dept. of Computer Science, Graduate School, Sangmyung Univ.,
Hongji-dong, Jongro-gu, Seoul, Korea

[e-mail: yhk775206@naver.com]
2 Div. of Digital Media, School of Software, Sangmyung Univ.,

Hongji-dong, Jongro-gu, Seoul, Korea
 [e-mail: rminkh@smu.ac.kr]

*Corresponding author: Kyungha Min

Received December 28, 2010; revised March 17, 2011; revised April 13, 2011;
accepted April 8, 2011; published April 29, 2011

Abstract

We present a texture-based hatching technique for color images and video. Whereas existing
approaches produce monochrome hatching effects in considering of triangular mesh models
by applying strokes of uniform size, our scheme produces color hatching effects from
photographs and video using strokes with a range of sizes. We use a Delaunay triangulation to
create a mesh of triangles with sizes that reflect the structure of an input image. At each vertex
of this triangulation, the flow of the image is analyzed and a hatching texture is then created
with the same alignment, based on real pencil strokes. This texture is given a modified version
of a color sampled from the image, and then it is used to fill all the triangles adjoining the
vertex. The three hatching textures that accumulate in each triangle are averaged and the result
of this process across all the triangles forms the output image. We can also add a paper texture
effect and enhance feature lines in the image. Our algorithm can also be applied to video. The
results are visually pleasing hatching effects similar to those seen in color pencil drawings and
oil paintings.

Keywords: Non-photorealistic rendering, hatching, pencil drawing, video, optical flow

764 Yang and Min: A Texture-based Hatching Technique for Color Image & Video

1. Introduction

Hatching is an artistic technique that creates tonal or shading effects by drawing closely
spaced parallel lines. Hatching effects are important in many graphic arts, such as line
illustration, pencil drawing, and oil painting. Thus the creation of effective hatching effects
from a 3D mesh or on image is an important research topic in non-photorealistic rendering
(NPR). Researchers have developed a wide range of hatching technique to render 3D
triangular meshes or to re-render photographs using brush strokes or line segments [1][2][3]
[4]. Hatching patterns can be also found in research on line illustration [5][6][7] pencil
drawing [8][9][10][11][12][13][14][15] and oil painting [16][17][18][19][20][21]. Even color
pencil drawings [12][13][14] and oil-paintings [20][21] can exhibit some hatching patterns.

In this paper, we present a texture-based hatching technique for re-rendering color images
and videos. Our scheme is inspired by that of Lee et al. [4] who showed how to create
monochrome pencil drawings from triangular meshes. We have extended their work to the
re-rendering of color images. Our scheme produces a color image that contains hatching
patterns similar to those found in a color pencil drawing or an oil painting. Our basic strategy
is to build a color hatching texture and to apply it at each vertex of a triangular mesh in which
the input image is embedded. This mesh is constructed by the Delaunay triangulation of
adaptively sampled points in the image. The color hatching textures are constructed from a
base hatching texture created from real strokes made by an artist. During the hatching step, we
build a texture with a color selected from the input image at each vertex of the triangular mesh.
We modify these sampled colors to emulate the color found in artist’ drawings. The regions
inside the triangles which meet at each vertex are drawn using these textures. The directions of
the textures are selected with the aim of improving the understanding of the shapes in the
image. Afterward, we apply paper texture effects and enhance feature lines in the hatched
image. Our algorithm can also be used to create hatching effects in video. An overview of the
scheme is shown in Fig. 1.

1.1 Related Work
We will now survey some of the more significant related work on color pencil drawing and oil
painting that includes hatching patterns. Techniques for color pencil rendering can generate
hatching effects using line integral convolution (LIC) [12], or strokes along contours [13], and
paper textures may be also simulated [14]. Yamamoto et al. [12] segmented regions into
several regions and simulated the overlapping effect of two different color pencils and created
hatching patterns of uniform direction inside each region. They then used LIC to create
hatching patterns, which are overlapped using the Kubelka-Munk model. However, since all
the regions in the image are re-rendered using only pair of colors, the results are not
particularly pleasing. Matsui et al. [13] developed a scheme that re-renders a color photograph
as a color pencil drawing by extracting the boundaries of regions and then generating strokes
along the boundary curves. The colors of the strokes are sampled from the image and again
mixed using the Kubelka-Munk model. Murakami et al. [14] presented an algorithm that
generates strokes to mimic pastels, charcoals or crayons using multiply illuminated paper
textures. They captured the texture of paper and simulated strokes in various ways. They can
achieve some realistic color drawings, but not the effects of color pencils with sharp tips.

Some of the research on painterly rendering [20][21] has involved hatching. Hays and Essa
[20] presented a painterly rendering scheme in which strokes are drawn in directions estimated

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 4, April 2011 765

using a radial basis function (RBF). Hatching patterns are created by capturing the stroke
textures produced by artists' brushes. However, the results of this work have a limited ability to
convey shape information, since the stroke-generation process does not relay any of the shape
information from this original image. Zeng et al. [21] presented a painterly rendering scheme
in which an image is analyzed to determine the size and the type of brushes to use. Our scheme
achieves similar results for pencil drawing, although we use a 2D triangular mesh, instead of
the image analysis process.

Fig. 1. An overview of our hatching algorithm. The contents of the dotted boxes A, B and C are
explained in Sections 2, 3, and 4 respectively.

1.2 Contributions
Our approach offers several advantages: First, the use of different hatching patterns can
produce a range of effects, suggesting media as diverse as color pencils and oil painting.

766 Yang and Min: A Texture-based Hatching Technique for Color Image & Video

Second, embedding an input image in a triangular mesh allows us to control the variation in
scale of the hatching patterns across the image to conform to the shapes of the objects that it
depicts. Less important regions, such as the backgrounds are embedded in large triangles
while more important regions are segmented into small triangles; then we can naturally apply
coarse hatching patterns to the less important regions and fine patterns to more important
regions. Third, we are able to improve the results of hatching by modifying the colors that we
extract from the image. For example, reducing the saturation of the sampled colors suggests a
pencil drawing, whereas increasing the saturation suggests oil painting. Finally, we have also
applied our algorithm to create hatching effects on video. In this medium we can emphasize
the hatching effect by drawing additional hatching lines that depict motions.

The rest of this paper is organized as follows: In Section 2 we explain how sampled colors
are modified and how colored hatching textures are created with the sampled colors. In
Section 3 we describe how a color hatching texture is applied to an input image embedded in a
triangular mesh. We add a paper texture effect and feature line enhancement in Section 4. In
Section 5 we explain how our scheme is implemented and present several results. Finally, we
conclude our paper and suggest some directions for future research in Section 6.

2. Generating Color Hatching Textures
A color hatching texture is generated by rendering a base texture, which we build by capturing
and overlapping real strokes with a target color [4]. We define the tone t0 of a hatching texture
to be the average of all the intensities in the texture, and its range (t0

m , t0
M) span the maximum

and minimum intensity across the texture. Fig. 2-(a) illustrates a base texture with its tone and
range.

2.1 Color Modification
Different artistic media tend to be associated with pictures containing colors that a particular
relationship with those in the scene being rendered. To emulate this relationship, we modify
the color extracted from the input image before we build a color hatching texture. Let Cp be the
color sampled at a pixel p of the input image in RGB format with components in the range (0,
1). We convert Cp to HSV format (Hp, Sp, Vp). We then modify Cp by changing Sp and Vp. We
can set the modified color (Hp’, Sp’, Vp’) to nine different variations on Cp, selected from the

Fig. 2. Using a histogram to control the tone of a hatching texture: (a) base texture; (b) darkest
and brightest textures; (c) texture with specified tone t' and range (tm', tM').

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 4, April 2011 767

combinations expressed by { Sp + δ, Sp, Sp – δ } ⅹ { Vp + δ, Vp, Vp – δ }, as shown in Fig.
3-(a). Out of these, we use (Hp, Sp – δ, Vp) to achieve pencil effects, and (Hp, Sp + δ, Vp +
δ) to simulate oils. The extent δ of any change may be in the range (0.1, 0.3). Empirically,
we have chosen to set δ to 0.3. Note that the modified color values are clamped to keep them
in the range (0, 1). The RGB format of each modified color Cp ' is reconstructed from (Hp ', Sp ',
Vp ').

2.2 Color Hatching Textures
We build three individual monochrome hatching textures for Rp ' , Gp ' and Bp ', and then merge
them into a color hatching texture as shown in Fig. 3-(b). If we assume Rp ' = t', then our target
texture has a tone of t ' and a range of (tm ', tM '), where the subscripts m and M respectively
denote the minimum and the maximum values in the histogram. Whereas previous techniques
[2][4][22][23] build a series of textures by overlapping strokes or textures, we use a
histogram-based approach to create textures of different tones. The darkest and brightest
hatching textures respectively have tones of td and tb, and ranges (tm

d, tM
d) and (tm

b, tM
b), as

shown in Fig. 2-(b). A texture of the required tone and range can be constructed by
manipulating its histogram, although the range of a texture is reduced if it becomes very dark
or very bright. The new range (tm ', tM ') is estimated from the tone and the original range. Then
an intensity ti

0 ∈ (tm
0, tM

0), sampled from the base texture, is converted to ti' ∈ (tm ', tM ') to
match the intensity of the target texture. If t' > t0, then tm ' and tM' are determined as follows:

(1) . ')(' ,')(' 0
00

0

0
00

d

d

m
b
mmmbM

b
MMM tt

tttttt
tt

tttttt
−
−

−+=
−
−

−+=

Fig. 3. (a) Eight modified colors: the center color is the original. (b) A color C' applied to a
monochrome hatching texture: the corresponding color hatching texture is composed from three

color components with different textures.

768 Yang and Min: A Texture-based Hatching Technique for Color Image & Video

But if t' < t0, then tm ' and tM' are determined as follows:

(2) .')(' ,')(' 0
0

0
0

d

d
d
mm

d
mmd

d
d
MM

d
MM tt

tttttt
tt

tttttt
−
−

−+=
−
−

−+=

Having obtained tm ' and tM', other intensities ti

0 > t0 or tj
0 < t0 of a base texture can be converted

to ti' and tj' in the target hatching texture using the following formulas:

(3) .'')(' ,'')('' 00
00

000
m

m
jj

M

M
ii tt

tttttt
tt
tttttt

−
−

−+=
−
−

−+=

We illustrate the relationships between tones and histograms in Fig. 3-(c).

3. Drawing Color Hatching Textures
Before re-rendering the input image using color hatching textures, we smooth the input image
using the mean-shift scheme [24].

3.1 Adaptive Delaunay Triangulation
The first step in drawing the color textures is to embed the input image into a 2D triangular
mesh, which requires the following steps:

Step 1. We sample n0 points on the image using a Poisson disk distribution, and then use
Delaunay triangulation to build an initial triangular mesh. We choose n0 to suit the size of an
image. If n0 is too large the roughness of the hatching effect is lost, whereas a small value that
is too small causes excessive triangulation. Since there is no guidance for determining the
value of n0 in the literature, we tried various values and found out that n0 = 100 produces good
results for an image containing about 500K pixels. Thus, we increase n0 by 1 for every 5K
additional pixels in an image. The formula for determining n0 from the image size is:

(4) ,
othrewises(I)/5K,

50K s(I) if ,10
0



 <

=n

where, s(I) denotes the size of an image in Kbytes. For images with fewer than 50K pixels, we
set n0 to a minimum value of 10; otherwise the triangulation process does not operate properly.

Step 2. Then we generate a new point at the center of each triangle that contains at least one
important point. We use the difference of Gaussian (DoG) filter [25] to find ‘important’ pixels,
which are then with DoG values greater than a threshold.

Step 3. We apply Delaunay triangulation to the modified set of points.

Step 4. We repeat steps 2 and 3 until the image is triangulated appropriately, so that the
triangles are not so small that they compromise the hatching effects, and not so large that they
ignore necessary shape information. In practice, the triangulation only has to be performed
three or four times.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 4, April 2011 769

The final result of this procedure is a triangular mesh which reflects the structure of the
input image. Fig. 4-(a) shows three stages in the triangulation of a test image, and Fig. 4-(b)
shows how the result is affected by the triangulation.

3.2 Estimating Drawing Directions
The directions in which the hatching textures are drawn are determined at the vertices of the
embedding triangular domain by performing an edge tangent flow (ETF) algorithm [25] at the
pixel in which each vertex is located. This produces similar drawing directions to those seen in
real pencil drawings, which usually have one of three characteristics: (i) they follow contours
or feature lines; (ii) they are drawn in locally uniform directions; or (iii) they have random
directions. The directions at important vertices have characteristic (i), since the ETF's
computed at the matching pixels follow contours or feature lines and the vertices are close

Fig. 4. (a) Triangulation of images and (b) the corresponding hatching results. From left to right
is a coarse uniform mesh, a mesh modified to reflect the structure of the image, and a fine

uniform mesh.

770 Yang and Min: A Texture-based Hatching Technique for Color Image & Video

together. Since the unimportant vertices are much further apart, their ETF's correspond to a
locally uniform flow, producing characteristic (ii).

3.3 Drawing Textures on a 2D Triangular Mesh
Here we follow Lee at al. [4]. At each vertex v, we find the pixel p that contains v. The color at
p, which is Cp, is modified to Cp ' using the scheme described in Section 2. Cp ' is then used in
generating a color hatching texture. The pixels inside triangles which have v as one of their
vertices are filled with this hatching texture. Thus, every pixel inside a triangle receives three
colors from the three different textures generated from each of its vertices. These colors from
the three textures are averaged at each pixel. Fig. 5 shows this process.

4. Postprocessing
We apply two postprocesses to the hatching results: a paper texture effect and feature line
enhancement.

4.1 Paper texture effect
Many researchers have represented paper texture as a height map (x, y, h(x, y)), where h(x, y)
denotes the height at position (x, y). Lee et al. [4] modeled paper texture as a normal map (x, y,
n(x, y)), where n(x, y) is the normal at position (x, y). The intensity of a stroke is modified by
taking the dot product between its direction and the normal from the map, and this creates a
paper texture effect. We implement the paper texture effect by generating pseudo paper texture
using a random function. The technique of Lee et al. [4] was based on 3D meshes, whereas our

Fig. 5. Merging the three textures inside a triangle (inside the blue circle).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 4, April 2011 771

drawing direction is always orthogonal to the z-axis, since we start with a 2D image. Therefore,
the dot products between the paper normals and the drawing direction can be computed. The
color c(x, y) of each pixel is changed to cp(x, y) using the following formula:

where μp is a weighting factor in the range [0, 0.1] and p(x, y) is a random value in the range
[-1, 1] that provides the paper texture. The result of applying paper texture effect is shown in
Fig. 6.

4.2 Feature line enhancement
Some artists draw feature lines to convey important shape information using thicker pencil
strokes. We mimic this technique by extracting feature lines [25] and then enhancing them.
We obtain the ETF by distributing tangent vectors evenly across an image. Then, we generate
coherent lines by applying DoG filter to the ETF. The pixels on these lines are emphasized by
modifying their colors as follows:

(5)),,(),(),(yxpyxcyxc pp µ+=

Fig. 6. Applying a paper texture effect to a hatched color rendering.

(6))),,(1)(,(),(yxiyxcyxc ppf µ−=

772 Yang and Min: A Texture-based Hatching Technique for Color Image & Video

where i(x, y) is 1 if (x, y) is on the feature line, and 0 otherwise; and μp is a weighting factor in
the range [0.6, 0.8]. The result of line enhancement is shown in Fig. 7.

5. Implementation and Results
We implemented our algorithm on a PC with an Intel Pentium QuadCoreTM Q6600 CPU and
4G bytes of main memory. The programming environment was Visual Studio 2008 with the
OpenGL libraries. We selected five photographs: a child, flowers, an animal and a landscape.
Each of these images was re-rendered using our scheme, with the level of triangulation set to 3.
The original photos are shown in Fig. 8 and the hatched images in Fig. 9 and 10. The
resolutions of the images and the associated computation times are given in Table 1. An
attribution of the computation to the components of system is provided in Table 2. We
conclude that the bottlenecks in our process are the analysis of flow and the color hatching
process.

We have tested our algorithm on video, using clips from a movie and a cel animation. The
accompanying clips shown both the original and the hatching versions of these videos. In
addition, Fig. 14 and 15 shows some frames from the hatched video.

6. Conclusions and Future Plans

Fig. 7. Applying feature line enhancement to hatched color rendering.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 4, April 2011 773

We have presented a texture-based hatching technique for re-rendering a color image in order to give
the impression of a color pencil drawing. The input image is embedded into an adaptive 2D triangular
mesh. Color hatching textures, created by applying modified colors from the image to a monochrome
hatching texture, are then drawn into the triangles of the mesh.

Table 1. Resolution and computation times.

Image Resolution Computation time Result image
(a) 800ⅹ530 16.8 sec Fig. 9

(b) 1000ⅹ456 15.1 sec Fig. 10

(c) 624ⅹ988 23.9 sec Fig. 11

(d) 800ⅹ530 13.8 sec Fig. 12

(e) 800ⅹ530 15.6 sec Fig. 13

Table 2. Attribution of computation times to individual processes.

Image Generating
triangular mesh

Analyzing
flow

Performing color
hatching

Post-processing Total

(a) 4.2 5.9 5.0 1.7 16.8 sec
(b) 3.8 5.3 4.5 1.5 15.1 sec
(c) 6.0 8.4 7.2 2.4 23.9 sec
(d) 3.5 4.8 4.1 1.4 13.8 sec
(e) 3.9 5.5 4.7 1.6 15.6 sec

Fig. 8. Original images.

774 Yang and Min: A Texture-based Hatching Technique for Color Image & Video

Our results have the flavor of an artistic rendering, but it is not possible to produce clearly

identifiable pencil drawing or oil painting effects by controlling the parameters currently
available. We plan to solve this problem by extending the range of the strokes used to
approximate those made by artists' brushes and watercolor pencils more clearly.

We have applied our technique to video, but not yet considered temporal coherence. We
plan to include this using the optical flow algorithm [26].

References
[1] M. Salisbury, M. Wong, J. Hughes and D. Salesin, “Orientable textures for image-based pen-and-ink

illustration,” in Proc. of Siggraph 97, pp. 401-406, 1997. Article (CrossRef Link)
[2] E. Praun, H. Hoppe, M. Webb and A. Finkelstein, “Real-time hatching,” in Proc. of Siggraph 01, pp.

579-584, 2001. Article (CrossRef Link)
[3] M. Webb, E. Praun, A. Finkelstein and H. Hoppe, “Fine tone control in hardware hatching,” in Proc.

of NPAR 02, pp. 53-58, 2002. Article (CrossRef Link)
[4] H. Lee, S. Kwon and S. Lee, “Real-time pencil rendering,” in Proc. of NPAR 06, pp. 37-45,

2006. Article (CrossRef Link)
[5] M. Salisbury, S. Anderson, R. Barzel and D. Salesin, “Interactive pen-and-ink illustration,” in Proc.

of Siggraph 94, pp. 101-108, 1994. Article (CrossRef Link)
[6] M. Salisbury, C. Anderson, D. Lischinski and D. Salesin, “Scale-dependent reproduction of

pen-and-ink illustrations,” in Proc. of Siggraph 96, pp. 461-468, 1996. Article (CrossRef Link)
[7] A. Hertzmann and D. Zorin, “Illustrating smooth surfaces,” in Proc. of Siggraph 00, pp. 517-526,

2000. Article (CrossRef Link)
[8] B. Cabral and C. Leedom, “Imaging vector field using line integral convolution,” in Proc. of

Siggraph 93, pp. 263-270, 1993. Article (CrossRef Link)
[9] X. Mao, Y. Nagasaka and A. Imamiya, “Automatic generation of pencil drawing using LIC,” in

ACM Siggraph 02 Abstractions and Applications, pp. 149, 2002. Article (CrossRef Link)
[10] N. Li and Z. Huang, “A feature-based pencil drawing method,” in 1st International Conference on

Computer Graphics and Interactive Techniques in Australasia and South East Asia 03, pp. 135-140,
2003. Article (CrossRef Link)

[11] S. Yamamoto, X. Mao and A. Imamiya, “Enhanced LIC pencil filter,” in Proc. of the International
Conference on Computer Graphics, Imaging and Visualization 04, pp. 251-256, 2004. Article
(CrossRef Link)

[12] S. Yamamoto, X. Mao and A. Imamiya, “Colored pencil filter with custom colors,” in Proc. of
Pacific Graphics 04, pp. 329-338, 2004. Article (CrossRef Link)

[13] H. Matsui, J. Johan and T. Nishita, “Creating colored pencil style images by drawing strokes based
on boundaries of regions,” in Proc. of Computer Graphics International 05, pp. 148-155,
2005. Article (CrossRef Link)

[14] K. Murakami, R. Tsuruno and E. Genda, “Multiple illuminated paper textures for drawing strokes,”
in Proc. of Computer Graphics International 05, pp. 156-161, 2005. Article (CrossRef Link)

[15] D. Xie, Y. Zhao, D. Xu and X. Yang, “Convolution filter based pencil drawing and its
implementation on GPU,” Lecture Notes in Computer Science, vol. 4847, pp. 723-732, 2007. Article
(CrossRef Link)

[16] P. Haeberli, “Paint by numbers: Abstract image representations,” in Proc. of Siggraph 90, pp.
207-214, 1990. Article (CrossRef Link)

[17] B. Meier, “Painterly rendering for animation,” in Proc. of Siggraph 96, pp. 477-484, 1996. Article
(CrossRef Link)

[18] P. Litwinowicz, “Processing images and video for an impressionist effect,” in Proc. of Siggraph 97,
pp. 406-414, 1997. Article (CrossRef Link)

[19] A. Hertzmann, “Painterly rendering with curved brush strokes of multiple sizes,” in Proc. of
Siggraph 98, pp. 453-460. Article (CrossRef Link)

http://dx.doi.org/doi:10.1145/258734.258890
http://dx.doi.org/doi:10.1145/383259.383328
http://dx.doi.org/doi:10.1145/508530.508540
http://dx.doi.org/doi:10.1145/1124728.1124735
http://dx.doi.org/doi:10.1145/192161.192185
http://dx.doi.org/doi:10.1145/237170.237286
http://dx.doi.org/doi:10.1145/344779.345074
http://dx.doi.org/doi:10.1145/166117.166151
http://dx.doi.org/doi:10.1145/1242073.1242162
http://dx.doi.org/doi:10.1145/604471.604498
http://dx.doi.org/doi:10.1109/CGIV.2004.1323994
http://dx.doi.org/doi:10.1109/CGIV.2004.1323994
http://dx.doi.org/doi:10.1109/CGIV.2004.1323994
http://dx.doi.org/doi:10.1109/PCCGA.2004.1348364
http://dx.doi.org/doi:10.1109/CGI.2005.1500406
http://dx.doi.org/doi:10.1109/CGI.2005.1500408
http://dx.doi.org/doi:10.1109/CADCG.2007.4407878
http://dx.doi.org/doi:10.1109/CADCG.2007.4407878
http://dx.doi.org/doi:10.1109/CADCG.2007.4407878
http://dx.doi.org/doi:10.1145/97880.97902
http://dx.doi.org/doi:10.1145/237170.237288
http://dx.doi.org/doi:10.1145/237170.237288
http://dx.doi.org/doi:10.1145/237170.237288
http://dx.doi.org/doi:10.1145/258734.258893
http://dx.doi.org/doi:10.1145/280814.280951

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 4, April 2011 775

[20] J. Hays and I. Essa, “Image and video based painterly animation,” in Proc. of NPAR 04, pp.
113-120, 2004. Article (CrossRef Link)

[21] K. Zeng, M. Zhao, C. Xiong and S. C. Zhu, “From image parsing to painterly rendering,” ACM
Trans. on Graphics, vol. 29, no. 2, 2009. Article (CrossRef Link)
[22] G. Winkenbach and D. Salesin, “Computer generated pen-and-ink illustration,” in Proc. of

Siggraph 94, pp. 91-100, 1994. Article (CrossRef Link)
[23] A. Lake, C. Marshall, M. Harris and M. Blackstein, “Stylized rendering techniques for scalable

real-time 3D animation,” in Proc. of NPAR 00, pp.13-20, 2000. Article (CrossRef Link)
[24] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space analysis,” IEEE

Trans. on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 603-619, 2002. Article
(CrossRef Link)

[25] H. Kang, S. Lee and C. Chui, “Flow-based image abstraction,” IEEE Trans. on Visualization and
Computer Graphics, vol. 15, no. 1, pp. 62-76, 2009. Article (CrossRef Link)

[26] M. J. Black and P. Anandan, “The robust estimation of multiple motions: Parametric and
piecewise-smooth flow fields,” Computer Vision and Image Understanding, vol. 63, no. 1, pp.
75-104, 1996. Article (CrossRef Link)

http://dx.doi.org/doi:10.1145/987657.987676
http://dx.doi.org/doi:10.1145/1640443.1640445
http://dx.doi.org/doi:10.1145/192161.192184
http://dx.doi.org/doi:10.1145/340916.340918
http://dx.doi.org/doi:10.1109/34.1000236
http://dx.doi.org/doi:10.1109/34.1000236
http://dx.doi.org/doi:10.1109/34.1000236
http://dx.doi.org/doi:10.1109/TVCG.2008.81
http://dx.doi.org/doi:10.1006/cviu.1996.0006

776 Yang and Min: A Texture-based Hatching Technique for Color Image & Video

Fig. 9. Result of hatching of Fig. 8-(a).

Fig. 10. Result of hatching of Fig. 8-(b).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 4, April 2011 777

Fig. 11. Result of hatching of Fig. 8-(c).

778 Yang and Min: A Texture-based Hatching Technique for Color Image & Video

Fig. 12. Result of hatching of Fig. 8-(d).

Fig. 13. Result of hatching of Fig. 8-(e).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 4, April 2011 779

Fig. 14. Hatched frames from
a movie.

780 Yang and Min: A Texture-based Hatching Technique for Color Image & Video

Fig. 15. Hatched frames
from a cel animation.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 4, April 2011 781

Heekyung Yang received her B.S. degree from Sangmyung University, Seoul, Korea, in 2010.
She is currently a M.S. student in the same college. Her major is computer graphics, especially NPR
(non-photorealistic rendering). Also she is interested in image processing, 3D-mesh processing,
volume rendering and medical rendering.

Kyungha Min received his MS in Computer Science from KAIST in 1992. He received his BS
and Ph.D in Computer Science and Engineering from POSTECH in 1994 and 2000, respectively.
His main research interests are computer graphics and image processing.

