
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 877
Copyright ⓒ 2010 KSII

This research was supported by the Chung-Ang University Research Grants in 2010.

DOI: 10.3837/tiis.2010.10.0010

Subtree-based XML Storage and XPath
Processing

Ki Hoon Shin and Hyunchul Kang
School of Computer Science and Engineering, Chung-Ang University

Seoul, 156-756, Korea
[e-mail: koronya@gmail.com, hckang@cau.ac.kr]

*Corresponding author: Hyunchul Kang

Received August 27, 2010; revised September 5, 2010; accepted September 7, 2010;
published October 30, 2010

Abstract

The state-of-the-art techniques of storing XML data, modeled as an XML tree, are node-based
in the sense that they are centered around XML node labeling and the storage unit is an XML
node. In this paper, we propose a generalization of such techniques so that the storage unit is
an XML subtree that consists of one or more nodes. Despite several advantages with such
generalization, a major problem would be inefficiency in XPath processing where the stored
subtrees are to be parsed on the fly in order for the nodes inside them to be accessed. We solve
this problem, proposing a technique whereby no parsing of the subtrees involved in XPath
processing is needed at all unless they contain the nodes of the final query result. We prove
that the correctness of XPath processing is guaranteed with our technique. Through
implementation and experiments, we also show that the overhead of our technique is
acceptable.

Keywords: XML storage, XPath processing, XML node labeling, XML tree

878 Shin et al.: Subtree-based XML Storage and XPath Processing

1. Introduction

Over the last decade, XML has been established as the standard for data representation and
exchange on the Internet. One of the fundamental problems in XML data processing is to store
XML data and process queries against it. The state-of-the-art technique of storing XML data
has been centered around XML node labeling, described as follows: An XML document is
modeled as a tree. Fig. 1-(a) and (b) shows a sample XML data and its XML tree. Three types
of XML nodes are shown: element, attribute, and text. Fig. 2 shows the XML tree of Fig. 1-(b)
where each node is labeled, for example, with the well-known range numbering scheme of [1]
and the nodes with the same element tag/attribute name are distinguished with a subscript
number (e.g., b1, b2) just for exposition below. Each label denotes the (begin:end) range and
the level of a node. For example, (2:21,2) labeled to b1 denotes that the (begin:end) range
assigned to b1 is [2,21] and that the level of b1 in the tree is 2. Those labels are for structural
join [1][2][3][4] in XPath processing. For any two nodes n1 and n2, their structural
relationship (ancestor-descendant or parent-child) can be determined with their labels. If the
range of n1 contains that of n2, n1 is an ancestor of n2. If the levels of an ancestor-descendant
pair differs by 1, one is the parent of the other. In Fig. 2, for example, b1 is an ancestor of d2
because the range of b1 (2:21) contains that of d2 (16:19) whereas b1 is not an ancestor of d4
because the range of b1 (2:21) does not contain that of d4 (36:39).

Fig. 1. Sample XML Data and XML Tree

In storing an XML tree, it is shredded into XML nodes each of which is separately stored.
The stored items associated with each node include its element tag name or attribute name
(prefixed with @) or text/attribute value depending on its node type, its (begin:end) range, and
its level if the range numbering scheme of [1] is employed.1 Often these nodes are indexed on
the element tag/attribute name, on the text/attribute value, and on the “begin” value which is
the unique identifier of each node. The former two types of indices are called name index and
value index, respectively [4].

Put in a nutshell, the current state-of-the-art technique of storing XML data is node-based.
The unit of storage is an XML node. In this paper, we investigate a generalization of such a

1 Throughout this paper, we assume that the range numbering scheme of [1] is employed as the XML node labeling
scheme. That choice is just for exposition of the concept. In fact, the technique proposed in this paper is
independent of the XML node labeling scheme employed. Any scheme in the literature including the immutable
ones for the dynamic XML documents can be employed for the technique proposed in this paper.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 879

technique. A subtree of the XML tree is considered as the unit of XML storage. For example,
Fig. 3 shows a fragmentation of the XML tree of Fig. 1-(b) into subtrees each of which is
marked by a triangle. Each subtree as a whole is stored as a unit of storage. At one extreme of
the subtree-based XML storage, the entire XML tree could be stored as a whole without being
shredded. At the other extreme, every XML node could be separately stored as in the
conventional node-based technique. In this extreme, each node n constitutes a subtree which
consists of only n. In between, a subtree can consist of one or more nodes. Such a
generalization is desirable for the following reasons:

1. A semantic unit of XML data matches the storage unit. For example, an employee
element which includes employee ID, first name, last name, department, e-mail, and
so on as subelements or attributes can be stored as a whole without being shredded.
The whole XML subtree can be retrieved, transmitted and so on without
re-constructuring the constituent XML nodes. Handling and exchanging XML data in
subtrees is particularly essential in the applications like web service [5].

2. More efficient mapping of XML data into other data models such as relational or
object-relational is possible. This problem received much attention [6][7] because
XML data, in its semistructured nature, usually contains irregular portions, which
cannot be efficiently mapped to relational or object-relational schema. Such overflow
data can be stored as a subtree.

3. In the conventional node-based storage, there are quite many stored nodes produced
for a large volume of XML data. The space required to store every node separately
with its label could be large. More compact storage is possible with the subtree-based
storage. The shredding of XML data into nodes is for efficient query processing. As
for cold data against which queries are infrequent, it could be stored as a subtree,
saving space.

Fig. 2. XML Tree with Range Numbering

Despite these advantages, a major problem with subtree-based XML storage is inefficiency

in query processing. Inefficiency arises when the XML nodes within a subtree need to be
accessed. The subtree needs to be parsed on the fly. For example, in processing an XPath
expression e, /a/b[@id=‘dog’]//d, against the XML document of Fig. 1-(a) which is stored in
subtrees as in Fig. 3, it is necessary to parse the subtree rooted at b1 to access the attribute @id1

880 Shin et al.: Subtree-based XML Storage and XPath Processing

which resides inside the subtree. More subtrees need to be parsed in processing e. If the stored
subtrees are eventually to be parsed for query processing, the afore-mentioned advantages are
irrelevant or compromised.

In this paper, we propose a solution whereby no parsing of the stored subtree is needed at all
in XPath processing unless the nodes of the final query result (i.e., node set) are to be retrieved
from inside the subtrees. Such a solution is worth reporting because with it the subtree-based
XML storage which has not been considered before in the literature would become a viable
generalization of the conventional node-based XML storage.

The rest of this paper is organized as follows: In Section 2, we describe the subtree-based
XML storage with the XPFS tree, which is the XML path and fragmentation schema needed in
our proposed solution. In Section 3, we describe the conventional node-based XPath
processing. In section 4, we present our technique of XPath processing where not any of the
involved subtrees are parsed unless they contain the nodes of the final query result. We also
prove that our technique guarantees the correctness of query processing. In Section 5, we
report the implementation and experimental results, showing that the overhead of our solution
is acceptable. In Section 6, we present related work. Conclusions and future work will be given
in Section 7.

Fig. 3. Fragmentation of XML Tree into Subtrees Fig. 4. XPFS Tree

2. Subtree-based XML Storage with XPFS Tree

To store XML data in subtrees and process XPath queries without parsing the subtrees
involved, we need an XML path schema and an XML fragmentation schema. The former stores
every path type, a sequence of element tag/attribute names, appearing in an XML document D
with their identifiers (i.e., path ID). They are identified while D is parsed for its nodes to be
labeled. The path schema can be represented as a tree as shown in Fig. 4, which is derived for
the XML tree of Fig. 1-(b). The number (prefixed with #) beside each node N is the path ID of
N, which is the path ID assigned to the path type from the root to N. For example, in Fig. 4, the
path type /a/b/c is assigned #4 as its path ID.

As for the fragmentation schema, it specifies how the original XML tree is fragmented into
subtrees. The fragmentation schema can be incorporated into the path schema, resulting in an
XML path and fragmentation schema(XPFS) tree as shown in Fig. 4. There are two types of
nodes in an XPFS tree. One is marked with a circle, and the other with a double circle. A
double circle node denotes the root of a subtree to be stored while a single circle one denotes a
node that belongs to a subtree t as a descendant of the root of t. In other words, given a double
circle node N, N and all its single circle descendants constitute a subtree to be stored. For
example, the fragmentation shown in Fig. 3 conforms to the XPFS tree of Fig. 4. The nodes ‘a’,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 881

‘b’, ‘d’, and ‘e’ are in double circle in Fig. 4, and each of their instances is the root of the
subtree marked by a triangle in Fig. 3.

For an XML document D and its XPFS tree, D is shredded into XML subtrees. Each subtree
t with r as its root node is stored separately as a storage unit. The stored items associated with
t include the element tag/attribute name of r, the (begin:end) range and the level of r, path ID
of r, and t itself as a plain text not in any parsed format. Though t is not parsed and thus not
accessed during XPath processing in our technique, we leave a special symbol wherever a
subtree is fragmented out of t. For example, Fig. 5 shows the subtree-based storage of the
XML tree of Fig. 1-(b), which is fragmented as in Fig. 3. Seven subtrees are stored (subtree no.
(1) through (7) in Fig. 5. The no.column is not stored. It is just for reference.) The subtrees (1),
(2), and (5) contain the symbol “$” as a marker for a subtree.

Fig. 5. Subtree-based XML Storage

For comparison, Fig. 6 shows the conventional node-based storage of the same XML tree of

Fig. 1-(b), where a total of 23 nodes are stored. (The no.column is not stored. It is for reference.
As for the pathid column, let us ignore it for the moment. It will be mentioned later.)
Comparing Fig. 5 with Fig. 6, we note that storing a subtree t can be regarded as equal to
storing only its root node r except that path ID of r and t itself are stored as well. In XPath
processing, r represents the whole subtree t without t being parsed on the fly.2

In this paper, we assume that the XML documents conform to some DTD (Document Type
Definition). The only rule we enforce in fragmenting an XML tree into subtrees is that the
repeating or optional elements, which are specified with +, *, or ? in the DTD, are to be the
roots of different subtrees. We call this rule basic XML fragmentation rule. In Fig. 3, for
example, b1 and b2 are the repeating elements because they have the same parent ‘a’, and thus,
the same path type /a/b. Under the basic XML fragmentation rule, each of them is the root of a
subtree as shown. As for the optional elements, if the XML nodes whose tag name is ‘d’ at the
path type /a/b/d are optional, each of their instances, d1 and d3, is the root of a subtree as shown.
The basic XML fragmentation rule plays a key role in subtree-based XPath processing as shall
be shown in Section 4.

There are several related issues that are beyond the scope of this paper. For example, which
nodes of the XPFS tree are marked with a double circle in coming up with an XPFS tree is
important. So is updatability for dynamic XML documents. These and other issues are
discussed in Section 7. In the remainder of this paper, we focus on subtree-based XPath
processing where no subtree is parsed on the fly.

2 As shall be shown in Section 4, as far as our subtree-based XPath processing is concerned, the element
tag/attribute name and the level need not be stored because they are not refered to in XPath processing. The stored
subtree t itself is not accessed either unless t contains the nodes of the final query result. Here, we include them all
just to compare with the node-based storage.

882 Shin et al.: Subtree-based XML Storage and XPath Processing

Fig. 6. Node-based XML Storage Fig. 7. Two Types of Twig Patterns

3. Node-based XPath Processing

In the literature, an XPath expression e is represented as a tree T(e) called twig pattern [1][2]
[3]. Fig. 7-(a) shows an example for an XPath expression: /a/b[@id=‘dog’]//d. A twig node of
T(e) is labeled with an element tag/attribute name or a text/attribute value. An edge between a
pair of parent-child twig nodes is denoted either by a line or by a double line. The former
represents the child axis (/) and the latter the self-or-descendant axis (//) in e. There is a special
edge leading to the root of T (e): a line or a double line. If e starts with a /, it is a line. If e starts
with a //, it is a double line.

With the node-based XML storage, the well-known node-based XPath processing scheme
proceeds as follows [2]:

1. For each twig node, a list of corresponding XML nodes is retrieved as an input to
structural join.

2. These XML node lists are scanned while node-based structural join is conducted to
produce a node set as the final query result.

We note that the above popular formulation of an XPath expression e as a twig pattern tree
T(e) and the processing of e with T(e) is name-based in the following sense:

1. Each twig node is labeled with an element tag/attribute name or a text/attribute value.
(The text/attribute value can also be regarded as a name.)

2. For each twig node N, the XML node list for structural join is retrieved through name
matching by which we mean that the element/attribute/text nodes whose name/value is
equal to the name/value of N are retrieved no matter which path they exist at.

Since we have the XPFS tree, for an XPath expression e, its name-based twig pattern Tname(e)
can be transformed into a path-based twig pattern Tpath(e) where each twig node is associated

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 883

either with a set of path IDs or with a text/attribute value. For example, the name-based twig
pattern in Fig. 7-(a) is transformed into a path-based one as shown in Fig. 7-(b). For an XPath
expression e, Tpath(e) is obtained from Tname(e) by mapping each liner path from the root to
node N in Tname(e) into the set of corresponding path IDs where N is either a branching node, a
non-text leaf node, or the parent of a text/attribute value. For example, in Tname(e) of Fig. 7-(a),
there are three afore-mentioned linear paths: /a/b, /a/b/@id, and /a/b//d (‘b’ is a branching
node, ‘d’ is a non-text leaf node, and ‘@id’ is the parent of an attribute value.) Looking up the
XPFS tree of Fig. 4, the path /a/b is mapped into {#2}, /a/b/@id into {#3}, and /a/b//d into
{#5,#7}. (/a/b//d is resolved into /a/b/d or /a/b/e/d.) If the linear path does not contain a //, it
corresponds to a unique path type and is mapped to a set of just one path ID. Otherwise, it may
be resolved into multiple path types and is mapped to a set of one or more path IDs. As for a
text/attribute value in Tname(e), it remains intact.

To conduct XPath processing for a path-based twig pattern, a slight modification is needed
to the node-based XML storage. For each element/attribute node n in the XML tree, the path
ID of n is stored and indexed. Instead, the element tag/attribute name of n need not be stored.
(In Fig. 5 and in Fig. 6, the pathid column is stored instead of the name column.) With such a
modified XML storage, the node-based XPath processing scheme for a path-based twig
pattern proceeds in a similar way to that for a name-based one:

1. For each non-text twig node labeled with a set of path IDs, S, a list of corresponding
XML nodes is retrieved as follows: For each path ID IDi S, the set of all the XML
nodes whose path ID is IDi is retrieved. Union of these node sets forms the list. For this,
an index on path ID is desired. For a text twig node, its list is retrieved through the
value index.

2. These XML node lists are scanned for structural join to produce a node set as the final
query result.

Such name-based to path-based transformation was materialized in XRel [8]. Since XRel is an
XML storing and XPath processing system built on top of an RDBMS, all the path types in
XML documents were enumerated and stored in a table called PATH with their path IDs. In
translating an XPath expression into an SQL statement, such a transformation occurs. In the
remainder of this paper, we deal only with the XPath processing for the path-based twig
pattern. The equivalence between XPath processing for a path-based twig pattern and that for
its original name-based counterpart is referred to [8].

4. Subtree-based XPath Processing

4.1 Overview

With a subtree-based XML storage, the conventional node-based XPath processing seems
impossible without parsing the stored subtrees involved in the query. To come up with the
query result, for each twig node, a list of XML nodes needs to be retrieved for structural join.
Since the relevant XML nodes may reside inside the stored subtrees, it seems inevitable to
retrieve the subtrees and parse them on the fly. For a node n inside a subtree t, actually there is
no way to isolate and retrieve n without parsing t. Note that n was not stored or indexed
separately on its own. Rather, what is stored is t (more specifically, the root node of t) and what
is possibly indexed is just the root node of t. The values of the text/attribute nodes inside t
cannot be indexed, either. (They simply cannot be accessed without parsing t.) Only the root
node of t with its (begin:end) range and its path ID can be accessed. Then, how could an XPath

884 Shin et al.: Subtree-based XML Storage and XPath Processing

query be processed without the subtrees involved being parsed? In this section, we propose a
solution.

In the node-based XPath processing, both the input and the output of structural join are
XML node sets. Note that this is not the case for the subtree-based processing simply because
the XML nodes may reside inside subtrees and could not be accessed. As such, the input and
the output of structural join are subtrees, the unit of storage. More specifically, the differences
between node-based and subtree-based XPath processing for a path-based twig pattern are as
follows:

1. In the node-based processing, for each twig node, an XML node list (n1, …, nj) is
retrieved where each ni is represented by the (begin:end) range of ni. In the
subtree-based processing, for each twig node, a list of <path ID, subtree> pairs
(<ID1,t1>, …, <IDj,tj>) is retrieved. A pair <IDi,ti> corresponds to ni such that IDi is the
path ID of ni and ti is the subtree to which ni belongs. Since for a subtree t, its root node
is to represent t in XPath processing, what is really retrieved is a list of <path ID, the
root of a subtree> pairs (<ID1,r1>, …, <IDj,rj>) where ri is the root node of ti and
represented by its (begin:end) range. As mentioned in Section 2, the (begin:end) range
of ri is stored outside ti. The subtrees themselves (ti’s) need not be retrieved.3

2. The final query result in the node-based processing is an XML node set {n1, …, nk} as
defined in the XPath specification [9]. That should be the same in the subtree-based
processing but here subtrees, not individual nodes, are dealt with. Thus, a set of <path
ID, subtree> pairs, {<ID1,t1>, …, <IDk,tk>} are returned first as a pre-result. To be
exact, a set of <path ID, the root of a subtree> pairs (<ID1,r1>, …, <IDk,rk>) is returned
where ri is the root of ti. For the final result, each ti is retrieved from the “begin” value
of ri, and each ni whose path ID is IDi is retrieved from ti. Only in this stage, parsing of
ti is needed.

Our proposed subtree-based XPath processing scheme proceeds as follows: Given an XPath
expression e,

STEP 1: its name-based twig pattern Tname(e) is transformed into a path-based one Tpath(e).
STEP 2: For each twig node of Tpath(e), the input subtree list is retrieved from the
subtree-based XML storage.
STEP 3: These subtree lists are scanned while subtree-based structural join is conducted
to produce a set of subtrees as a pre-result.
STEP 4: The final result node set is obtained from the pre-result subtrees.

The above steps 1 and 4 are already described. The steps 2 and 3 are described below.

4.2 Input of Subtree-based XPath Processing

In STEP 2, to retrieve the input subtree list from the subtree-based XML storage, for each
non-text twig node labeled with a set of path IDs S = { ID1, …, IDj }, S is first converted to a
new set Sr = { <ID1, R(ID1)>, …., <IDj, R(IDj)> } where the function R called root function is
defined as follows:

Definition 4.1 [Root Function]
For a node N in an XPFS tree T, let x be the path ID of the path type from the root of T to N. Let
Nr be the root node (i.e., one in double circle) of the subtree to which N belongs in T. Then,

3 In the remainder of this paper, we use the followings interchangeably: a list of subtrees, a list of <path ID,
subtree> pairs, and a list of <path ID, the root of a subtree> pairs.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 885

R(x) = y where y is the path ID of the path type from the root of T to Nr.

Example 4.1
In Fig. 4, R(#3)=#2 because the node ‘@id’ (path ID=#3) is a child of ‘b’ (path ID=#2) in
double circle. R(#7)=#6 because the node ‘d’ at /a/b/e/d (path ID=#7) is a child of ‘e’ (path
ID=#6) in double circle. Meanwhle, R(#5)=#5 and R(#2)=#2 because for the double circle
node, the root function returns the path ID of itself.

The conversion of S to Sr is to retrieve the input subtree list for structural join instead of the
XML node list, which cannot be retrieved without parsing the subtrees. For each <IDi, R(IDi)>
in Sr, the set of all the subtrees the path ID of whose root is R(IDi) is retrieved. These subtrees
are those that contain the target XML nodes whose path ID is IDi. Union of these subtree sets
forms the input list for the twig node labeled with Sr.

Fig. 8. Composite Value Index

As for the text twig node with a value v, all the text nodes whose value is v need to be

retrieved for structural join. They may reside inside the stored subtrees. We handle this
problem through a modified value index as follows: An index entry of the conventional value
index for a node-based XML storage is of the form (v,P) where v is a value and P is a set of
pointers to the text nodes whose value is v. Such typical indexing is for the name-based twig
pattern, and the pointers in P are supposed to point to all the text nodes whose value is v no
matter which path they exist at. We first modify it so that it well fits the path-based twig
pattern. A composite value index whose entry is of the form (<I, v>, P) is used where

1. I is the path ID of the path type from the root of the XML document to the parent node
of the text node Nt whose value is v.

2. P is a set of pointers to the instances of such Nt.

With a subtree-based storage, however, a text node inside a subtree cannot be pointed to
directly. Thus, P needs further modification: P is a set of pointers { p1, …, pq } where each pk
points to the root of the subtree to which the instances of Nt belongs.

886 Shin et al.: Subtree-based XML Storage and XPath Processing

Example 4.2
Fig. 8-(a) shows the index entries for the XML tree of Fig. 1-(b) with the node-based XML
storage of Fig. 6. The pointers are represented by the reference number in no.column in Fig. 6.
Fig. 8-(b) shows the index entries for the XML tree of Fig. 1-(b) with the subtree-based XML
storage of Fig. 5. The pointers are represented by the reference number in no.column in Fig. 5.

For a text twig node Nt labeled with a value v whose parent twig node is Np labeled with a set of
path IDs S = { ID1, …, IDj } (or with its converted set Sr = { <ID1, R(ID1)>, …., <IDj,
R(IDj)> }), the input subtree list for Nt is the union of <IDi, ST(pk)>, i = 1, …, j and k= 1, …, q
where pk Pi such that Pi is the set of pointers of the value index entry (<IDi, v>, Pi) and ST(pk)
denotes the subtree pointed to by pk.

Fig. 9. Input Subtree Lists

Example 4.3
Fig. 9 shows the input subtree lists for the path-based twig pattern of Fig. 7-(b) retrieved from
the subtree-based XML storage of Fig. 5. For the twig nodes labeled with {#2}, {#3}, and
{#5,#7}, two, two, and four subtrees are retrieved, respectively. Each box corresponds to a
subtree t that contains the target XML node n, denoted by <(i) j, k:l> where (i) is the reference
number of t (in no.column of Fig. 5), j is the path ID of n, and k:l is the (begin:end) range of the
root of t. The first subtree denoted by <(2) #3, 2:21>, for the twig node labeled with {#3}, for
example, corresponds to the subtree rooted at ‘b1’ in Fig. 3, and its target XML node is ‘@id1’.

Now STEP 2 is completed, and every twig node is provided with its input subtree list. We are
ready for STEP 3 described in the next subsection.

4.3 Subtree-based Structural Join

A structural join between two lists of XML nodes is well-known [1][2][4]. The basis of
node-based structural join is that given two nodes n1 and n2 with their (begin:end) ranges, their
structural relationship (or containment relationship) can be determined by comparing their
ranges. In the case of subtree-based XML storage, n1 and n2 may reside inside some subtrees
and their ranges are not given. It could also be that n1 and n2 may reside in the same subtree.
How could the structural relationship between n1 and n2 be determined without parsing the
subtrees? In this subsection, we show that such subtree-based structural join can be correctly
conducted.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 887

A path type in an XML document D can be defined as a sequence of element tag/attribute
names. It corresponds to a path in the XPFS tree of D. For two path types, one can be a prefix
of the other. For example, in the XPFS tree of Fig. 4, the path type /a/b is a prefix of the path
types /a/b/c, /a/b/e/d, and so on. A path type is also a prefix of itself. For an XML node n in an
XML document D, let P(n) denote the path type of the path from the root of D to n. For
example, in the XML tree of Fig. 2, P(b1) = /a/b, P(c1) = /a/b/c, and P(c3) = /a/c. (We note that
P(b1) is a prefix of P(c1) but P(c3) is not a prefix of P(c1).) For an XML node n, let range(n)
denote the (begin:end) range of n, and for a stored subtree t whose root node is r, let range(t)
denote the range(r). Then, with a subtree-based XML storage of an XML document D derived
by the XPFS tree with the basic XML fragmentation rule as described in Section 2, we have
the following Theorem.

Fig. 10. Two Cases in Theorem 4.1

Theorem 4.1
For two XML nodes n1 and n2 which respectively belong to subtrees t1 and t2 in an XML
document D stored in a subtree-based storage derived by the XPFS tree of D, n1 is an ancestor
of n2 iff the following two conditions hold:

1. range(t1) properly contains or is equal to range(t2).
2. P(n1) is a prefix of P(n2)

Proof
(if) Suppose the above two conditions hold. Then, we show that n1 is an ancestor of n2. Let r1
and r2 be the root node of t1 and t2, respectively (cf. Fig. 10). In case that range(t1) properly
contains range(t2), there is a leaf node nL in t1 which is the parent of r2. In case that range(t1) is
equal to range(t2), t1 and t2 are the same subtree. That is, r1 and r2 are the same, and n1 and n2
are in the same subtree. Due to the basic XML fragmentation rule, for a path type P, there
could be at most one instance of an XML node in a subtree whose path type is P. As such, there
is not a node m in t1 such that P(m)=P(n1). Similarly, there is not a node m in t2 such that
P(n)=P(n2). In other words, n1 is the unique node in t1 whose path type is P(n1), and n2 is the
unique node in t2 whose path type is P(n2). As such, n1 and n2 must be on the same path p
because P(n1) is a prefix of P(n2) where p is as follows: In case that range(t1) properly contains
range(t2), p is the path: the root of D-r1-n1-nL-r2-n2 (cf. Fig. 10-(a)). In case that range(t1) is

888 Shin et al.: Subtree-based XML Storage and XPath Processing

equal to range(t2), p is the path: the root of D- r1(r2)-n1-n2 (cf. Fig. 10-(b)). In all, n1 is an
ancestor of n2.
(only if) Suppose n1 is an ancestor of n2. Then, we show that the above two conditions hold. t1
and t2 are either the same subtree or different ones. In case that t1 and t2 are the same, range(t1)
is equal to range(t2). In case that t1 and t2 are different, let r1 and r2 be the root node of t1 and t2,
respectively. Since n1 is an ancestor of n2, they are on the same path: the root of
D-r1-n1-nL-r2-n2 where nL is a leaf node in t1 which is the parent of r2 (cf. Fig. 10-(a)). Since
range(t1) properly contains or is equal to range(nL), range(nL) properly contains range(r2), and
range(r2) is range(t2), range(t1) properly contains range(t2). Therefore, the first condition
holds. As for the second condition, P(n1) must be a prefix of P(n2) because n1 is an ancestor of
n2.

Theorem 4.1 is the basis of the subtree-based structural join. As described in the previous
subsection, for each twig node in the path-based twig pattern for an XPath expression, the list
of <path ID, subtree> pairs is retrieved for structural join. Each pair <IDi, ti> corresponds to an
XML node ni that belongs to the subtree ti. The path type of ni can be obtained by looking up
the XPFS tree with its path ID IDi. The (begin:end) range of ti is a priori given because what
represents ti in the pair < IDi, ti > is the (begin:end) range of the root node of ti. As such, the
structural relationship between two XML nodes n1 and n2 in an XML document stored in
subtrees can be determined given two pairs <ID1, t1> and <ID2, t2> which respectively
correspond to n1 and n2 without parsing t1 or t2.

Given a path-based twig pattern for an XPath expression e, each of its twig nodes is first
provided with the input list of <path ID, subtree> pairs. Then, a series of subtree-based
structural joins between two twig nodes Np and Nc such that Np is the parent of Nc is conducted.
That obtains the pre-result of e, which is a set of <path ID, subtree> pairs. Each pair
corresponds to an XML node in the node set that would be produced as the final result of e.

4.4 Correctness of Subtree-based XPath Processing

The correctness of the processing of an XPath expression against a subtree-based XML
storage can be defined as follows:

Definition 4.2
In an XML document D, a <path ID, subtree> pair <I, t> where t is a subtree of D is said to
uniquely cover an XML node n of D iff

1. n exists in t and
2. n is the only XML node in t whose path ID is I.

Definition 4.3
In an XML document D, let ST and Sn be a set of <path ID, subtree> pairs and a set of XML
nodes, respectively. ST is said to uniquely cover Sn iff the elements of ST are in one-to-one
correspondence with those of Sn such that for each corresponding pair (<IDi, ti>, ni) where <IDi,
ti> ST and ni Sn, <IDi, ti> uniquely covers ni.

Definition 4.4
For an XML document D, its XPFS tree, and an XPath expression e, let Rn be the XML node
set which is the final result of e retrieved against the node-based storage of D and let PRT be
the set of <path ID, subtree> pairs which is the pre-result of e retrieved against a subtree-based
storage of D derived by the XPFS tree. PRT is correct iff PRT uniquely covers Rn.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 889

The correctness of PRT implies that if PRT is correct, it is guaranteed to correctly get Rn out of
PRT in STEP 4 of the subtree-based XPath processing.

Example 4.4
For XPath expression e, /a/b[@id=‘dog’]//d, the result of e against the XML tree of Fig. 2
obtained by the conventional node-based XPath processing is the node set Rn = {d1, d2}. The
pre-result of e against the subtree-based XML storage shown in Fig. 3 obtained by the
subtree-based XPath processing is the set PRT = {<path ID of d1, subtree rooted at d1>, <path
ID of d2, subtree rooted at e1>}. We note that PRT and Rn are in one-to-one correspondence
such that <path ID of d1, subtree rooted at d1> uniquely covers d1 and that <path ID of d2,
subtree rooted at e1> uniquely covers d2. Thus, PRT uniquely covers Rn, and PRT is correct.

Theorem 4.2
For an XML document D, its XPFS tree, and an XPath expression e, the pre-result of e for the
path-based twig pattern of e against a subtree-based XML storage of D derived by the XPFS
tree, obtained by STEP 2 and then by STEP 3 of the previous subsections without parsing the
subtrees involved, is correct.

Proof
Let Rn(e) and PRT(e) be the final result of e obtained against the node-based storage of D and
the pre-result of e obtained against the subtree-based storage of D. Let T(e) be the path-based
twig pattern of e. For each twig node of T(e), let Ln and LT be the input XML node list retrieved
from the node-based storage of D and the input list of <path ID, subtree> pairs retrieved from
the subtree-based storage of D, respectively. Because of the basic XML fragmentation rule
described in Section 2 and the tasks of STEP 2, we see that LT uniquely covers Ln. As such, we
see that due to Theorem 4.1, PRT(e) obtained in STEP 3 by a series of structural joins uniquely
covers Rn(e). Thus, by Definition 4.4, PRT(e) is correct.

Fig. 11. Input XML Node Lists

Example 4.5
Let us consider an XPath expression e, /a/b[@id=‘dog’]//d. Fig. 11 shows the path-based twig
pattern for e with its input XML node lists retrieved from the node-based XML storage of Fig.
6. (Note that Fig. 11 is the node-based version of Fig. 9. The latter shows the same twig pattern

890 Shin et al.: Subtree-based XML Storage and XPath Processing

with its input lists of <path ID, subtree> pairs retrieved from the subtree-based XML storage
of Fig. 5). For the twig nodes labeled with {#2}, {#3}, and {#5,#7}, two, two, and four XML
nodes are retrieved, respectively. Each box corresponds to an XML node n denoted by <(i)
j:k> where (i) is the reference number of n (in no.column of Fig. 6), and j:k is the (begin:end)
range of n.

Let us compute Rn(e) in Fig. 11 by a series of structural joins. Joining two twig nodes {#3}
and ‘dog’ (i.e., joining {(3), (13)} vs. {(4)}) produces the XML node (3) for the twig node
{#3} as an intermediate result. Joining twig nodes {#2} and {#3} produces the XML node (2)
for the twig node {#2}. Finally, joining twig nodes {#2} and {#5,#7} produces the final result
node set Rn(e)={(7), (10)}, which corresponds to d1 and d2 in Fig. 2.

Now let us compute PRT(e) in Fig. 9. The whole process is the same as above except that the
path IDs are checked as well to see if one path type is a prefix of the other. Joining two twig
nodes {#3} and ‘dog’ (i.e., joining {<#3, subtree (2)>, <#3, subtree (5)>} vs. {<#3, subtree
(2)>}) produces the <#3, subtree (2)> for the twig node {#3} as an intermediate result. All the
path IDs here are #3. Since they are the same, the prefix condition is satisfied. Joining twig
nodes {#2} and {#3} produces the <#2, subtree (2)> for the twig node {#2}. Here, the path IDs
involved are #2 and #3. Looking up the XPFS tree of Fig. 4, the prefix condition also holds.
Finally, joining twig nodes {#2} and {#5,#7} produces the pre-result subtree set PRT(e)={<#5,
subtree (3)>, <#7, subtree (4)>}, which corresponds to {<path ID of d1, subtree rooted at d1>,
<path ID of d2, subtree rooted at e1>} in Fig. 3. As examined in Example 3.4, PRT(e) uniquely
covers Rn(e). Thus, PRT(e) is correct.

5. Implementation and Experiments

5.1 Implementation

We have implemented in Java two XML storing and XPath processing systems as described in
previous sections. One is with the node-based XML storage and XPath processing (System/N),
and the other is with the subtree-based XML storage and XPath processing (System/T). For
ease of implementation, an RDBMS, Oracle 11g, was employed for storing and indexing in
both systems. In System/N, each node is stored as a record of a table called NODE whereas in
System/T, each subtree is stored as as a record of a table called SUBTREE.

The auction.xml generated in XMark [10] was used as the XML document. XPath
expressions that appear in the XQuery FLWOR expressions in XMark were used to confirm
the correctness of the proposed subtree-based XPath processing. They are listed in Table 1.
The XPath processing time in System/T and System/N was measured and compared. Also the
space requirement in System/T and System/N was measured and compared. The
implementation and experiments were carried out on a Windows XP server with Intel Core 2
Duo 6600 (2.40Ghz) CPU and 2 GB memory.

Table 1. XPath Expressions

Query XPath Expressions

Q1 /site/people/person[homepage]/name
Q2 /site/closed_auctions/closed_auction/price

Q3 /site//item[description]/name

Q4 /site/regions/europe/item[@id]/name

Q5 /site/people/person[profile/interest/@category]/address/city

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 891

5.2 XPath Processing Time

For all the XPath expressions in Table 1, the correctness of the proposed subtree-based XPath
processing was confirmed with auction.xml of size 1.16 MB. Though the goal of the technique
proposed in this paper is not for improving query performance, we checked query performance
of System/T in comparison with that of System/N by carrying out two experiments. The two
differ only in System/T. In the first experiment, for every query, the final result XML nodes
are set to be the descendants of the root of their subtrees. In the second experiment, for every
query, the final result XML nodes are set to be the root of their subtrees. The difference is the
necessity of the parsing of the subtrees in the final stage of subtree-based XPath processing
(i.e., STEP 4) in System/T: parsing is needed in the first experiment, whereas it is not in the
second. Table 2 shows the time in System/N (TN) and in Syetem/T (TT) out of the first
experiment and Table 3 out of the second. Each of the measured time is the average of 100
runs. As shown in Table 2, System/T took more time than System/N because of the parsing
overhead. However, as shown in Table 3, System/T outperforms System/N.

Table 2. Query Processing Time (ms) Table 3. Query Processing Time (ms)

(result node: inside the subtree) (result node: root of the subtree)
Query TN TT TT /TN Query TN TT TT /TN

Q1 65.90 97.61 1.48 Q1 66.37 19.45 0.29
Q2 46.56 80.08 1.72 Q2 49.68 15.17 0.31
Q3 154.71 261.92 1.69 Q3 154.62 19.96 0.13
Q4 48.13 88.84 1.85 Q4 48.26 16.57 0.34
Q5 51.52 59.04 1.15 Q5 51.52 22.22 0.43

There are mainly two reasons for the superior query performance of System/T in the second

experiment. First, as shall be described shortly, the size of the table NODE is much larger than
that of SUBTREE. As such, the time to retrieve the input node lists for the twig nodes in
System/N took much longer than the time to retrieve the input subtree lists for the twig nodes
in System/T. Secondly, the extra work done in the subtree-based XPath processing compared
with the node-based counterpart is not burdensome, calling the root function in retrieving the
input subtree lists and checking if one path type is a prefix of another in structural join.

Table 4. Space Overhead for XPFS Tree

Scaling
factor for

auction.xml

SX
Size of auction.xml

(KB)

ST
Size of XPFS Tree

(KB)

(ST / SX) * 100
(%)

0.01 1,155 49.2 4.26
0.02 2,330 51.6 2.21
0.04 4,727 56.4 1.19
0.06 6,984 57.9 0.83
0.08 9,371 58.6 0.63
0.1 11,597 59.1 0.51
0.2 23,365 60.5 0.26
0.4 46,395 60.5 0.13
0.6 69,892 60.5 0.09
0.8 92,975 60.5 0.07
1 115,775 60.5 0.05

892 Shin et al.: Subtree-based XML Storage and XPath Processing

5.3 Space Requirement

The subtree-based XML storage is much more compact than the node-based counterpart. In
the first experiment mentioned above, for auction.xml of size 1.16 MB, there are 21,051
records stored in the table NODE, and 4,791 records in the table SUBTREE (Note that when
the XML tree of Fig. 1-(b) is stored, there are 23 nodes in the node-based XML storage in Fig.
6 while there are just 7 subtrees in the subtree-based counterpart in Fig. 5. The space occupied
by NODE and SUBTREE in the table space of Oracle is roughly 0.98 MB and 0.51 MB,
respectively. We see that a significant space saving is achieved with the subtree-based XML
storage.

As for the XPFS tree, it is mandatory in System/T. In System/N, it is optional. (If the
path-based XML storage and XPath processing is employed in System/N as described in this
paper, the XPFS tree is mandatory even in System/N.) We generated 11 auction.xml
documents of various sizes in XMark. For each of them, we measured the size of the XPFS
tree implemented as an n-ary tree stored as a file. Table 4 shows that compared with the size of
the auction.xml source document, the space required for the XPFS tree is negligible.

6. Related Work

Much work has been conducted on storing XML data. Several techniques that employ an
RDBMS were proposed first [6][8][11][12]. Since the range numbering schemes were
proposed in [1][4], the techniques of XML storing have been centered around XML node
labeling. As such, the XML node labeling schemes had received much attention, and the
schemes ORDPATHS [13], QED [14], and so on were developed. As for XPath processing,
the structural join based on XML node labeling has been established as a core technique [1]
[2][4]. As we pointed out in this paper, however, the current state-of-the-art technique of XML
storing and XPath processing is node-based.

In STORED [6], the irregular parts of the XML data was treated as overflow when the XML
data is mapped to relational schema. Such overflow data could be stored as a subtree. In [7], a
hybrid design of object-relational schema to store XML data was investigated. The irregular
parts and/or infrequently accessed parts of the XML data are stored as subtrees while all the
XML nodes in the rest are separately stored. In these work, however, the capability of dealing
with the stored subtrees without parsing in query processing was not provided.

In Natix [15] and SystemRX [16], which provide the native XML data management
functions, the nodes close to each other (e.g., parent-child) or the nodes in a subtree are put to
the same page (in the slotted page structure). In Natix, such subtrees are identified by
fragmenting the XML documents with the use of virtual nodes as connector between subtrees.
However, those subtrees are stored in some parsed form so that the nodes in them can be
accessed. Strictly speaking, they use node-based storage with node clustering capability. In
our work, the storage unit is a subtree, and the subtrees are not parsed during XPath processing,
and thus, it can be stored as just plain text (byte stream).

The techniques of XPath processing over a stream of XML subtrees fragmented out of a
source XML document in a resource-limited client devices were proposed [17][18]. In those
techniques, however, each received subtree is parsed in query processing. In [5], active XML
processing was investigated where some portions of XML data are dynamically handled as
XML subtrees especially in the web service applications. However, the capability of dealing
with the subtrees without parsing in query processing was not provided.

Techniques of exploiting XML path schema had received little attention. XRel [8] and
XParent [19] are early systems with such a feature. Recently, in [20], a native XML data

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 893

management techniques that exploit the path information called path synopsis with which a
very space-efficient XML storage can be achieved were proposed. These work, however, does
not feature subtree-based XML storage and XPath processing with the path information. The
XPFS tree in our work plays the similar role as the well-known DataGuide [21] or the path
synopsis [20] which summarizes the path structure of a semistructured or XML data except
that the XPFS tree also specifies the XML fragmentation schema. It also corresponds to a part
of the fragment context specification defined as a core component of the XML Fragment
Interchange specified by the W3C XML Fragment Working Group [22].

7. Conclusions and Future Work

In this paper, we proposed the subtree-based XML storage and XPath processing as a
generalization of the state-of-the-art node-based XML storage and XPath processing. The
main contributions of this paper are:

1. We proposed the technique of subtree-based XML storing and XPath processing
whereby the parsing of the subtrees involved in the query is not required.

2. Through implementation and experiments, we showed that our proposed solution is a
feasible generalization of the node-based solution both in time and in space.

As shown in the query performance experiments (Table 3), the frequently requested XML
nodes (i.e., hot nodes) are desired to be the roots of the subtrees while the cold ones are placed
inside the subtrees. As a future work, we are now considering a problem of optimization of
fragmenting an XML document modeled as a tree into subtrees given a set of XPath
expressions and their frequencies.

Since the contents of the stored subtrees except for their roots need not be accessed during
query processing, another future work we are interested in is the application of the proposed
subtree-based XML storage and XPath processing technique to secure XML data processing.

The primary focus in this paper was on the correctness of XPath processing without parsing
the stored subtrees involved. However, updatability is also an important issue. The proposed
technique should not undermine updatability. As for dynamic XML documents, they can also
be supported with the proposed technique. A basic assumption in this paper is that the XML
documents conform to some DTD. Also the basic XML fragmentation rule is enforced. It
states that the repeating or optional elements specified with +, *, or ? in the DTD are to be the
roots of different subtrees. As such, each of the nodes that reside inside a subtree (excluding
the root) is the node that appear exactly once (at least once as well as at most once) as a
subelement or an attribute of its parent. That is, their cardinality (i.e., the number of
occurrences) is 1. Thus, the internal structure of any subtree instance is supposed to remain
static, conforming to the schema. In other words, every non-root node in a subtree appears at
least once (which means it cannot be deleted) and at most once (which means it is already
inserted). Meanwhile, the repeating or optional nodes are the roots of some subtrees, and the
entire subtree can be inserted or deleted as a static unit. To support the updates that would
change the internal structure of a subtree, schema evolution needs to be considered. Although
the types of allowed updates with our technique are restricted to some extent because of the
assumption of having DTD and the basic XML fragmentation rule, they cover practical types
of updates while conformance to the schema is preserved. Thus, our technique can be applied
to a wide range of dynamic environment as well. An important issue requiring further
investigation is the relationship among update types, schema evolution, and fragmentation.

Other issues that need to be addressed include transaction management in multi-user
environments. As far as locking is concerned, for example, the new types of muti-user

894 Shin et al.: Subtree-based XML Storage and XPath Processing

concurrent operations include the followings: (1) Two users are to read different parts of the
same subtree. (2) One is trying to read a node inside a subtree while the other intends to delete
the same subtree, and so on. A locking protocol similar to the multiple granularity intent
locking (acquiring a weaker lock on the subtree first, and then a stronger one on the nodes
inside the subtree) could be devised for concurrency control. In the former case, both users are
supposed to be in the shared lock mode, and not in conflict. Both users are required to acquire
the shared lock on the subtree. In the latter, they are in conflict, which is detected as follows:
With the node-based storage, a node n is uniquely identified with Ln (the label of n) whereas
with our subtree-based storage, the same node n which might be residing inside a subtree t is
uniquely identified with the pair <Lr, In> where Lr is the label of the root of t, and In is the path
ID of n. As such, an afore-mentioned intent locking-like protocol can reveal the conflict.
Because to obtain a lock on n, the lock on t needs to be obtained first, both users are supposed
to try to acquire an exclusive lock on t (i.e., the lock on name Lr).

References

[1] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman, “On Supporting Containment Queries
in Relational Database Management Systems,” in Proc. of ACM SIGMOD International Conf. on
Management of Data, pp. 425-436, 2001.

[2] S. Al-Khalifa, H. Jagadish, N. Koudas, J. Patel, D. Srivastava, Y. Wu, “Structural Joins: A
Primitive for Efficient XML Query Pattern Matching,” in Proc. of 18th International Conf. on
Data Engineering, pp. 141-152, 2002.

[3] N. Bruno, N. Koudas, and D. Srivastava, “Holistic Twig Joins: Optimal XML Pattern Matching,”
in Proc. of ACM SIGMOD International Conf. on Management of Data, pp. 310-321, 2002.

[4] Q. Li and B. Moon, “Indexing and Querying XML Data for Regular Path Expressions,” in Proc. of
27th International Conf. on Very Large Data Bases, pp. 361-370, 2001.

[5] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu, T. Milo, and N. Preda, "Lazy Evaluation for
Active XML," in Proc. of ACM SIGMOD International Conf. on Management of Data, pp.
227-238, 2004.

[6] A. Deutsch, M. Fernandez, D. Suciu, “Storing Semistructured Data with STORED,” in Proc. of
ACM SIGMOD International Conf. on Management of Data, pp. 431-442, 1999.

[7] M. Klettke and H. Meyer, “XML and Object-Relational Database Systems – Enhancing Structural
Mappings based on Statistics,” in Proc. of 3rd International Workshop on Web and Databases, pp.
63-68, 2000.

[8] Yoshikawa, T. Amagasa, T. Shimura, S. Uemura, “XRel: A Path-Based Approach to Storage and
Retrieval of XML Documents Using Relational Databases,” ACM Trans. on Internet Technology,
vol. 1, no. 1, pp. 110-141, 2001.

[9] J. Clark and S. DeRose, editors, XML Path Language (XPath) version 1.0, W3C Recommendation,
Nov. 1999, http://www.w3.org/TR/xpath.

[10] A. Schmidt, F. Wass, M. Kersten, M. Carey, I. Manolescu, and R. Busse, “XMark: A Benchmark
for XML Data Management,” in Proc. of 28th International Conf. on Very Large Data Bases, pp.
974-985, 2002.

[11] D. Florescu and D. Kossmann, “Storing and Querying XML Data Using an RDBMS,” IEEE Data
Engineering Bulletin, vol. 22, no. 3, pp. 27-34, 1999.

[12] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. DeWitt, and J. Naughton, “Relational
Databases for Querying XML Documents: Limitations and Opportunities,” in Proc. of 25th
International Conf. on Very Large Data Bases, pp. 302-314, 1999.

[13] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury, “ORDPATHs: Insert-Friendly

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 895

XML Node Labels,” in Proc. of ACM SIGMOD International Conf. on Management of Data, pp.
903-908, 2004.

[14] C. Li and T. Ling, “QED: A Novel Quaternary Encoding to Completely Avoid Relabeling in XML
Updates,” in Proc. of International Conf. on Information and Knowledge Management, pp.
501-508, 2005.

[15] T. Fiebig, S. Helmer, C. Kanne, G. Moerkotte, J. Neumann, R. Schiele, and T. Westmann,
“Anatomy of a Native XML Base Management System,” VLDB Journal, vol. 11, no. 4, pp.
292-314, 2002.

[16] K. Beyer, R. Cochrane, V. Josifovski, J. Kleewein, G. Lapis, G. Lohman, R. Lyle, F. Ozcan, H.
Pirahesh, N. Seemann, T. Truong, B. Van der Linden, B. Vickery, and C. Zhang, “System RX: One
Part Relational, One Part XML,” in Proc. of ACM SIGMOD International Conf. on Management
of Data, pp. 374-358, 2005.

[17] S. Bose and L. Fegaras, “XFrag: A Query Processing Framework for Fragmented XML Data,” in
Proc. of 8th International Workshop on Web and Databases, pp. 97-102, 2005.

[18] H. Huo, G. Wang, X. Hui, R. Zhou, B. Ning, and C. Xiao, “Effiecient Query Processing for
Streamed XML Fragments,” in Proc. of 11th International Conf. on Database Systems for
Advanced Applications, pp. 468-482, 2006.

[19] H. Jiang, H. Lu, W. Wang, and J. Yu, “XParent: An Efficient RDBMS-based XML Database
System,” in Proc. of 18th International Conf. on Data Engineering, pp. 335-336, 2002.

[20] C. Mathis, T. Härder, and K. Schmidt, “Storing and Indexing XML Documents Upside Down,”
Computer Science - Research and Development, vol. 24, no. 1-2, pp. 51-68, 2009.

[21] R. Goldman and J. Widom, “DataGuides: Enabling Query Formulation and Optimization in
Semistructured Databases,” in Proc. of 23rd International Conf. on Very Large Data Bases, pp.
436-445, 1997.

[22] P. Grosso and D. Veillard, editors, XML Fragment Interchange (XFI), W3C Candidate
Recommendation, Feb. 2001, http://www.w3.org/TR/xml-fragment.

Ki Hoon Shin received the B.E. degree in Computer Science and Engineering from Chung-Ang
University, Seoul, Korea in 2009. He is currently a M.S. student in Computer Science and
Engineering at Chung-Ang University. His research interests include XML query processing and
sensor network database.

Hyunchul Kang received the B.E. degree in Computer Engineering from Seoul National
University, Seoul, Korea in 1983, and received the M.S. and Ph.D. degrees in Computer Science
from the University of Maryland, College Park, U.S.A. in 1985 and 1987, respectively. In 1988, he
joined the School of Computer Science and Engineering, Chung-Ang University, Seoul, Korea
where he is currently a Professor. His current research interests include XML and web data
management, mobile data management, and sensor network database.

