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Abstract 
 
 

Web Services allow a user to integrate applications from different platforms and languages. 
Since mobile applications often run on heterogeneous platforms and conditions, Web Service 
becomes a popular solution for integrating with server applications. However, because of its 
verbosity, XML based SOAP messaging gives the possible overhead to the less powerful 
mobile devices. Based on the mobile client’s behavior that it usually exchanges messages with 
Web Service continuously in a session, we design the Handheld Flexible Representation 
architecture. Our proposed architecture consists of three main components: optimizing 
message representation by using a data format language (Simple_DFDL), streaming 
communication channel to reduce latency and the Context-store to store context information 
of a session as well as redundant parts of the messages. In this paper, we focus on the 
Context-store and describe the architecture with the Context-store for improving the 
performance of mobile Web Service messaging. We verify our approach by conducting 
various evaluations and investigate the performance and scalability of the proposed 
architecture. The empirical results show that we save 40% of transit time between a client and 
a service by reducing the message size. In contrast to solutions for a single problem such as the 
compression or binarization, our architecture addresses the problem at a system level. Thus, by 
using the Context-store, we expect reliable recovery from the fault condition and enhancing 
interoperability as well as improving the messaging performance. 
 
 
Keywords: Mobile web service, XML, web service repository, handheld flexible 
representation (HHFR), web service framework 
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1. Introduction 

 In an Internet era, it is popular to inter-relate distributed functionalities and resources to build 
an application. Since we can reuse existing functionalities, service reuse paradigm like Service 
Oriented Architecture (SOA) saves us the time to develop as well as increases the chance for 
Business to Business (B2B). Web Services have emerged as a de-facto standard for Service 
Oriented Architecture in recent years [1][2]. Web Services also profoundly affect the overall 
distributed computing area. Like their predecessors, such as CORBA, RMI and DCOM, the 
primary goal of the Web Services is to inter-relate distributed functionalities. But, unlike its 
predecessors, it achieves its goal in an elegant and neutral manner; it provides well-defined 
interfaces for distributed functionalities, which are independent of the hardware platform, 
operating system and programming language. So, distributed functionalities, or services, that 
are run on different hardware platforms, run on different operating systems, or written in 
different programming languages, can communicate through Web Service interfaces. Web 
Service may be the best candidate for machine-to-machine (process-to-process) interaction 
technology because of its strong interoperability. 

While the Web Service technology has become a standard to connect remote and 
heterogeneous resources, mobile devices have become a vital part of people’s everyday life. 
People use mobile devices anytime and anywhere, such as cellular phones, smart phones and 
handheld game consoles. The Web Service technology recognizes mobile computing as an 
area that it should expand into [3]. Through integration, Web Services enable pervasive 
accessibility by acquiring mobility as they overcome the physical location constraint of 
conventional computing. Meanwhile, mobile computing also requires a technology that 
connects mobile systems to a conventional distributed computing environment.  Since mobile 
applications runs on different platforms, we need the integration technology which is strong in 
interoperability. Web Services may be the perfect candidate for such connection, since a 
strong interoperability is the key requirement of the technology. This will be important for the 
success of Web Services when we consider the fact that the mobile computing environment is 
much heterogeneous in terms of hardware platforms, operating systems and programming 
languages. Thus, the integration of mobile computing with Web Services technology will 
yield many advantages for both sides [3][4]. 

However, despite the fact that the condition of mobile computing has much improved in 
recent years, there are fundamental differences between mobile and PC-like stationary 
environments such as limited processing power and the battery-life problem on the wireless 
side. Thus, applying the current Web Services communication models to mobile computing 
causes potential performance overhead that mostly come from XML’s verbosity. The 
interoperability of Web Services mainly comes from their Extensible Markup Language 
(XML) based open specific standards. However, Web Services self-descriptive characteristic 
causes two problems in mobile computing environments. First, the encoding and decoding of 
verbose XML-based SOAP messages consumes resources. Therefore, Web Service 
participants, particularly mobile clients, may suffer from poor performance. Also, a large 
portion of a message contains static information that is the same for known participants. This 
causes an increase in the message size and consumes unnecessary processing time for 
redundant information. 

Since the conventional Web Service communication framework does not adequately meet 
the needs of mobile computing as noted above, we need an optimized architecture (i.e., 
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reducing message size to save wireless bandwidth, reducing parsing overhead and reducing 
communication latency caused by improper communication scheme) to prevent performance 
degradation in mobile computing as well as in conventional computing that is interacting with 
mobile applications. The optimized architecture should provide the following capabilities: 1) 
an optimized information representation to minimize the size of messages, 2) a streaming style 
message exchange that is clearly different from the request-response style of the current HTTP 
and 3) an online Web Service Repository where participants are able to store static or 
redundant parts of the message.  

There have been many studies on addressing possible performance degradation. Such 
proposals widely range from technical approaches like binarization of XML messages [5][6] 
to user modeling approaches to maximize user experience (i.e., better application response 
time and application startup time) [4]. However, those studies are mostly providing a solution 
to a single specific problem rather than providing a system-level comprehensive architecture.  

We designed and implemented a novel architecture called the Handheld Flexible 
Representation (or HHFR) for optimized Web Service messaging in mobile computing. The 
key design goal of HHFR architecture is to optimize Web Service messaging in mobile 
computing. To achieve the goal in a system-level, we adopt three design characteristics. Firstly, 
we separate the message content from its message syntax and let them have flexible 
representation based on their communication environment. When we serialize message 
content into the XML document, we need additional time for message processing to parse and 
more bandwidth for increased message size.  Secondly, we adopt a streaming style 
communication scheme instead of using conventional request-reply based HTTP scheme. 
Thus, mobile Web Service clients exchange messages in streaming fashion. Finally, we 
introduce a negotiation stage at the beginning of Web Service interaction between Web 
Service and clients to set up the streaming channel and agree on the message representation. 
As empirical results shows in Ref [7], the HHFR architecture outperforms conventional Web 
Service architecture when the client application is running on less powerful mobile device, and 
the client and the Web Service exchange information in a session (i.e. exchanging similar 
messages  in series ). 

However, one essential capability of the HHFR architecture we listed above is addressed in 
an ad-hoc way. A Web Service repository can be used for storing static parts of the messages 
in a session to save bandwidth and parsing time. The static parts can be retrieved anytime it is 
needed. To address the Web Service repository issue, we improve HHFR to optimize 
messages better in interoperable fashion. For the extended HHFR architecture, we design and 
implement the Context-store 1in UDDI and WS-Context compliance [8].  

The two contributions of the paper are as follows: the main contribution is to design an 
interoperable information repository for mobile Web Service based on UDDI specification. 
Adopting WS-Context and UDDI compliant Context-store will make the system a more 
interoperable environment. In the current Web Service environments, there are many Web 
Services and clients that are capable of understanding WS-Context or UDDI specification. 
Especially for mobile clients, HHFR architecture provides not only message optimization 
capabilities but also a context repository (i.e. an online Web Service database).   The other 
contribution is modeling the use of Context-store as well as conducting the comprehensive 
experiments. The purpose of the experiments is to show that 1) accessing time to the 
Context-store is nominal, 2) the use of Context-store reduces bandwidth and 3) our 
                                                           
1 We will use both Web Service Repository and Context-store interchangeably throughout the paper. To 
be precise, a Context-store is a HHFR specific name for Web Service Repository 
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Context-store can serve enough number of requests from the service and clients. We expect 
that the extension makes the HHFR architecture interoperable with other UDDI and 
WS-Context compatible applications. 

This paper is organized as follows. In Section 2, we discuss related works that address the 
issues of mobile Web Services. We present an overview of our HHFR architecture design in 
Section 3 and illustrate the extended version of HHFR with Web Service Repository in detail 
in Section 4. In Section 5, we show our empirical results and we discuss and conclude in 
Section 6.  

2. Related Works 

The research issues in Mobile Web Service mostly fall into a performance overhead category. 
It is mainly caused by the verbosity of XML (i.e. XML is too heavy for mobile devices in most 
cases). To improve the performance of mobile Web Services, we have to design the Web 
Service system from two different perspectives: architectural and optimization view. We can 
use one of three architecture views to implement a mobile Web Service: a wireless portal 
network, the wireless extended Internet, or a peer-to-peer (P2P) network as Adacal and Bener 
described in Ref [9]. A wireless portal architecture uses a gateway between a client and a 
service. The wireless extended Internet architecture allows mobile clients directly 
communicate with services like conventional stationary PC clients. In P2P network, mobile 
clients can be a Web Service provider. In this paper, from the architectural perspective, we 
focus on the wireless extended architecture where a client can directly talk to the service. The 
optimization issue is the main focus of interest of this paper. We will delve into the issue 
throughout the paper.  

In this section, we overview related works in two folds: first, we visit approaches which try 
to minimize communication and processing overheads caused by the verbosity of XML 
message. Then we describe UDDI and WS-Context shortly before we discuss the relation 
between optimizing mobile Web Service messaging and UDDI. 

2.1 XML Message Optimizations 

From the optimization perspective, approaches to improve the performance of mobile Web 
Services can be categorized into either naïve compression of messages or binarization of 
messages. The compressing message approaches utilize various compressing mechanisms to 
provide smaller size messages to reduce the bandwidth usage of constraint wireless 
communication channel. Tian et al. studied mobile Web Services environment and pointed 
performance concerns about XML messaging efficiency [10]. The experiment shows their 
dynamic compression algorithm performs well and can save bandwidth. According to ref [11], 
XML specific compression such as XMill and Millau [12] may perform much better on small 
messages. Developed by Dennis Sosnoski, XBIS [13] also uses a generic scheme for replacing 
repetitive words (a define-and-replace scheme). XBIS is similar to XMill in terms of how it 
replaces repetitive words with an index, but there is a difference between the two. XMill 
processes an entire document at once, whereas XBIS processing can encode a streaming input, 
so the transformation allows encoding and decoding to start on a partial document. XBIS 
forms all the components of an XML document in the same order they appear in the text. Like 
other repetitive words replacement schemes, XBIS defines each name as text only once, and it 
then uses a handle value to refer back to the name when it is repeated. However, these naïve 
approaches do not address the fundamental problems of mobile Web Services’ environments 
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as well as adding one more layer of processing (compression-decompression) to less-capable 
mobile CPUs. 

 Another stream of studies on improving mobile Web Services’ environments focuses on 
utilizing the binarization mechanism of XML. Whether or not it is self-contained (maintaining 
self-descriptive characteristics of XML), there has been a lot of studies and proposals 
[5][7][14][15]. First, Paul Sandoz and his team at Sun Microsystem proposed Fast Infoset 
specification to W3C workshop on Binary Interchange of XML information Item as an XML 
alternative to provide faster and more efficient Web Services in restricted computing 
environments. Serialized (i.e., binarized) XML document contains information items and their 
properties as well as the hierarchical structure of the XML Document [5]. The Cross Format 
Schema Protocol (XFSP) [16] is another project that serializes XML documents based on a 
schema. Initially it was created to provide a flexible definition of network protocols. It is 
written in Java and uses the DOM4J model to parse the schema. Combined with XML 
Schema-based Compression (XSBC) [17], XFSP provides binary serialization and a parsing 
framework. ExtremeLab of Indiana University presents studies on binary XML for scientific 
application (BXSA) [15] that has a new structure and layered format based on XBS [18].  

2.2 UDDI and WS-Context  

The UDDI Specification of OASIS [19] helps us to solve the problem of locating services of 
interest. It is an XML based online registry to list services on the Internet. It provides set of 
specifications for service description and discovery. UDDI also provides components to 
register catalog data (i.e. Yellow Pages) and technical information about the service (i.e. Green 
Pages) along with business registry information (i.e. White Pages: address and identifiers).  

However, UDDI can be used as an online information service of Web Services. If it is WS-I 
[20] compliant and used for storing context of a Web application, Web Services and  clients 
can share dynamic state information of the application session as well as static service 
information. Levenshteyn and Fikouras [21] use the WS-Conext compliant UDDI service to 
correlate the work of participants within the same activity by disseminating additional 
information (i.e. context). The context contains a unique identifier that allows a series of 
operations to share a common outcome. Yet, no one tries to use UDDI and WS-Context 
compliant information service for improving mobile Web Service communication 
performance.  

2.3 Discussions 

There have not been many studies that address mobile Web Service’s performance issue from 
the system level. Rather, they focus on a single problem (e.g. utilizing binarization 
mechanisms) at a time. Especially, the study on integrating a Web Service repository to 
improve mobile Web Service’s performance has not yet been done. In this paper, we propose 
the extension of HHFR architecture and we present a detailed study about utilizing an online 
Web Service repository in a mobile Web Service environment. 

3. Mobile Web Service Architecture: HandHeld Flexible Representation 

In this section, we present a software architecture designed to optimize communication in 
mobile Web Services – the Handheld Flexible Representation (HHFR), which distinguishes 
the semantics of messages from their representation. In the beginning of an HHFR message 
stream, two participating nodes negotiate the characteristics of the stream. Once this 
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negotiation is complete and the stream is established, the two nodes exchange the message 
content, which is a combination of semantics and representation, in an optimized fashion. An 
abstract diagram of the HHFR architecture design appears in Fig. 1. The early version of the 
HHFR implementation is presented in [7]. 

 

 

Fig. 1. Overview Diagram of HHFR 

3.1 Motivation and Overview of Design 

In many cases, mobile applications interact with a Web Service in a session style. That is, they 
exchange messages continuously and messages are similar or the same. For example, a mobile 
client in a ubiquitous software system may send context-aware information such as 
temperature, intensity of illumination and GPS position numbers. In this case, the mobile 
client and the Web Service exchange messages with the same message format and the only 
context values are changing. A mobile client in a Video/Audio conference using Unified 
Communication environment [22] receives and sends voice and image data in a streaming 
manner with the same message style. We define the term a session for consecutive messages 
between a service and a client. 

When a mobile client and a service exchange messages in a session, most of the messages 
are in the same representation (i.e., structure and format), except the starting message and 
ending message. Messages in the middle have the same structure, but values are changing as 
new information is produced. Also, messages in a session may include some information 
represented during the session. 

For the application domain, which uses session style, we propose a novel mobile Web 
Service architecture HandHeld Flexible Representation that utilizes the characteristic of this 
repeating structure and information. In a mobile computing environment where mobile clients 
and services co-exist, the usage scenario of HHFR is as follows: Web Service participant 
initiates a stream, which is a series of message exchange using the same structure and type, by 
sending a SOAP request message to negotiate the characteristics of the following 
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communicated messages with another participant. If the negotiation is successful, which 
means that the other participant agrees to use the HHFR scheme, and then the two participants 
(i.e., endpoints) exchange messages in a preferred representation. The preferred representation 
is the negotiated format of messages, and it is not limited to SOAP-style, but rather supports 
many optimized formats. The message’s semantic content is preserved while the syntax used 
to express the content is agreed upon in the negotiation stage, and HHFR uses this negotiation 
to establish a message stream. Fig. 2 illustrates the usage scenario. 

 

 

Fig. 2. Usage Scenario of Service Interaction using HHFR 

 

There are three key design points of the HHFR architecture, which make the message 
exchanges in HHFR efficient. First, HHFR uses a Data Format Description Language (DFDL) 
[23]-style data description language, named the Simple_DFDL, to represent the message 
structure and type. HHFR distinguishes between message semantics and syntax, and the 
syntax is represented in the Simple_DFDL. Simple_DFDL will be briefly discussed in the 
following section, and detailed information about Simple_DFDL is in [7]. 

Second, in the HHFR, applications exchange messages in a streaming style. HHFR sets up a 
message stream (i.e. second channel) between the participants based on the characteristics 
negotiated. The message exchange is then freed from “waiting for response” by adapting an 
asynchronous messaging style.  

Third, in HHFR, an online Web Service Repository module holds the static (within a 
particular stream) data of the messages: These include a) the unchanging or redundant SOAP 
message parts, b) the Simple_DFDL file as a data representation, and c) the negotiated 
characteristics of a stream. By storing the message fragment or meta-data of the stream as 
context, the application can exchange stripped down messages that contain only the vital part 
of the message content without losing the formal ability to produce the conventional SOAP 
message representation on demand. 
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3.2 Replacing XML Syntax with Optimized Representation: Simple_DFDL 

By separating message semantics from syntax, the proposed architecture provides mobile 
applications options to choose the appropriate message representations (i.e., a binary or a 
conventional SOAP representation) for a given Web Service communication environment. 
The binary representation is a critical option to improve the overall performance of the HHFR 
architecture for several reasons. First, it reduces the size of an exchanged message by 
removing the verbose SOAP syntax. The message size can be reduced by up to a factor of 10 if 
a document structure is especially redundant (e.g., with an array) [24]. A binary message 
representation also helps the HHFR architecture to avoid textual conversion. The architecture 
simplifies the conventional encoding/decoding stage2, in which the in-memory representation 
is converted into a text format and vice versa. This is an expensive process, especially for the 
relatively low-powered mobile devices that are required by SOAP syntax. Among data 
conversions, floating point number conversion is the most costly one [25].  

Finally, another benefit to having a binary representation of the SOAP message is that it 
does not need to be parsed in a conventional way. Since SOAP syntax requires a structured 
representation, we need to parse a given document to get information. A SOAP message in 
binary representation (i.e., in a byte array format of contents) exists as chunks of continuous 
XML information items that don’t need to be parsed in a conventional way. Rather, the 
architecture offers another information retrieval scheme: Stream reader and Stream writer. 
The latter enable the applications to read and write information item data to and from byte 
stream by using Simple_DFDL to distinguish message semantics, i.e., information, message 
syntax and the message generated from the given Simple_DFDL document. 

Simple_DFDL that is a simple restricted XML Schema Definition (XSD) is our method of 
defining the XML syntax of a message. While we design Simple_DFDL, we constrain the 
XML Schema definition to achieve a single structure by parsing the XML Schema document 
itself (i.e., a Simple_DFDL document should be a single XML Schema document rather than 
multiple documents.). Therefore, the HHFR architecture can use a Simple_DFDL document 
as a representation of both structures and types. Other constraints are as follows:  

 There can be no reference in the Simple_DFDL definition using fragment identifiers or an 
XPointer. 

 The Simple_DFDL supports only limited Built-in simple types, such as string, float, double, 
integer, boolean and byte. 

 The Simple_DFDL does not support facets like minInclusive and maxInclusive to restrict 
the valid values. 

Since we preserve the message semantics in the SOAP Infoset data model, HHFR is also able 
to handle various representations other than binary. We are able to send and receive messages 
in binary format as well as in the traditional SOAP syntax. Here is an example of 
Simple_DFDL to illustrate usage. An example array declaration follows: 

 
<xs:element name="HHFR"> 
    <xs:complexType>     
        <xs:element name="arraySize" type="i" value="10"/> 
        <xs:element name="array" type="f"/> 
    </xs:complexType> 
</xs:element> 

                                                           
2 They are called marshalling/unmarshalling in some projects, 
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Because individual messages in the HHFR architecture are not self-contained, the 
architecture builds an internal data structure that contains the names of element information 
items, attributes and child properties by parsing a Simple_DFDL document. Also the parsed 
structure of the Simple_DFDL document represents a serialized structure of the SOAP body. 
In combination, the internal Data Structure object and the HHFR message packet, which has 
an optimized representation, can be transformed back to the original from the SOAP message. 

In our architecture design, each message representation is optimized according to the 
characteristics that are negotiated during the negotiation stage and the principles that are 
predefined by an architecture specification. A binary format is the optimized representation in 
most cases. However, in some conditions, views other than a binary representation can be 
preferred. In the negotiation stage, a handler responds to the negotiation requestor with 
message representations supported by the handler. Suppose the handler supports view A and 
view B, but it prefers B. Despite the fact that the service prefers message format A, the service 
may process a received format B message if the conversion process overhead is higher than the 
threshold defined in the HHFR design specification.  

In a conventional Web Service environment, XML is the representation format that 
provides interoperability to the heterogeneous participating nodes. Yet, in a constrained 
computing environment, processing an the XML format message becomes a performance 
bottleneck because of its verboseness. The preferred representation concept of the HHFR 
architecture can provide an optimized representation of the mobile and conventional 
application and the given network characteristics. 

3.3 Negotiation of Characteristics 

A couple of design issues motivate an introduction of the negotiation stage. First, to have an 
alternative representation of SOAP messages, the representation of messages should be 
transmitted at the beginning of the stream. Second, to set up fast and reliable means of 
communication, the architecture should negotiate the characteristics of the stream.    

A stream of messages shares the same representation, meaning these messages share 
identical structure and type of XML fragments, i.e., SOAP Body parts. The applications on 
participating nodes negotiate a preferred representation and send messages in the preferred 
representation according to the exchanged Simple_DFDL representation. Together with the 
representation, the headers of the SOAP messages remain mostly unchanged in the stream. 
Thus, these unchanging headers can be archived in the Context-store, and the sender can avoid 
transmitting them with each message. Needless to say, some headers, like the reliability 
related headers, are unique to individual messages. Such headers need to be transmitted with 
each individual message and processed at the corresponding handlers. Unchanging headers, 
which are often the majority of headers, can be transmitted only once, and the rest of the 
messages in the stream can use saved-headers from the initial transmission.  

The negotiation stage uses a single (or multiple, if necessary) conventional SOAP message3 
that makes the negotiation stage compatible with the existing Web Service framework. The 
architecture design defines each issue, such as reliability, preferred representation or security, 
as an individual element item in a Negotiation Schema. The process begins when an 
application on a participating node initiates a message stream by sending a negotiation request 
to a service node. The negotiation handler receives a SOAP negotiation message and prepares 
a response SOAP message containing the negotiated items.  

                                                           
3 If the negotiation can be continued until the two participants reach a single agreed upon point. 
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Compared to the conventional Web Service communication method, the negotiation stage is 
an additional overhead4 in the HHFR architecture, and this will discourage use of the scheme 
in a short message stream that has few exchanged messages. However, for larger message 
streams with many of redundant messages, the HHFR architecture’s negotiation overhead is 
negligible.  

4. Web Service Repository: Context-store in HHFR 

In this section we present our extended version of HHFR with Context-store design and 
implementation in detail. We describe the Context-store design characteristics. In the 
following section, we provide our empirical experiment results using an implemented service 
to validate the design efficiency of the Context-store and its effect on the overall architecture.  

4.1 Benefits and Design Characteristics of Context-store 

As we discussed, a Context-store is an essential component of the architecture where we can 
store unchanging or redundant SOAP headers (e.g., namespace and encoding style 
information), a Simple_DFDL document as a message representation and the characteristics 
of the stream. The Context-store also archives the static context information from a SOAP 
negotiation message; the HHFR design specification scheme itself is also kept in the 
Context-store. By archiving, the context-store can serve as a meta-data repository for the 
participating nodes in the HHFR architecture.  

By storing and retrieving redundant and static message parts, mobile clients can be benefit 
from the Context-store. Other than bandwidth saving, there are two more distinct benefits 
from the Context-store; namely, supporting a reliable session for Web Service applications 
and enhancing interoperability among the participating applications. Since a mobile client and 
a service provider can save the session configuration during their session, the session can be 
recovered from unexpected fault condition by retrieving stored configuration. They may 
re-play the session or jump into the last state. As we discussed earlier, adopting WS-Context 
and UDDI compliant Context-store will make the system as a more interoperable environment. 
There are tons of Web Service applications and clients which are capable of understanding 
WS-Context or UDDI specification and using the implementation. For them, HHFR 
architecture provides not only message optimizing capabilities but also a context repository 
(i.e. an online Web Service database).   The overview of extended HHFR architecture and the 
benefits of the Context-store are depicted in Fig. 3.  

The Context-store implementation could be either a local or a remote service. A local 
Context-store implementation is an internal module that keeps context. When it is a local 
service in the runtime environment, other components in the HHFR architecture make a 
method call to save the Context of the stream and to retrieve the context from the repository. It 
is simple and straightforward, and in this case, an individual node holds the context-store. 

In this extension of the architecture, we choose a remote service like Domain Name Server 
(DNS) and our choice of a Context-store design is WS-Context specification [8]. The context 
of the stream contains shared information among Web Service participants and the HHFR 
specification itself. This is where the WS-Context specification is well suited. If the 
Context-store is implemented as a WS-Context server, then participating nodes can archive 

                                                           
4 Others are a Repository (i.e., Context-store) accessing overhead and Simple_DFDL designing overhead. 
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and retrieve contexts of the stream with an identifier, e.g., Uniform Resource Identifier (URI). 
The HHFR architecture design defines information in the context-store with a URI. 

 

 

Fig. 3. An Overview and Benefits of Extended HHFR 

4.2 Context-store in Mobile Web Service  

We chose Java as a language platform for both mobile and conventional sides because it is 
portable across platforms, and the JME together with third party products, provides a rich set 
of libraries. The architecture itself is not limited to any specific language platform and can be 
applied to message communications between heterogeneous platforms, but we believe a 
single-language prototype such as Java can show the effectiveness of the architecture design in 
all respects but a few (e.g., the capability to float data conversion between different operating 
systems). We validate efficiency and scalability of proposed extension design through the 
empirical experiments and the results are shown in section 5. 

The purpose of our scheme is to provide a way of using the information service from mobile 
applications to enjoy advantages noted above. On the other hand, integrating a Web Service 
based the information service (e.g., Context-store) with HHFR brings a dependency on 
SOAP-Java binding on the Apache Axis library. The Axis version of the JME (Java Micro 
Edition) environment or any other popular programming environment for small and embedded 
devices has not yet been developed and will not be in the near future because of a lack of 
related programming libraries, such as advanced XML parsers and utility libraries. So it is not 
feasible to use the existing Axis-based client interface (to an Information Service) without 
porting the code. Unfortunately, replacing JSE APIs with JME APIs is not possible, so we 
must find an alternative solution.  

The solution to the first problem includes a direct serialization of SOAP request message 
and a parsing SOAP without Axis SOAP-Java binding. The same approach we used for the 
negotiation message is used here: we use the kSOAP5 library [26] for this process. SOAP 

                                                           
5 kSOAP is the product of an open source project, Enhydra, led by Stefan Haustein 
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serialization using kSOAP library needs an ad-hoc method to integrate with Information 
Service while SOAP parsing is straightforward. Because Axis SOAP-java binding is not 
available for the JME environment, we focus on generating SOAP messages by the 
WS-Context client based on Axis. The Axis-Java binding adds a hierarchically referenced 
element to the structure if the binding process meets a Java wrapper when it serializes SOAP 
message. As a result, Axis based SOAP binding code for WS-Context Service client generates 
multi-referenced XML. Unfortunately, kSOAP does not support such advanced binding APIs; 
rather, it provides more direct SOAP serialization APIs. For example, a piece of Java code 
below will result to generate a XML fragment in Fig. 4-(b), which is highlighted as bold face.  

 
SoapObject context = new SoapObject(NAME_SPACE, "ContextType"); 
SoapObject context_data = new SoapObject(NAME_SPACE, "ContextType"); 
SoapObject contextID = new SoapObject(NAME_SPACE, "string"); 
context.addProperty("context-identifier",  identifierKey); 
context.addProperty("context-data", data); 

 

Fig. 4-(a) shows the getContext SOAP request message of the conventional WS-Context 
client using Axis, and Fig. 4-(b) shows the flattened SOAP request message produced by the 
mobile WS-Context client using kSOAP. 

 

 
Fig. 4. (a) getContext() SOAP request message created using Axis.  

Referenced elements are highlighted in boldface. 

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"  
xmlns:xsd="http://www.w3.org/2001/XMLSchema"  
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

   <soapenv:Body> 
<ns1:getContents  
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"      
xmlns:ns1="http://wsctx_service.WSCTX.services.axis.cgl"> 
<body href="#id0"/> 

      </ns1:getContents> 
<multiRef id="id0" soapenc:root="0"      
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"  
xsi:type="ns2:GetContents"     
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"xmlns:ns2="http://wsctx_
schema.WSCTX.services.axis.cgl"> 

<correlation-id xsi:type="xsd:string" xsi:nil="true"/> 
<context href="#id1"/> 

      </multiRef> 
<multiRef id="id1" soapenc:root="0"  
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
xsi:type="ns3:ContextType"  
xmlns:ns3="http://WSCTX.services.axis.cgl/wsctx_schema" 
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"> 

 <context-identifier xsi:type="xsd:string"> 
 context://hhms/Sangyoon </context-identifier> 
 <context-data xsi:type="xsd:string" xsi:nil="true"/> 

      </multiRef> 
   </soapenv:Body> 
</soapenv:Envelope> 
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Fig. 4. (b) getContext() SOAP request message created using kSOAP for a mobile WS-Context client. 
Elements resulted from the piece of Java code are highlighted in boldface. 

 

 
Fig. 5.  Mobile and conventional context service clients 

 
As depicted in Fig. 5, the two primary WS-Context related functionalities of Information 

Services are getContent() and setContent() methods, which provide access and store 
operations that are equivalent to the Axis based component of the conventional client. Method 
calls are not tied to any other operation in the HHFR session, so they can be called at anytime 
when the HHFR runtime or the HHFR client service needs to create, update or retrieve context 
in the Context-store (i.e., Information service). Thus, the following Java program 1) create 
ContextServiceHandler object with the Context Service URI and the service 
(implementation) version, 2) store given context of any type paired with a unique identifier, 
and 3) retrieve context. ContextServiceHandler object is a wrapper class and provides 
getContent() and setContent() methods. 

getContent() and setContent() methods throws java.lang.InterruptedException, 
since the handler runs as a Thread. Running as a Thread can avoid a possible deadlock 
situation, which could occur when the network fails or due to an operational error.  

<v:Envelope xmlns:i=http://www.w3.org/1999/XMLSchema-instance 
xmlns:d="http://www.w3.org/1999/XMLSchema" 
xmlns:c="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:v="http://schemas.xmlsoap.org/soap/envelope/"> 

   <v:Header /> 
   <v:Body> 
      <n0:getContents id="o0" c:root="1"  

xmlns:n0="http://wsctx_service.WSCTX.services.axis.cgl"> 
         <body i:type="n0:body"> 
            <context i:type="n0:ContextType"> 
               <context-identifier i:type="d:string"> 
               context://hhms/sangyoon</context-identifier> 
            </context> 
         </body> 
      </n0:getContents> 

</v:Body> 
</v:Envelope> 
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ContextServiceHandler handler = new ContextServiceHandler(SERVICE_URL, 0); 
try { 
   boolean result = handler.setContext(identifier, givenContext); 
   Object contextData = handler.getContext(identifier); 
} 
catch (java.lang.InterruptedException exception) { 
   exception code… 
} 
There are few limitations that could be improved and extended. First, the ad-hoc method to 

generate a SOAP message is the biggest obstacle to automate client code generation. 
Compared to automatic Java binding generation of Axis, the method also imposes human error 
when the multi-referenced SOAP is converting into flattened structure.  

5. Performance Evaluation 

The goal of performance evaluation is to demonstrate the effect of using the Context-store in 
the HHFR architecture, how much overhead to access the Context-store, and the scalability of 
the approach. Preliminary evaluation of HHFR architecture focused on performance gains 
using preferred message representation (i.e., binarization of SOAP message) is presented in 
detail in Ref [7]. 
 

Table 1. Summary of evaluation measurements 
 Measurement Protocol Comment 

1 Context-store access time SOAP 
A time to access a Context-store from a mobile 
client 

2 
Round Trip Time to exchange a 

message 
HHFR Bandwidth gain from using a Context-store 

3 Scalability SOAP 
The scalability of our approach which is analyzed 
from the processing time of the Context-store 
service. 

 

 
Fig. 6.  System parameters 

 

 
Fig. 7.  System parameters with time frame 
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5.1 Evaluation Model and Test Environment 

For the evaluation, we focus on measuring and analyzing three values: 1) time to finish a 
Context-store access from a mobile client (i.e., a time between a SOAP request and a SOAP 
response), 2) bandwidth (time) gain from using a Context-store, and 3) the scalability of our 
approach to use a Context-store. Thus, we design the evaluation measurements to have three 
aspects. First, we measure the time to access the Context-store from a mobile client. Second, 
we measure the Round Trip Times to show the performance effect of using the Context-store 
to store redundant and/or unchanging parts of the SOAP message. Third, we analyze the 
scalability of our approach by measuring the time it takes to process a WS-Context SOAP 
message on the service side. The second measurement is distinguished from the other two 
because it uses a high performance channel of HHFR to exchange messages, and the first and 
the third experiments use a conventional SOAP message for measurements. Table 1 shows a 
summary of our evaluation measurements. 

For the evaluations, we assume the following system parameters. 
 Taccess: time to finish accession to a Context-store (i.e., save a context or retrieve a context 

to/from the Context-store) from a mobile client 
 TRTT: Round Trip Time to exchange message through a HHFR channel 
 N: the maximum number of stream supported by one server  
 Twsctx: time consumed to process setContext operation 
 Taxis-overhead: time consumed to process Axis data-binding and HTTP request/response 

process 
 Ttime-in-server: time consumed in the Axis server 
 Ttrans: time consumed to transmit a message over the network 
 Tstream: the length of a stream in seconds 

We measure Taccess in the first experiment and measure TRTT in the second. In the third 
experiment, we measure Twsctx and Ttime-in-server and assume Tstream to analyze the scalability of 
our model. Fig. 6 and Fig. 7 show parameters on the illustrated system model.  

transoverheadaxiswsctxaccess TTTT                                                     (1) 

In our test model, we set that there are three Context-store accesses per session, i.e., two 
accesses are made from each Web Service participant nodes at the beginning of the session, 
and one access is made to report the end of the session to the Context-store. Let us consider N 
simultaneous streams are happening during the time period of Tstream. Thus, we can formulize 
the calculation of the scalability of our approach to use the Context-store that is the maximum 
number of supported simultaneous streams as follows: 

serverintimestream T

1

T

N3



                                                              (2) 

serverintime

stream

T3

T
N


                                                               (3) 

It should be noted that there are three major parameters on which our evaluation analysis 
depends. First, Taccess is governed by Ttrans that can vary from the wireless (i.e., cellular) 
technologies. Second, the Taxis-overhead at the Web Service container is the dominant factor in 
message processing. In this evaluation, we used Axis 2 version 1.4 with an Axis data binding 
to measure the message processing overhead (i.e., Ttime-in-server). Finally, the stream length (i.e., 
how long an application usage session lasts) is also an important parameter to analyze 
scalability. In our analysis, we assume the stream length as ten minutes (i.e., 600 seconds). 
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Three Context-store accesses per stream spread over the stream length; thus, the longer the 
stream length, the more simultaneous streams can be supported. 

Evaluations conducted over 14.4kbps wireless cellular networks and the mobile 
applications are running on Smart phones that equipped with a 144MHz ARM processor. 
Table 2 shows the summary of the configuration.  

 
Table 2. Summary of the Machine Configuration  

 Service Client Service Provider 

Processor Intel Xeon (2.4GHz) ARM (144MHz) 

RAM 2GB 32MB 

Bandwidth 100Mbps 14.4kbps 

Java Java 2 SE CLDC 1.1 and MIDP 2.0 

SOAP Engine Axis 1.2 kSOAP 1.1 
 

 
Fig. 8.  Set up for measuring Context-store accessing overhead 

 

Fig. 9.  WS-RM message example for Context-store access measurement 

5.2 Experiment 1: Context-store Access Time 

In this section, we present the time measurements to access the Context-store. To measure the 
time, we used the setContext() operation6  of the information service. We measured the 

                                                           
6 We choose the setContext operation as an example. Similar performance evaluation can be made for the 

<?xml version="1.0" encoding="UTF-8" ?>  
<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"     
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility" 
xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy" 
xmlns:wsrm="http://schemas.xmlsoap.org/ws/2003/03/rm" 
xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"> 

   <S:Header>   
    <wsa:MessageID>http://Business456.com/guid/daa7d0b2-c8e0-476e-a9a4-d164154e38de
</wsa:MessageID>     
      <wsa:To>http://fabrikam123.com/serviceB/123</wsa:To>  
      <wsa:ReplyTo>     
         <wsa:Address>http://Business456.com/serviceA/789 
         </wsa:Address>   
      </wsa:ReplyTo> 
      <wsrm:Sequence>     
         <wsu:Identifier>http://Business456.com/RM/ABC 
         </wsu:Identifier>     
         <wsrm:MessageNumber>2</wsrm:MessageNumber>  
      </wsrm:Sequence> 
   </S:Header> 
   <S:Body /> 
</S:Envelope> 
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Round Trip Times of the Context-store accessing transactions. A mobile client sends a sample 
SOAP message with Web Service Reliable Messaging (WS-RM), and the Information Service 
responds back. The experiment setup is illustrated in Fig. 8. The size of the headers used in the 
test, which is shown in Fig. 9, is 847 bytes, and the entire SOAP message size is 1.58KB. 

The measurement results were collected with the same configurations as the previous 
experiment through 200 iterations. Table 3 shows the average values of the collected data. 
 

Table 3. Summary of the measured Context-store accessing overhead  
 Set 1 (sec) Set 2 (sec) Set 3 (sec) Set 4 (sec) Set 5 (sec) Ave. of Sets

Ave±error 
(sec) 

4.194±0.083 4.197±0.093 4.177±0.123 4.028±0.066 4.036±0.097 4.127±0.042

StdDev 
(sec) 

0.457 0.511 0.676 0.363 0.530 0.516 

5.3 Experiment 2: Evaluation of the performance measurement of the full SOAP 
message and optimized SOAP message with the use of Context-store  

To demonstrate the effectiveness of using the Context-store, we measured the Round Trip 
Times (TRTT) of both the full SOAP message and optimized message with the use of 
Context-store. As discussed in section 3, the applications in HHFR store unchanged and/or 
redundant parts of the SOAP message to the Context-store. By saving this metadata, the size of 
the message can be reduced and the performance of the messaging can also be increased. 
Before presenting the performance evaluation, we present a practical usage example of the 
Context-store, i.e., storing a message with WS-Addressing headers. We then present the 
measurement methodology and results.  

A sample SOAP Header example: Our choice for a sample SOAP header comes from the 
WS-Addressing Specification [27]. The WS-Addressing Specification defines transport 
neutral mechanisms to address Web Services and messages. It defines two constructs that 
convey information between Web Service endpoints (e.g., reference-able entity, processor or 
resource). The two constructs are 1) endpoint references at which Web Service messages can 
be targeted and 2) message information headers; endpoint references convey information that 
identifies a Web Service endpoint (or individual message in some cases). For individual 
message addressing, the specification defines a family of information headers that allows the 
uniform addressing of messages. Message information headers, which are the second 
construct, convey end-to-end message characteristics, such as message identity, origin and 
destination of the message.  

An application using HHFR framework stores unchanging and/or redundant SOAP parts 
into the Context-store (Information Service) and retrieves them when they are needed. So, we 
can store many of the WS-Addressing header parts to improve message communication 
performance. To support this idea, we present a practical example of this usage. Two Web 
Service endpoints, i.e., A (a service provider) and B (a mobile Web Service client), start a 
series of Web Service transactions. Endpoint B requires WS-Addressing headers only if it 
needs to send a reply or address an individual message. Thus, those headers that are unchanged 
for the rest of the stream can be archived in the Context-store. Among the elements of 
WS-Addressing header parts, <messageID> must not be archived because it is unique for each 
message. In this example, we also assume that there is no message referencing so that we can 
avoid leaving referencing items. The example scenario is depicted in Fig. 10, and Fig. 11 

                                                                                                                                                                     
getContext operation.  
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shows a sample SOAP header used. Except <messageID> that is highlighted as bold face, 
most of the WS-Addressing headers can be removed from the message. 

 
 

 
Fig. 10.  Scenario for WS-Addressing example 

 

Fig. 11.  Sample SOAP message for the WS-Addressing example 
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Fig. 12.  Round trip time of optimized message exchange through the HHFR high performance 

channel compared with full message exchange 
 
Fig. 12 shows the Round Trip Time (TRTT) of message exchange using the HHFR 

communication with the use of Context-store compared with the Round Trip Time without the 
the use of Context-store (i.e., with full header message transactions). Times are collected for 
50 repetitions of three different sizes (2byte to 2.61KB). Two practical examples of Web 
Service headers are used in this measurement; the Round Trip Time for a large message are 
collected using a sample message with WS-Security headers, a sample message with 

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"   
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"> 
   <S:Header> 
    <wsa:MessageID> 
      uuid:6B29FC40-CA47-1067-B31D-00DD010662DA 
    </wsa:MessageID> 
    <wsa:ReplyTo> 
      <wsa:Address>http://business456.example/client1</wsa:Address> 
    </wsa:ReplyTo> 
    <wsa:To>http://fabrikam123.example/Purchasing</wsa:To> 
    <wsa:Action>http://fabrikam123.example/SubmitPO</wsa:Action> 
   </S:Header> 
   <S:Body/> 
</S:Envelope> 



854                                                                Oh et al.: Mobile Web Service Architecture with Context-store 

WS-Addressing headers is used for a medium size, and a SOAP message that has a body 
element with no data and no header is used for an empty message. It should be noted to clarify 
the testing environment that this experiment ran over a HHFR message stream. It is because 
this experiment is done to show the effectiveness of the HHFR framework that uses the 
Context-store. The results of the given examples show that we save 83% of message size on 
average and 41% of transit time on average by using our design. These results are shown in 
Table 4.   

 
Table 4. Summary of the round trip time 

Message Size Without Context-store With Context-store 
Ave.±error StdDev Ave.±error StdDev 

Minimum: 2byte (sec) 1.54±0.039 0.217 1.54±0.039 0.217 
Medium: 513byte (sec) 2.76±0.034 0.187 1.75±0.040 0.217 

Large: 2.61KB (sec) 5.20±0.158 0.867 2.81±0.098 0.538 
 

5.4 Experiment 3: Scalability of the Context-store 

In addition to these two tests (i.e., the test that measures the accession overhead and the test 
that measures the effectiveness of the Context-store in the HHFR), we also analyze the 
scalability of our approach to use the Context-store with multiple message streams.  

We measured the time needed to finish a Context-store request transaction (i.e., Ttime-in-server) 
and the time to process setContext()operation (i.e., Twsctx) with various sizes of contexts. 
The results are shown in Table 5. Since Twsctx is less than one millisecond, Fig. 13 shows only 
the measurement of Ttime-in-server. Both Ttime-in-server and Twsctx increase linearly as the size of 
context increases.  

 
Table 5. Summary of the average time to process Context-store message with Axis 1.2 

Size of Context 
(bytes) 

Ttime-in-server  (msec) Twsctx  (msec) 
Ave±error StdDev Ave±error StdDev 

1220 35±0.43 4 0.501±0.005 0.048 
1320 63±0.54 5 0.498±0.005 0.044 
1520 115±0.92 9 0.531±0.013 0.120 
1720 174±1.64 16 0.508±0.005 0.050 
1920 227±1.35 13 0.528±0.012 0.118 
2120 293±2.01 19 0.517±0.012 0.118 

 

With our measurements, we demonstrate how to calculate the maximum number of 
simultaneous stream supported by our approach to use the Context-store. First, we assume the 
stream length as 10 minutes, i.e., Tstream = 600 seconds. Then, provided with formula 3 and 
Ttime-in-server time for a 1220 byte-size context, we can calculate the maximum number of 
simultaneous streams as follows: 

035.03

600
N


                                                               (4) 

5700N                                                                      (5) 

Thus, if we have 100byte-size context, one server can support a maximum of 1600 streams. 
However, it should be noted that this illustration is based on the assumption that a web Server 
can handle this many simultaneous connections. 
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Fig. 13.  Time to finish Context-store request message processing (i.e.,Ttime-in-axis) 

5.5 Discussions: Findings from the Experiments 

As noted in 5.1, we design the evaluation to show the effectiveness of using Context-store in 
HHFR architecture.  This evaluation does not include the performance comparison between 
with Context-store and without Context-store and there is a reason for it. Since the HHFR 
design assumes the redundant and static parts of the messages is removed from the exchanging 
messages and stored to the Context-store, it is obvious that there is less communication 
overhead when a client and a service exchange messages with some parts removed (i.e. using 
the Context-store in the HHFR). Thus, the issue here should be rather how long the session 
should be to get the direct benefit from the Context-store use in HHFR than whether we have 
performance gains or not. We conducted this evaluation in Ref [7] and for the given 
environment; we calculated the break-even point that is point below which the conventional 
Web Service communication framework outperforms the HHFR. If there will be more than 
four messages in a row in the given application session, the HHFR will perform better in 
mobile Web Service [7].  

However, we conduct evaluations which are specialized for this version of HHFR with the 
Context-store too. The second evaluation we conduct is to measure Round Trip Times (RTTs) 
for both conventional Web Service messaging with full XML content body and optimized 
HHFR messaging with the Context-store. As it is shown in Fig. 12, the transit time between a 
service client and a service provider is saved by 41%. We analyze the result and find the RTT 
saving is mostly coming from the size reduction which is 83% gain for our test cases. Thus we 
conclude the biggest performance benefit of the Context-store to the HHFR is to reduce the 
size of the messages after all by letting them include only essential parts of the SOAP 
messages.  

Required characteristics to verify the effectiveness of the Context-store also includes 
minimal communication overheads to access the Context-store and scalability of the 
Context-store. To measure the communication overhead accessing the Context-store in regular 
cellular networks, we have measured the response time of the setContext() operation of 
the Context-store. The evaluation is conducted over 14.4kbps cellular networks and the 
average access time is about 4 seconds, however Ttime-in-server is about 100msec and pure 
network overhead is 3.9 sec. Thus, we expect smaller access time to the Context-store, if we 
have better connections like 3G cellular network (144kbps, ten times faster than current 
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evaluation environment). Finally we conduct scalability test for the Context-store 
implementation. As we derived formula (3) from formula (1) and (2), we get necessary 
parameters like Ttime-in-server and Tstream from the evaluation tests. Using the numbers from Table 
4, we can derive one Context-store server can support up to 1600 streams with the given 
machine configuration. 

6. Conclusion 

In this paper, we have identified an important factor to improve communication performance 
of mobile Web Service is addressing the messaging scheme at system level. There have been 
many researches which try to optimize a message representation; however they may not 
interoperable with the current Web Service framework. We design HHFR architecture to 
address the problem from the system level view and make the architecture compatible with the 
current architecture by supporting conventional Web Service messaging as an option.  

We have presented the extension of our HHFR architecture that integrates the online Web 
Service Repository with the existing message optimization framework. We argue that the right 
way to address message size reduction in mobile computing is by saving redundant or 
unchanging SOAP message parts (metadata about messages) into the Context-store for 
retrieval as needed: (a) bandwidth saving. Other benefits we can have from the use of 
Context-store are (b) supporting reliable recovery from the failure and (c) enhancing 
interoperability. Through saving negotiation information, unchanging message parts and 
session state context to more stable repository, mobile Web Service participants retrieve and 
restore any given session state if it has lost session connections. If we add a periodical logging 
feature to the architecture and mandate participants to save session history, then the reliability 
of the overall system will be highly increased. Also, WS-Context and UDDI compliant 
Context-store will make the system a more interoperable environment. To the Web Services 
and their clients that are capable of understanding WS-Context or UDDI specification, HHFR 
architecture with the Context-store provides not only message optimizing capabilities but also 
a context repository (i.e. an online Web Service database). 

However, there is a limitation on the proposed architecture as well. As mentioned in the 
paper, the HHFR architecture assumes that the mobile clients interact with Web Services in a 
session style. That is, they exchange messages continuously and messages are similar or the 
same. Thus, if a client and a service exchange message that are different from each other, 
HHFR architecture adds more overheads (i.e. negotiation stage and context-store access) than 
gives the optimization benefit to the message exchange. 

The evaluation results and the analysis show that we can expect notable performance gains 
with the Context-store in comparison to without the Context-store system. Also, we show the 
access time to the Context-store is in affordable range. Since the access time is heavily 
dependent to the wireless connection speed, the new access time with faster connections like 
3G cellular networks will be the negligible cost to the overall cost.  
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