
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 836
Copyright ⓒ 2010 KSII

This research was jointly supported by Ajou university research fellowship of 2009 (S-2009-G0001-00054), the
MKE under the ITRC support program supervised by the NIPA (NIPA-2009-C1090-0902-0003), the Korean
government.

DOI: 10.3837/tiis.2010.10.008

Mobile Web Service Architecture Using
Context-store

Sangyoon Oh1, Mehmet Aktas2 and Geoffrey C. Fox3
1 WISE Lab, Div. of Information and Computer Engineering, Ajou University, Suwon, Korea

[e-mail: syoh@ajou.ac.kr]
2 Information Technologies Institute, TUBITAK-Marmara Research Center, Turkey

[e-mail: mehmet.aktas@bte.mam.gov.tr]
3 Community Grids Lab, Indiana University, Bloomington, Indiana, 47404, USA

[e-mail: gcf@indiana.edu]
*Corresponding author: Sangyoon Oh

Received June 30, 2010; revised July 27, 2010; accepted August 10, 2010;

published October 30, 2010

Abstract

Web Services allow a user to integrate applications from different platforms and languages.
Since mobile applications often run on heterogeneous platforms and conditions, Web Service
becomes a popular solution for integrating with server applications. However, because of its
verbosity, XML based SOAP messaging gives the possible overhead to the less powerful
mobile devices. Based on the mobile client’s behavior that it usually exchanges messages with
Web Service continuously in a session, we design the Handheld Flexible Representation
architecture. Our proposed architecture consists of three main components: optimizing
message representation by using a data format language (Simple_DFDL), streaming
communication channel to reduce latency and the Context-store to store context information
of a session as well as redundant parts of the messages. In this paper, we focus on the
Context-store and describe the architecture with the Context-store for improving the
performance of mobile Web Service messaging. We verify our approach by conducting
various evaluations and investigate the performance and scalability of the proposed
architecture. The empirical results show that we save 40% of transit time between a client and
a service by reducing the message size. In contrast to solutions for a single problem such as the
compression or binarization, our architecture addresses the problem at a system level. Thus, by
using the Context-store, we expect reliable recovery from the fault condition and enhancing
interoperability as well as improving the messaging performance.

Keywords: Mobile web service, XML, web service repository, handheld flexible
representation (HHFR), web service framework

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 837

1. Introduction

 In an Internet era, it is popular to inter-relate distributed functionalities and resources to build
an application. Since we can reuse existing functionalities, service reuse paradigm like Service
Oriented Architecture (SOA) saves us the time to develop as well as increases the chance for
Business to Business (B2B). Web Services have emerged as a de-facto standard for Service
Oriented Architecture in recent years [1][2]. Web Services also profoundly affect the overall
distributed computing area. Like their predecessors, such as CORBA, RMI and DCOM, the
primary goal of the Web Services is to inter-relate distributed functionalities. But, unlike its
predecessors, it achieves its goal in an elegant and neutral manner; it provides well-defined
interfaces for distributed functionalities, which are independent of the hardware platform,
operating system and programming language. So, distributed functionalities, or services, that
are run on different hardware platforms, run on different operating systems, or written in
different programming languages, can communicate through Web Service interfaces. Web
Service may be the best candidate for machine-to-machine (process-to-process) interaction
technology because of its strong interoperability.

While the Web Service technology has become a standard to connect remote and
heterogeneous resources, mobile devices have become a vital part of people’s everyday life.
People use mobile devices anytime and anywhere, such as cellular phones, smart phones and
handheld game consoles. The Web Service technology recognizes mobile computing as an
area that it should expand into [3]. Through integration, Web Services enable pervasive
accessibility by acquiring mobility as they overcome the physical location constraint of
conventional computing. Meanwhile, mobile computing also requires a technology that
connects mobile systems to a conventional distributed computing environment. Since mobile
applications runs on different platforms, we need the integration technology which is strong in
interoperability. Web Services may be the perfect candidate for such connection, since a
strong interoperability is the key requirement of the technology. This will be important for the
success of Web Services when we consider the fact that the mobile computing environment is
much heterogeneous in terms of hardware platforms, operating systems and programming
languages. Thus, the integration of mobile computing with Web Services technology will
yield many advantages for both sides [3][4].

However, despite the fact that the condition of mobile computing has much improved in
recent years, there are fundamental differences between mobile and PC-like stationary
environments such as limited processing power and the battery-life problem on the wireless
side. Thus, applying the current Web Services communication models to mobile computing
causes potential performance overhead that mostly come from XML’s verbosity. The
interoperability of Web Services mainly comes from their Extensible Markup Language
(XML) based open specific standards. However, Web Services self-descriptive characteristic
causes two problems in mobile computing environments. First, the encoding and decoding of
verbose XML-based SOAP messages consumes resources. Therefore, Web Service
participants, particularly mobile clients, may suffer from poor performance. Also, a large
portion of a message contains static information that is the same for known participants. This
causes an increase in the message size and consumes unnecessary processing time for
redundant information.

Since the conventional Web Service communication framework does not adequately meet
the needs of mobile computing as noted above, we need an optimized architecture (i.e.,

838 Oh et al.: Mobile Web Service Architecture with Context-store

reducing message size to save wireless bandwidth, reducing parsing overhead and reducing
communication latency caused by improper communication scheme) to prevent performance
degradation in mobile computing as well as in conventional computing that is interacting with
mobile applications. The optimized architecture should provide the following capabilities: 1)
an optimized information representation to minimize the size of messages, 2) a streaming style
message exchange that is clearly different from the request-response style of the current HTTP
and 3) an online Web Service Repository where participants are able to store static or
redundant parts of the message.

There have been many studies on addressing possible performance degradation. Such
proposals widely range from technical approaches like binarization of XML messages [5][6]
to user modeling approaches to maximize user experience (i.e., better application response
time and application startup time) [4]. However, those studies are mostly providing a solution
to a single specific problem rather than providing a system-level comprehensive architecture.

We designed and implemented a novel architecture called the Handheld Flexible
Representation (or HHFR) for optimized Web Service messaging in mobile computing. The
key design goal of HHFR architecture is to optimize Web Service messaging in mobile
computing. To achieve the goal in a system-level, we adopt three design characteristics. Firstly,
we separate the message content from its message syntax and let them have flexible
representation based on their communication environment. When we serialize message
content into the XML document, we need additional time for message processing to parse and
more bandwidth for increased message size. Secondly, we adopt a streaming style
communication scheme instead of using conventional request-reply based HTTP scheme.
Thus, mobile Web Service clients exchange messages in streaming fashion. Finally, we
introduce a negotiation stage at the beginning of Web Service interaction between Web
Service and clients to set up the streaming channel and agree on the message representation.
As empirical results shows in Ref [7], the HHFR architecture outperforms conventional Web
Service architecture when the client application is running on less powerful mobile device, and
the client and the Web Service exchange information in a session (i.e. exchanging similar
messages in series).

However, one essential capability of the HHFR architecture we listed above is addressed in
an ad-hoc way. A Web Service repository can be used for storing static parts of the messages
in a session to save bandwidth and parsing time. The static parts can be retrieved anytime it is
needed. To address the Web Service repository issue, we improve HHFR to optimize
messages better in interoperable fashion. For the extended HHFR architecture, we design and
implement the Context-store 1in UDDI and WS-Context compliance [8].

The two contributions of the paper are as follows: the main contribution is to design an
interoperable information repository for mobile Web Service based on UDDI specification.
Adopting WS-Context and UDDI compliant Context-store will make the system a more
interoperable environment. In the current Web Service environments, there are many Web
Services and clients that are capable of understanding WS-Context or UDDI specification.
Especially for mobile clients, HHFR architecture provides not only message optimization
capabilities but also a context repository (i.e. an online Web Service database). The other
contribution is modeling the use of Context-store as well as conducting the comprehensive
experiments. The purpose of the experiments is to show that 1) accessing time to the
Context-store is nominal, 2) the use of Context-store reduces bandwidth and 3) our

1 We will use both Web Service Repository and Context-store interchangeably throughout the paper. To
be precise, a Context-store is a HHFR specific name for Web Service Repository

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 839

Context-store can serve enough number of requests from the service and clients. We expect
that the extension makes the HHFR architecture interoperable with other UDDI and
WS-Context compatible applications.

This paper is organized as follows. In Section 2, we discuss related works that address the
issues of mobile Web Services. We present an overview of our HHFR architecture design in
Section 3 and illustrate the extended version of HHFR with Web Service Repository in detail
in Section 4. In Section 5, we show our empirical results and we discuss and conclude in
Section 6.

2. Related Works

The research issues in Mobile Web Service mostly fall into a performance overhead category.
It is mainly caused by the verbosity of XML (i.e. XML is too heavy for mobile devices in most
cases). To improve the performance of mobile Web Services, we have to design the Web
Service system from two different perspectives: architectural and optimization view. We can
use one of three architecture views to implement a mobile Web Service: a wireless portal
network, the wireless extended Internet, or a peer-to-peer (P2P) network as Adacal and Bener
described in Ref [9]. A wireless portal architecture uses a gateway between a client and a
service. The wireless extended Internet architecture allows mobile clients directly
communicate with services like conventional stationary PC clients. In P2P network, mobile
clients can be a Web Service provider. In this paper, from the architectural perspective, we
focus on the wireless extended architecture where a client can directly talk to the service. The
optimization issue is the main focus of interest of this paper. We will delve into the issue
throughout the paper.

In this section, we overview related works in two folds: first, we visit approaches which try
to minimize communication and processing overheads caused by the verbosity of XML
message. Then we describe UDDI and WS-Context shortly before we discuss the relation
between optimizing mobile Web Service messaging and UDDI.

2.1 XML Message Optimizations

From the optimization perspective, approaches to improve the performance of mobile Web
Services can be categorized into either naïve compression of messages or binarization of
messages. The compressing message approaches utilize various compressing mechanisms to
provide smaller size messages to reduce the bandwidth usage of constraint wireless
communication channel. Tian et al. studied mobile Web Services environment and pointed
performance concerns about XML messaging efficiency [10]. The experiment shows their
dynamic compression algorithm performs well and can save bandwidth. According to ref [11],
XML specific compression such as XMill and Millau [12] may perform much better on small
messages. Developed by Dennis Sosnoski, XBIS [13] also uses a generic scheme for replacing
repetitive words (a define-and-replace scheme). XBIS is similar to XMill in terms of how it
replaces repetitive words with an index, but there is a difference between the two. XMill
processes an entire document at once, whereas XBIS processing can encode a streaming input,
so the transformation allows encoding and decoding to start on a partial document. XBIS
forms all the components of an XML document in the same order they appear in the text. Like
other repetitive words replacement schemes, XBIS defines each name as text only once, and it
then uses a handle value to refer back to the name when it is repeated. However, these naïve
approaches do not address the fundamental problems of mobile Web Services’ environments

840 Oh et al.: Mobile Web Service Architecture with Context-store

as well as adding one more layer of processing (compression-decompression) to less-capable
mobile CPUs.

 Another stream of studies on improving mobile Web Services’ environments focuses on
utilizing the binarization mechanism of XML. Whether or not it is self-contained (maintaining
self-descriptive characteristics of XML), there has been a lot of studies and proposals
[5][7][14][15]. First, Paul Sandoz and his team at Sun Microsystem proposed Fast Infoset
specification to W3C workshop on Binary Interchange of XML information Item as an XML
alternative to provide faster and more efficient Web Services in restricted computing
environments. Serialized (i.e., binarized) XML document contains information items and their
properties as well as the hierarchical structure of the XML Document [5]. The Cross Format
Schema Protocol (XFSP) [16] is another project that serializes XML documents based on a
schema. Initially it was created to provide a flexible definition of network protocols. It is
written in Java and uses the DOM4J model to parse the schema. Combined with XML
Schema-based Compression (XSBC) [17], XFSP provides binary serialization and a parsing
framework. ExtremeLab of Indiana University presents studies on binary XML for scientific
application (BXSA) [15] that has a new structure and layered format based on XBS [18].

2.2 UDDI and WS-Context

The UDDI Specification of OASIS [19] helps us to solve the problem of locating services of
interest. It is an XML based online registry to list services on the Internet. It provides set of
specifications for service description and discovery. UDDI also provides components to
register catalog data (i.e. Yellow Pages) and technical information about the service (i.e. Green
Pages) along with business registry information (i.e. White Pages: address and identifiers).

However, UDDI can be used as an online information service of Web Services. If it is WS-I
[20] compliant and used for storing context of a Web application, Web Services and clients
can share dynamic state information of the application session as well as static service
information. Levenshteyn and Fikouras [21] use the WS-Conext compliant UDDI service to
correlate the work of participants within the same activity by disseminating additional
information (i.e. context). The context contains a unique identifier that allows a series of
operations to share a common outcome. Yet, no one tries to use UDDI and WS-Context
compliant information service for improving mobile Web Service communication
performance.

2.3 Discussions

There have not been many studies that address mobile Web Service’s performance issue from
the system level. Rather, they focus on a single problem (e.g. utilizing binarization
mechanisms) at a time. Especially, the study on integrating a Web Service repository to
improve mobile Web Service’s performance has not yet been done. In this paper, we propose
the extension of HHFR architecture and we present a detailed study about utilizing an online
Web Service repository in a mobile Web Service environment.

3. Mobile Web Service Architecture: HandHeld Flexible Representation

In this section, we present a software architecture designed to optimize communication in
mobile Web Services – the Handheld Flexible Representation (HHFR), which distinguishes
the semantics of messages from their representation. In the beginning of an HHFR message
stream, two participating nodes negotiate the characteristics of the stream. Once this

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 841

negotiation is complete and the stream is established, the two nodes exchange the message
content, which is a combination of semantics and representation, in an optimized fashion. An
abstract diagram of the HHFR architecture design appears in Fig. 1. The early version of the
HHFR implementation is presented in [7].

Fig. 1. Overview Diagram of HHFR

3.1 Motivation and Overview of Design

In many cases, mobile applications interact with a Web Service in a session style. That is, they
exchange messages continuously and messages are similar or the same. For example, a mobile
client in a ubiquitous software system may send context-aware information such as
temperature, intensity of illumination and GPS position numbers. In this case, the mobile
client and the Web Service exchange messages with the same message format and the only
context values are changing. A mobile client in a Video/Audio conference using Unified
Communication environment [22] receives and sends voice and image data in a streaming
manner with the same message style. We define the term a session for consecutive messages
between a service and a client.

When a mobile client and a service exchange messages in a session, most of the messages
are in the same representation (i.e., structure and format), except the starting message and
ending message. Messages in the middle have the same structure, but values are changing as
new information is produced. Also, messages in a session may include some information
represented during the session.

For the application domain, which uses session style, we propose a novel mobile Web
Service architecture HandHeld Flexible Representation that utilizes the characteristic of this
repeating structure and information. In a mobile computing environment where mobile clients
and services co-exist, the usage scenario of HHFR is as follows: Web Service participant
initiates a stream, which is a series of message exchange using the same structure and type, by
sending a SOAP request message to negotiate the characteristics of the following

842 Oh et al.: Mobile Web Service Architecture with Context-store

communicated messages with another participant. If the negotiation is successful, which
means that the other participant agrees to use the HHFR scheme, and then the two participants
(i.e., endpoints) exchange messages in a preferred representation. The preferred representation
is the negotiated format of messages, and it is not limited to SOAP-style, but rather supports
many optimized formats. The message’s semantic content is preserved while the syntax used
to express the content is agreed upon in the negotiation stage, and HHFR uses this negotiation
to establish a message stream. Fig. 2 illustrates the usage scenario.

Fig. 2. Usage Scenario of Service Interaction using HHFR

There are three key design points of the HHFR architecture, which make the message
exchanges in HHFR efficient. First, HHFR uses a Data Format Description Language (DFDL)
[23]-style data description language, named the Simple_DFDL, to represent the message
structure and type. HHFR distinguishes between message semantics and syntax, and the
syntax is represented in the Simple_DFDL. Simple_DFDL will be briefly discussed in the
following section, and detailed information about Simple_DFDL is in [7].

Second, in the HHFR, applications exchange messages in a streaming style. HHFR sets up a
message stream (i.e. second channel) between the participants based on the characteristics
negotiated. The message exchange is then freed from “waiting for response” by adapting an
asynchronous messaging style.

Third, in HHFR, an online Web Service Repository module holds the static (within a
particular stream) data of the messages: These include a) the unchanging or redundant SOAP
message parts, b) the Simple_DFDL file as a data representation, and c) the negotiated
characteristics of a stream. By storing the message fragment or meta-data of the stream as
context, the application can exchange stripped down messages that contain only the vital part
of the message content without losing the formal ability to produce the conventional SOAP
message representation on demand.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 843

3.2 Replacing XML Syntax with Optimized Representation: Simple_DFDL

By separating message semantics from syntax, the proposed architecture provides mobile
applications options to choose the appropriate message representations (i.e., a binary or a
conventional SOAP representation) for a given Web Service communication environment.
The binary representation is a critical option to improve the overall performance of the HHFR
architecture for several reasons. First, it reduces the size of an exchanged message by
removing the verbose SOAP syntax. The message size can be reduced by up to a factor of 10 if
a document structure is especially redundant (e.g., with an array) [24]. A binary message
representation also helps the HHFR architecture to avoid textual conversion. The architecture
simplifies the conventional encoding/decoding stage2, in which the in-memory representation
is converted into a text format and vice versa. This is an expensive process, especially for the
relatively low-powered mobile devices that are required by SOAP syntax. Among data
conversions, floating point number conversion is the most costly one [25].

Finally, another benefit to having a binary representation of the SOAP message is that it
does not need to be parsed in a conventional way. Since SOAP syntax requires a structured
representation, we need to parse a given document to get information. A SOAP message in
binary representation (i.e., in a byte array format of contents) exists as chunks of continuous
XML information items that don’t need to be parsed in a conventional way. Rather, the
architecture offers another information retrieval scheme: Stream reader and Stream writer.
The latter enable the applications to read and write information item data to and from byte
stream by using Simple_DFDL to distinguish message semantics, i.e., information, message
syntax and the message generated from the given Simple_DFDL document.

Simple_DFDL that is a simple restricted XML Schema Definition (XSD) is our method of
defining the XML syntax of a message. While we design Simple_DFDL, we constrain the
XML Schema definition to achieve a single structure by parsing the XML Schema document
itself (i.e., a Simple_DFDL document should be a single XML Schema document rather than
multiple documents.). Therefore, the HHFR architecture can use a Simple_DFDL document
as a representation of both structures and types. Other constraints are as follows:

 There can be no reference in the Simple_DFDL definition using fragment identifiers or an
XPointer.

 The Simple_DFDL supports only limited Built-in simple types, such as string, float, double,
integer, boolean and byte.

 The Simple_DFDL does not support facets like minInclusive and maxInclusive to restrict
the valid values.

Since we preserve the message semantics in the SOAP Infoset data model, HHFR is also able
to handle various representations other than binary. We are able to send and receive messages
in binary format as well as in the traditional SOAP syntax. Here is an example of
Simple_DFDL to illustrate usage. An example array declaration follows:

<xs:element name="HHFR">
 <xs:complexType>
 <xs:element name="arraySize" type="i" value="10"/>
 <xs:element name="array" type="f"/>
 </xs:complexType>
</xs:element>

2 They are called marshalling/unmarshalling in some projects,

844 Oh et al.: Mobile Web Service Architecture with Context-store

Because individual messages in the HHFR architecture are not self-contained, the
architecture builds an internal data structure that contains the names of element information
items, attributes and child properties by parsing a Simple_DFDL document. Also the parsed
structure of the Simple_DFDL document represents a serialized structure of the SOAP body.
In combination, the internal Data Structure object and the HHFR message packet, which has
an optimized representation, can be transformed back to the original from the SOAP message.

In our architecture design, each message representation is optimized according to the
characteristics that are negotiated during the negotiation stage and the principles that are
predefined by an architecture specification. A binary format is the optimized representation in
most cases. However, in some conditions, views other than a binary representation can be
preferred. In the negotiation stage, a handler responds to the negotiation requestor with
message representations supported by the handler. Suppose the handler supports view A and
view B, but it prefers B. Despite the fact that the service prefers message format A, the service
may process a received format B message if the conversion process overhead is higher than the
threshold defined in the HHFR design specification.

In a conventional Web Service environment, XML is the representation format that
provides interoperability to the heterogeneous participating nodes. Yet, in a constrained
computing environment, processing an the XML format message becomes a performance
bottleneck because of its verboseness. The preferred representation concept of the HHFR
architecture can provide an optimized representation of the mobile and conventional
application and the given network characteristics.

3.3 Negotiation of Characteristics

A couple of design issues motivate an introduction of the negotiation stage. First, to have an
alternative representation of SOAP messages, the representation of messages should be
transmitted at the beginning of the stream. Second, to set up fast and reliable means of
communication, the architecture should negotiate the characteristics of the stream.

A stream of messages shares the same representation, meaning these messages share
identical structure and type of XML fragments, i.e., SOAP Body parts. The applications on
participating nodes negotiate a preferred representation and send messages in the preferred
representation according to the exchanged Simple_DFDL representation. Together with the
representation, the headers of the SOAP messages remain mostly unchanged in the stream.
Thus, these unchanging headers can be archived in the Context-store, and the sender can avoid
transmitting them with each message. Needless to say, some headers, like the reliability
related headers, are unique to individual messages. Such headers need to be transmitted with
each individual message and processed at the corresponding handlers. Unchanging headers,
which are often the majority of headers, can be transmitted only once, and the rest of the
messages in the stream can use saved-headers from the initial transmission.

The negotiation stage uses a single (or multiple, if necessary) conventional SOAP message3
that makes the negotiation stage compatible with the existing Web Service framework. The
architecture design defines each issue, such as reliability, preferred representation or security,
as an individual element item in a Negotiation Schema. The process begins when an
application on a participating node initiates a message stream by sending a negotiation request
to a service node. The negotiation handler receives a SOAP negotiation message and prepares
a response SOAP message containing the negotiated items.

3 If the negotiation can be continued until the two participants reach a single agreed upon point.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 845

Compared to the conventional Web Service communication method, the negotiation stage is
an additional overhead4 in the HHFR architecture, and this will discourage use of the scheme
in a short message stream that has few exchanged messages. However, for larger message
streams with many of redundant messages, the HHFR architecture’s negotiation overhead is
negligible.

4. Web Service Repository: Context-store in HHFR

In this section we present our extended version of HHFR with Context-store design and
implementation in detail. We describe the Context-store design characteristics. In the
following section, we provide our empirical experiment results using an implemented service
to validate the design efficiency of the Context-store and its effect on the overall architecture.

4.1 Benefits and Design Characteristics of Context-store

As we discussed, a Context-store is an essential component of the architecture where we can
store unchanging or redundant SOAP headers (e.g., namespace and encoding style
information), a Simple_DFDL document as a message representation and the characteristics
of the stream. The Context-store also archives the static context information from a SOAP
negotiation message; the HHFR design specification scheme itself is also kept in the
Context-store. By archiving, the context-store can serve as a meta-data repository for the
participating nodes in the HHFR architecture.

By storing and retrieving redundant and static message parts, mobile clients can be benefit
from the Context-store. Other than bandwidth saving, there are two more distinct benefits
from the Context-store; namely, supporting a reliable session for Web Service applications
and enhancing interoperability among the participating applications. Since a mobile client and
a service provider can save the session configuration during their session, the session can be
recovered from unexpected fault condition by retrieving stored configuration. They may
re-play the session or jump into the last state. As we discussed earlier, adopting WS-Context
and UDDI compliant Context-store will make the system as a more interoperable environment.
There are tons of Web Service applications and clients which are capable of understanding
WS-Context or UDDI specification and using the implementation. For them, HHFR
architecture provides not only message optimizing capabilities but also a context repository
(i.e. an online Web Service database). The overview of extended HHFR architecture and the
benefits of the Context-store are depicted in Fig. 3.

The Context-store implementation could be either a local or a remote service. A local
Context-store implementation is an internal module that keeps context. When it is a local
service in the runtime environment, other components in the HHFR architecture make a
method call to save the Context of the stream and to retrieve the context from the repository. It
is simple and straightforward, and in this case, an individual node holds the context-store.

In this extension of the architecture, we choose a remote service like Domain Name Server
(DNS) and our choice of a Context-store design is WS-Context specification [8]. The context
of the stream contains shared information among Web Service participants and the HHFR
specification itself. This is where the WS-Context specification is well suited. If the
Context-store is implemented as a WS-Context server, then participating nodes can archive

4 Others are a Repository (i.e., Context-store) accessing overhead and Simple_DFDL designing overhead.

846 Oh et al.: Mobile Web Service Architecture with Context-store

and retrieve contexts of the stream with an identifier, e.g., Uniform Resource Identifier (URI).
The HHFR architecture design defines information in the context-store with a URI.

Fig. 3. An Overview and Benefits of Extended HHFR

4.2 Context-store in Mobile Web Service

We chose Java as a language platform for both mobile and conventional sides because it is
portable across platforms, and the JME together with third party products, provides a rich set
of libraries. The architecture itself is not limited to any specific language platform and can be
applied to message communications between heterogeneous platforms, but we believe a
single-language prototype such as Java can show the effectiveness of the architecture design in
all respects but a few (e.g., the capability to float data conversion between different operating
systems). We validate efficiency and scalability of proposed extension design through the
empirical experiments and the results are shown in section 5.

The purpose of our scheme is to provide a way of using the information service from mobile
applications to enjoy advantages noted above. On the other hand, integrating a Web Service
based the information service (e.g., Context-store) with HHFR brings a dependency on
SOAP-Java binding on the Apache Axis library. The Axis version of the JME (Java Micro
Edition) environment or any other popular programming environment for small and embedded
devices has not yet been developed and will not be in the near future because of a lack of
related programming libraries, such as advanced XML parsers and utility libraries. So it is not
feasible to use the existing Axis-based client interface (to an Information Service) without
porting the code. Unfortunately, replacing JSE APIs with JME APIs is not possible, so we
must find an alternative solution.

The solution to the first problem includes a direct serialization of SOAP request message
and a parsing SOAP without Axis SOAP-Java binding. The same approach we used for the
negotiation message is used here: we use the kSOAP5 library [26] for this process. SOAP

5 kSOAP is the product of an open source project, Enhydra, led by Stefan Haustein

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 847

serialization using kSOAP library needs an ad-hoc method to integrate with Information
Service while SOAP parsing is straightforward. Because Axis SOAP-java binding is not
available for the JME environment, we focus on generating SOAP messages by the
WS-Context client based on Axis. The Axis-Java binding adds a hierarchically referenced
element to the structure if the binding process meets a Java wrapper when it serializes SOAP
message. As a result, Axis based SOAP binding code for WS-Context Service client generates
multi-referenced XML. Unfortunately, kSOAP does not support such advanced binding APIs;
rather, it provides more direct SOAP serialization APIs. For example, a piece of Java code
below will result to generate a XML fragment in Fig. 4-(b), which is highlighted as bold face.

SoapObject context = new SoapObject(NAME_SPACE, "ContextType");
SoapObject context_data = new SoapObject(NAME_SPACE, "ContextType");
SoapObject contextID = new SoapObject(NAME_SPACE, "string");
context.addProperty("context-identifier", identifierKey);
context.addProperty("context-data", data);

Fig. 4-(a) shows the getContext SOAP request message of the conventional WS-Context
client using Axis, and Fig. 4-(b) shows the flattened SOAP request message produced by the
mobile WS-Context client using kSOAP.

Fig. 4. (a) getContext() SOAP request message created using Axis.

Referenced elements are highlighted in boldface.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>
<ns1:getContents
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns1="http://wsctx_service.WSCTX.services.axis.cgl">
<body href="#id0"/>

 </ns1:getContents>
<multiRef id="id0" soapenc:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="ns2:GetContents"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"xmlns:ns2="http://wsctx_
schema.WSCTX.services.axis.cgl">

<correlation-id xsi:type="xsd:string" xsi:nil="true"/>
<context href="#id1"/>

 </multiRef>
<multiRef id="id1" soapenc:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="ns3:ContextType"
xmlns:ns3="http://WSCTX.services.axis.cgl/wsctx_schema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">

 <context-identifier xsi:type="xsd:string">
 context://hhms/Sangyoon </context-identifier>
 <context-data xsi:type="xsd:string" xsi:nil="true"/>

 </multiRef>
 </soapenv:Body>
</soapenv:Envelope>

848 Oh et al.: Mobile Web Service Architecture with Context-store

Fig. 4. (b) getContext() SOAP request message created using kSOAP for a mobile WS-Context client.
Elements resulted from the piece of Java code are highlighted in boldface.

Fig. 5. Mobile and conventional context service clients

As depicted in Fig. 5, the two primary WS-Context related functionalities of Information

Services are getContent() and setContent() methods, which provide access and store
operations that are equivalent to the Axis based component of the conventional client. Method
calls are not tied to any other operation in the HHFR session, so they can be called at anytime
when the HHFR runtime or the HHFR client service needs to create, update or retrieve context
in the Context-store (i.e., Information service). Thus, the following Java program 1) create
ContextServiceHandler object with the Context Service URI and the service
(implementation) version, 2) store given context of any type paired with a unique identifier,
and 3) retrieve context. ContextServiceHandler object is a wrapper class and provides
getContent() and setContent() methods.

getContent() and setContent() methods throws java.lang.InterruptedException,
since the handler runs as a Thread. Running as a Thread can avoid a possible deadlock
situation, which could occur when the network fails or due to an operational error.

<v:Envelope xmlns:i=http://www.w3.org/1999/XMLSchema-instance
xmlns:d="http://www.w3.org/1999/XMLSchema"
xmlns:c="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:v="http://schemas.xmlsoap.org/soap/envelope/">

 <v:Header />
 <v:Body>
 <n0:getContents id="o0" c:root="1"

xmlns:n0="http://wsctx_service.WSCTX.services.axis.cgl">
 <body i:type="n0:body">
 <context i:type="n0:ContextType">
 <context-identifier i:type="d:string">
 context://hhms/sangyoon</context-identifier>
 </context>
 </body>
 </n0:getContents>

</v:Body>
</v:Envelope>

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 849

ContextServiceHandler handler = new ContextServiceHandler(SERVICE_URL, 0);
try {
 boolean result = handler.setContext(identifier, givenContext);
 Object contextData = handler.getContext(identifier);
}
catch (java.lang.InterruptedException exception) {
 exception code…
}
There are few limitations that could be improved and extended. First, the ad-hoc method to

generate a SOAP message is the biggest obstacle to automate client code generation.
Compared to automatic Java binding generation of Axis, the method also imposes human error
when the multi-referenced SOAP is converting into flattened structure.

5. Performance Evaluation

The goal of performance evaluation is to demonstrate the effect of using the Context-store in
the HHFR architecture, how much overhead to access the Context-store, and the scalability of
the approach. Preliminary evaluation of HHFR architecture focused on performance gains
using preferred message representation (i.e., binarization of SOAP message) is presented in
detail in Ref [7].

Table 1. Summary of evaluation measurements
 Measurement Protocol Comment

1 Context-store access time SOAP
A time to access a Context-store from a mobile
client

2
Round Trip Time to exchange a

message
HHFR Bandwidth gain from using a Context-store

3 Scalability SOAP
The scalability of our approach which is analyzed
from the processing time of the Context-store
service.

Fig. 6. System parameters

Fig. 7. System parameters with time frame

850 Oh et al.: Mobile Web Service Architecture with Context-store

5.1 Evaluation Model and Test Environment

For the evaluation, we focus on measuring and analyzing three values: 1) time to finish a
Context-store access from a mobile client (i.e., a time between a SOAP request and a SOAP
response), 2) bandwidth (time) gain from using a Context-store, and 3) the scalability of our
approach to use a Context-store. Thus, we design the evaluation measurements to have three
aspects. First, we measure the time to access the Context-store from a mobile client. Second,
we measure the Round Trip Times to show the performance effect of using the Context-store
to store redundant and/or unchanging parts of the SOAP message. Third, we analyze the
scalability of our approach by measuring the time it takes to process a WS-Context SOAP
message on the service side. The second measurement is distinguished from the other two
because it uses a high performance channel of HHFR to exchange messages, and the first and
the third experiments use a conventional SOAP message for measurements. Table 1 shows a
summary of our evaluation measurements.

For the evaluations, we assume the following system parameters.
 Taccess: time to finish accession to a Context-store (i.e., save a context or retrieve a context

to/from the Context-store) from a mobile client
 TRTT: Round Trip Time to exchange message through a HHFR channel
 N: the maximum number of stream supported by one server
 Twsctx: time consumed to process setContext operation
 Taxis-overhead: time consumed to process Axis data-binding and HTTP request/response

process
 Ttime-in-server: time consumed in the Axis server
 Ttrans: time consumed to transmit a message over the network
 Tstream: the length of a stream in seconds

We measure Taccess in the first experiment and measure TRTT in the second. In the third
experiment, we measure Twsctx and Ttime-in-server and assume Tstream to analyze the scalability of
our model. Fig. 6 and Fig. 7 show parameters on the illustrated system model.

transoverheadaxiswsctxaccess TTTT (1)

In our test model, we set that there are three Context-store accesses per session, i.e., two
accesses are made from each Web Service participant nodes at the beginning of the session,
and one access is made to report the end of the session to the Context-store. Let us consider N
simultaneous streams are happening during the time period of Tstream. Thus, we can formulize
the calculation of the scalability of our approach to use the Context-store that is the maximum
number of supported simultaneous streams as follows:

serverintimestream T

1

T

N3

 (2)

serverintime

stream

T3

T
N

 (3)

It should be noted that there are three major parameters on which our evaluation analysis
depends. First, Taccess is governed by Ttrans that can vary from the wireless (i.e., cellular)
technologies. Second, the Taxis-overhead at the Web Service container is the dominant factor in
message processing. In this evaluation, we used Axis 2 version 1.4 with an Axis data binding
to measure the message processing overhead (i.e., Ttime-in-server). Finally, the stream length (i.e.,
how long an application usage session lasts) is also an important parameter to analyze
scalability. In our analysis, we assume the stream length as ten minutes (i.e., 600 seconds).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 851

Three Context-store accesses per stream spread over the stream length; thus, the longer the
stream length, the more simultaneous streams can be supported.

Evaluations conducted over 14.4kbps wireless cellular networks and the mobile
applications are running on Smart phones that equipped with a 144MHz ARM processor.
Table 2 shows the summary of the configuration.

Table 2. Summary of the Machine Configuration

 Service Client Service Provider

Processor Intel Xeon (2.4GHz) ARM (144MHz)

RAM 2GB 32MB

Bandwidth 100Mbps 14.4kbps

Java Java 2 SE CLDC 1.1 and MIDP 2.0

SOAP Engine Axis 1.2 kSOAP 1.1

Fig. 8. Set up for measuring Context-store accessing overhead

Fig. 9. WS-RM message example for Context-store access measurement

5.2 Experiment 1: Context-store Access Time

In this section, we present the time measurements to access the Context-store. To measure the
time, we used the setContext() operation6 of the information service. We measured the

6 We choose the setContext operation as an example. Similar performance evaluation can be made for the

<?xml version="1.0" encoding="UTF-8" ?>
<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"
xmlns:wsrm="http://schemas.xmlsoap.org/ws/2003/03/rm"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">

 <S:Header>
 <wsa:MessageID>http://Business456.com/guid/daa7d0b2-c8e0-476e-a9a4-d164154e38de
</wsa:MessageID>
 <wsa:To>http://fabrikam123.com/serviceB/123</wsa:To>
 <wsa:ReplyTo>
 <wsa:Address>http://Business456.com/serviceA/789
 </wsa:Address>
 </wsa:ReplyTo>
 <wsrm:Sequence>
 <wsu:Identifier>http://Business456.com/RM/ABC
 </wsu:Identifier>
 <wsrm:MessageNumber>2</wsrm:MessageNumber>
 </wsrm:Sequence>
 </S:Header>
 <S:Body />
</S:Envelope>

852 Oh et al.: Mobile Web Service Architecture with Context-store

Round Trip Times of the Context-store accessing transactions. A mobile client sends a sample
SOAP message with Web Service Reliable Messaging (WS-RM), and the Information Service
responds back. The experiment setup is illustrated in Fig. 8. The size of the headers used in the
test, which is shown in Fig. 9, is 847 bytes, and the entire SOAP message size is 1.58KB.

The measurement results were collected with the same configurations as the previous
experiment through 200 iterations. Table 3 shows the average values of the collected data.

Table 3. Summary of the measured Context-store accessing overhead
 Set 1 (sec) Set 2 (sec) Set 3 (sec) Set 4 (sec) Set 5 (sec) Ave. of Sets

Ave±error
(sec)

4.194±0.083 4.197±0.093 4.177±0.123 4.028±0.066 4.036±0.097 4.127±0.042

StdDev
(sec)

0.457 0.511 0.676 0.363 0.530 0.516

5.3 Experiment 2: Evaluation of the performance measurement of the full SOAP
message and optimized SOAP message with the use of Context-store

To demonstrate the effectiveness of using the Context-store, we measured the Round Trip
Times (TRTT) of both the full SOAP message and optimized message with the use of
Context-store. As discussed in section 3, the applications in HHFR store unchanged and/or
redundant parts of the SOAP message to the Context-store. By saving this metadata, the size of
the message can be reduced and the performance of the messaging can also be increased.
Before presenting the performance evaluation, we present a practical usage example of the
Context-store, i.e., storing a message with WS-Addressing headers. We then present the
measurement methodology and results.

A sample SOAP Header example: Our choice for a sample SOAP header comes from the
WS-Addressing Specification [27]. The WS-Addressing Specification defines transport
neutral mechanisms to address Web Services and messages. It defines two constructs that
convey information between Web Service endpoints (e.g., reference-able entity, processor or
resource). The two constructs are 1) endpoint references at which Web Service messages can
be targeted and 2) message information headers; endpoint references convey information that
identifies a Web Service endpoint (or individual message in some cases). For individual
message addressing, the specification defines a family of information headers that allows the
uniform addressing of messages. Message information headers, which are the second
construct, convey end-to-end message characteristics, such as message identity, origin and
destination of the message.

An application using HHFR framework stores unchanging and/or redundant SOAP parts
into the Context-store (Information Service) and retrieves them when they are needed. So, we
can store many of the WS-Addressing header parts to improve message communication
performance. To support this idea, we present a practical example of this usage. Two Web
Service endpoints, i.e., A (a service provider) and B (a mobile Web Service client), start a
series of Web Service transactions. Endpoint B requires WS-Addressing headers only if it
needs to send a reply or address an individual message. Thus, those headers that are unchanged
for the rest of the stream can be archived in the Context-store. Among the elements of
WS-Addressing header parts, <messageID> must not be archived because it is unique for each
message. In this example, we also assume that there is no message referencing so that we can
avoid leaving referencing items. The example scenario is depicted in Fig. 10, and Fig. 11

getContext operation.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 853

shows a sample SOAP header used. Except <messageID> that is highlighted as bold face,
most of the WS-Addressing headers can be removed from the message.

Fig. 10. Scenario for WS-Addressing example

Fig. 11. Sample SOAP message for the WS-Addressing example

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

T
ra

ns
it

T
im

e
(s

ec
)

Size of Message (byte)

Optimized Message
Full Message

Fig. 12. Round trip time of optimized message exchange through the HHFR high performance

channel compared with full message exchange

Fig. 12 shows the Round Trip Time (TRTT) of message exchange using the HHFR

communication with the use of Context-store compared with the Round Trip Time without the
the use of Context-store (i.e., with full header message transactions). Times are collected for
50 repetitions of three different sizes (2byte to 2.61KB). Two practical examples of Web
Service headers are used in this measurement; the Round Trip Time for a large message are
collected using a sample message with WS-Security headers, a sample message with

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
 <S:Header>
 <wsa:MessageID>
 uuid:6B29FC40-CA47-1067-B31D-00DD010662DA
 </wsa:MessageID>
 <wsa:ReplyTo>
 <wsa:Address>http://business456.example/client1</wsa:Address>
 </wsa:ReplyTo>
 <wsa:To>http://fabrikam123.example/Purchasing</wsa:To>
 <wsa:Action>http://fabrikam123.example/SubmitPO</wsa:Action>
 </S:Header>
 <S:Body/>
</S:Envelope>

854 Oh et al.: Mobile Web Service Architecture with Context-store

WS-Addressing headers is used for a medium size, and a SOAP message that has a body
element with no data and no header is used for an empty message. It should be noted to clarify
the testing environment that this experiment ran over a HHFR message stream. It is because
this experiment is done to show the effectiveness of the HHFR framework that uses the
Context-store. The results of the given examples show that we save 83% of message size on
average and 41% of transit time on average by using our design. These results are shown in
Table 4.

Table 4. Summary of the round trip time

Message Size Without Context-store With Context-store
Ave.±error StdDev Ave.±error StdDev

Minimum: 2byte (sec) 1.54±0.039 0.217 1.54±0.039 0.217
Medium: 513byte (sec) 2.76±0.034 0.187 1.75±0.040 0.217

Large: 2.61KB (sec) 5.20±0.158 0.867 2.81±0.098 0.538

5.4 Experiment 3: Scalability of the Context-store

In addition to these two tests (i.e., the test that measures the accession overhead and the test
that measures the effectiveness of the Context-store in the HHFR), we also analyze the
scalability of our approach to use the Context-store with multiple message streams.

We measured the time needed to finish a Context-store request transaction (i.e., Ttime-in-server)
and the time to process setContext()operation (i.e., Twsctx) with various sizes of contexts.
The results are shown in Table 5. Since Twsctx is less than one millisecond, Fig. 13 shows only
the measurement of Ttime-in-server. Both Ttime-in-server and Twsctx increase linearly as the size of
context increases.

Table 5. Summary of the average time to process Context-store message with Axis 1.2

Size of Context
(bytes)

Ttime-in-server (msec) Twsctx (msec)
Ave±error StdDev Ave±error StdDev

1220 35±0.43 4 0.501±0.005 0.048
1320 63±0.54 5 0.498±0.005 0.044
1520 115±0.92 9 0.531±0.013 0.120
1720 174±1.64 16 0.508±0.005 0.050
1920 227±1.35 13 0.528±0.012 0.118
2120 293±2.01 19 0.517±0.012 0.118

With our measurements, we demonstrate how to calculate the maximum number of
simultaneous stream supported by our approach to use the Context-store. First, we assume the
stream length as 10 minutes, i.e., Tstream = 600 seconds. Then, provided with formula 3 and
Ttime-in-server time for a 1220 byte-size context, we can calculate the maximum number of
simultaneous streams as follows:

035.03

600
N

 (4)

5700N (5)

Thus, if we have 100byte-size context, one server can support a maximum of 1600 streams.
However, it should be noted that this illustration is based on the assumption that a web Server
can handle this many simultaneous connections.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 855

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
0

50

100

150

200

250

300

Size of Context (KB)

T
im

e
(m

se
c)

T(time-in-server)

Fig. 13. Time to finish Context-store request message processing (i.e.,Ttime-in-axis)

5.5 Discussions: Findings from the Experiments

As noted in 5.1, we design the evaluation to show the effectiveness of using Context-store in
HHFR architecture. This evaluation does not include the performance comparison between
with Context-store and without Context-store and there is a reason for it. Since the HHFR
design assumes the redundant and static parts of the messages is removed from the exchanging
messages and stored to the Context-store, it is obvious that there is less communication
overhead when a client and a service exchange messages with some parts removed (i.e. using
the Context-store in the HHFR). Thus, the issue here should be rather how long the session
should be to get the direct benefit from the Context-store use in HHFR than whether we have
performance gains or not. We conducted this evaluation in Ref [7] and for the given
environment; we calculated the break-even point that is point below which the conventional
Web Service communication framework outperforms the HHFR. If there will be more than
four messages in a row in the given application session, the HHFR will perform better in
mobile Web Service [7].

However, we conduct evaluations which are specialized for this version of HHFR with the
Context-store too. The second evaluation we conduct is to measure Round Trip Times (RTTs)
for both conventional Web Service messaging with full XML content body and optimized
HHFR messaging with the Context-store. As it is shown in Fig. 12, the transit time between a
service client and a service provider is saved by 41%. We analyze the result and find the RTT
saving is mostly coming from the size reduction which is 83% gain for our test cases. Thus we
conclude the biggest performance benefit of the Context-store to the HHFR is to reduce the
size of the messages after all by letting them include only essential parts of the SOAP
messages.

Required characteristics to verify the effectiveness of the Context-store also includes
minimal communication overheads to access the Context-store and scalability of the
Context-store. To measure the communication overhead accessing the Context-store in regular
cellular networks, we have measured the response time of the setContext() operation of
the Context-store. The evaluation is conducted over 14.4kbps cellular networks and the
average access time is about 4 seconds, however Ttime-in-server is about 100msec and pure
network overhead is 3.9 sec. Thus, we expect smaller access time to the Context-store, if we
have better connections like 3G cellular network (144kbps, ten times faster than current

856 Oh et al.: Mobile Web Service Architecture with Context-store

evaluation environment). Finally we conduct scalability test for the Context-store
implementation. As we derived formula (3) from formula (1) and (2), we get necessary
parameters like Ttime-in-server and Tstream from the evaluation tests. Using the numbers from Table
4, we can derive one Context-store server can support up to 1600 streams with the given
machine configuration.

6. Conclusion

In this paper, we have identified an important factor to improve communication performance
of mobile Web Service is addressing the messaging scheme at system level. There have been
many researches which try to optimize a message representation; however they may not
interoperable with the current Web Service framework. We design HHFR architecture to
address the problem from the system level view and make the architecture compatible with the
current architecture by supporting conventional Web Service messaging as an option.

We have presented the extension of our HHFR architecture that integrates the online Web
Service Repository with the existing message optimization framework. We argue that the right
way to address message size reduction in mobile computing is by saving redundant or
unchanging SOAP message parts (metadata about messages) into the Context-store for
retrieval as needed: (a) bandwidth saving. Other benefits we can have from the use of
Context-store are (b) supporting reliable recovery from the failure and (c) enhancing
interoperability. Through saving negotiation information, unchanging message parts and
session state context to more stable repository, mobile Web Service participants retrieve and
restore any given session state if it has lost session connections. If we add a periodical logging
feature to the architecture and mandate participants to save session history, then the reliability
of the overall system will be highly increased. Also, WS-Context and UDDI compliant
Context-store will make the system a more interoperable environment. To the Web Services
and their clients that are capable of understanding WS-Context or UDDI specification, HHFR
architecture with the Context-store provides not only message optimizing capabilities but also
a context repository (i.e. an online Web Service database).

However, there is a limitation on the proposed architecture as well. As mentioned in the
paper, the HHFR architecture assumes that the mobile clients interact with Web Services in a
session style. That is, they exchange messages continuously and messages are similar or the
same. Thus, if a client and a service exchange message that are different from each other,
HHFR architecture adds more overheads (i.e. negotiation stage and context-store access) than
gives the optimization benefit to the message exchange.

The evaluation results and the analysis show that we can expect notable performance gains
with the Context-store in comparison to without the Context-store system. Also, we show the
access time to the Context-store is in affordable range. Since the access time is heavily
dependent to the wireless connection speed, the new access time with faster connections like
3G cellular networks will be the negligible cost to the overall cost.

References

[1] M. P. Papazoglou and D. Georgakopoulos, “Service-oriented computing,” Communications of the
ACM, vol. 46, no. 10, pp. 25-28, Oct. 2003.

[2] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-oriented computing: state of
the art and research challenges,” IEEE Computer Magazine, vol. 40, no. 11, pp. 38-45, Oct. 2007.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 857

[3] S. N. Srirama, M. Jarke, and W. Prinz, “Mobile web service provisioning,” in Proc. of on
AICT/ICIW, pp. 120, 2006.

[4] H. Chu, C. You, and C. Teng, “Challenges: wireless web services,” in Proc. of on ICPADS 2004,
pp. 657-664.

[5] P. Sandoz and S. Pericas-Geertsen, “Fast infoset @ Java.net,” in Proc. of XTech 2005.

[6] R. Carroll, D. Virdee, and Q. Wen, “Developments in BinX, the binary XML description
language,” in Proc. of the UK e-Science All hands Meeting 2004, Nottingham UK, Sept. 2004.

[7] S. Oh and G. Fox, “Optimizing web service messaging performance in mobile computing,” Future
Generation Computer System, vol. 23, no. 4, pp. 623-632, 2007.

[8] M. Little, E. Newcomer, and G. Pavlik, “Web services context specification (WS-Context)
Version 1.0,” Apr. 2007, http://docs.oasis-open.org/ws-caf/ws-context/v1.0/wsctx.pdf

[9] M. Adacal and A. B. Bener, “Mobile web services: a new agent-based framework,” IEEE Internet
Computing, vol. 10, no. 3 pp. 58-65, May-June, 2006.

[10] M. Tian, T. Voigt, T. Naumowicz, H. Ritter, and J. H. Schiller, “Performance considerations for
mobile web services,” Computer Communications, vol. 27, no. 11, pp. 1097-1105, 2004.

[11] H. Liefke and D. Suciu, “XMill: an efficient compressor for XML data,” in Proc. of ACM
SIGMOD 2000, Dallas, TX, USA, May 2000.

[12] M. Girardot and N. Sundaresan, “Millau: an encoding format for efficient representation and
exchange of XML over the web,” in Proc. of on the 9th International World Wide Web Conference
WWW2000, Amsterdam Netherland, May 2000.

[13] D. Sosnoski, “Improve XML transport performance part 1 and 2,” IBM developersWork Article,
June 2004.

[14] M. Aktas, G. Fox, M. Pierce, and S. Oh, “XML metadata service,” Concurrency and
Computation: Practice and Experience, vol. 20, no. 7, pp. 801-823, 2008.

[15] W. Lu, K. Chiu, and D. Gannon, “Building a generic SOAP framework over binary XML,” in
Proc. of on HPDC 2006, pp. 195-204.

[16] E. Serin, “Design and test of the cross-format schema protocol (XFSP) for networked virtual
environments,” M.S. thesis, Naval Postgraduate School, Monterey, CA, USA, Mar. 2003.

[17] E. Serin and D. Brutzman, “XML schema-based compression (XSBC)”,
http://xmsf.sourceforge.net/xsbc.html

[18] K. Chiu, T. Devadithya, W. Lu, and A. Slominski, “A binary XML for scientific applications,” in
Proc. of on e-Science 2005, pp. 336-343.

[19] T. Bellwood et al., “UDDI Version 3.0.2,” UDDI specification technical committee,
http://www.uddi.org/pubs/uddi_v3.htm

[20] R. Chumbley et al., “WS-interoperability: basic profile version 1.2,” Mar. 2010,

http://ws-i.org/profiles/BasicProfile-1.2-WGD.html

[21] R. Levenshteyn and I. Fikouras, “Mobile services interworking for IMS and XML web services,”
IEEE Communications Magazine, vol. 44, no. 9, pp. 80-87, Sept. 2006

[22] Department of Defense, “Unified capabilities requirements 2008 (UCR 2008),” Dec. 2008.

[23] M. Beckerle, and M. Westhead, “GGF DFDL primer”,

http://www.gridforum.org/Meetings/GGF11/Documents/DFDL_Primer_v2.pdf

[24] M. Govindaraju, A. Slominski, K. Chiu, P. Liu, R. V. Engelen, and M. J. Lewis, “Toward
characterizing the performance of SOAP toolkits,” in Proc. of 5th IEEE/ACM International
Workshop on Grid Computing, Pittsburgh, Nov. 2004.

[25] K. Chiu, M. Govindaraju, and R. Bramley, “Investigating the limits of SOAP performance for
scientific computing,” in Proc. of 11th IEEE International Symposium on High Performance
Distributed Computing HPDC-11. Edinburgh UK. Jul. 2002.

[26] kSOAP, http://ksoap2.sourceforge.net/

858 Oh et al.: Mobile Web Service Architecture with Context-store

[27] D. Box et al., “Web service addressing (WS-Addressing),” Aug. 2004,
http://www.w3.org/Submission/ws-addressing/

Sangyoon Oh received Ph.D. in Computer Science Department from Indiana University at
Bloomington, U.S.A. He is an assistant professor of School of Information and Computer
Engineering at Ajou University, South Korea. Before joining Ajou University, he worked for SK
Telecom, South Korea. His main research interest is in the design and development of web based
large scale software systems and he has published papers in the area of mobile software system,
collaboration system, Web Service technology, Grid systems, and Service Oriented Architecture
(SOA).

Mehmet Aktas received his Ph.D. degree in Computer Science from Indiana University in 2007.
During his graduate studies, he worked as a researcher in Community Grids Laboratory of Indiana
University in various research projects for six years. Before joining Indiana University, Dr. Aktas
attended Syracuse University, where he received his M.S. degree in Computer Science and taught
undergraduate-level computer science courses. He is currently working as a project manager in the
Information Technologies Institute of Tubitak - Marmara Research Center. He is also part-time
faculty member in the Computer Engineering Departments of Marmara University and Istanbul
Technical University, where he teaches graduate-level computer science courses. His research
interests span systems, data and Web science.

Geoffrey Charles Fox received a Ph.D. in Theoretical Physics from Cambridge University and is
now professor of Computer Science, Informatics, and Physics at Indiana University. He is director of
the Community Grids Laboratory of the Pervasive Technology Laboratories at Indiana University.
He previously held positions at Caltech, Syracuse University and Florida State University. He has
published over 550 papers in physics and computer science and been a major author on four books.
Fox has worked in a variety of applied computer science fields with his work on computational
physics evolving into contributions to parallel computing and now to Grid systems. He has worked on
the computing issues in several application areas – currently focusing on Earthquake Science.

