
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 3, June 2010                                              243 
Copyright ⓒ 2010 KSII 

 
 
DOI: 10.3837/tiis.2010.06.003 

Path Loss Exponent Estimation for Indoor 
Wireless Sensor Positioning 

 
Yu-Sheng Lu1,2, Chin-Feng Lai1, Chia-Cheng Hu3, Yueh-Min Huang1 and Xiao-Hu Ge4 

1 Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan 
[e-mail: cinfon@ieee.org, huang@mail.ncku.edu.tw] 

2 Business Customer Solutions Lab, Chunghwa Telecom Laboratories, Taoyuan, Taiwan 
 [e-mail: yusheng@cht.com.tw] 

3 Department of Information Management, Naval Academy, Kaohsiung, Taiwan 
[e-mail: cchu@cna.edu.tw] 

4 Department of Electronics and Information Engineering, Huazhong University of Scince & Technology 
Wuhan, China 

[e-mail: xhge@mail.hust.edu.cn] 
*Corresponding author: Xiaohu Ge 

 
Received May 28, 2010; revised June 8, 2010; accepted June 14, 2010; 

published  June 30, 2010 
 

 

Abstract 
 

Rapid developments in wireless sensor networks have extended many applications, hence, 
many studies have developed wireless sensor network positioning systems for indoor 
environments. Among those systems, the Global Position System (GPS) is unsuitable for 
indoor environments due to Line-Of-Sight (LOS) limitations, while the wireless sensor 
network is more suitable, given its advantages of low cost, easy installation, and low energy 
consumption. Due to the complex settings of indoor environments and the high demands for 
precision, the implementation of an indoor positioning system is difficult to construct. This 
study adopts a low-cost positioning method that does not require additional hardware, and uses 
the received signal strength (RSS) values from the receiver node to estimate the distance 
between the test objects. Since many objects in indoor environments would attenuate the radio 
signals and cause errors in estimation distances, knowing the path loss exponent (PLE) in an 
environment is crucial. However, most studies preset a fixed PLE, and then substitute it into a 
radio propagation loss model to estimate the distance between the test points; such method 
would lead to serious errors. To address this problem, this study proposes a Path Loss 
Exponent Estimation Algorithm, which uses only four beacon nodes to construct a radio 
propagation loss model for an indoor environment, and is able to provide enhanced positioning 
precision, accurate positioning services, low cost, and high efficiency. 
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1. Introduction 

The concept of ubiquitous computing has brought changes to the living environments. With 
advancement in wireless technology, sensor precision, miniaturization, and computer chips, 
wireless sensor networks have grown in popularity. Many wireless sensor network 
technologies have been widely applied in daily life, and applications for positioning people 
and objects have been extensively studied. Spatial positioning can help users to identify 
orientation and provide related services according to the users’ position; thus, users can enjoy 
the convenience and practicality of ubiquitous computing. 

Positioning systems can be used in both indoor and outdoor environments. GPS is the most 
commonly used method in outdoor environment positioning, and is widely applied in many 
fields [1][2]. However, for indoor environments, GPS cannot be fully functional due to LOS 
limits. An Indoor Positioning System (IPS) is difficult to implement due to complex indoor 
settings and high precision demands. Common methods adopted for wireless positioning 
systems include RSS, angle of arrival (AOA), time of arrival (TOA), and time difference of 
arrival (TDOA). This study employs the RSS approach to calculate the coordinates of test 
points. The RSS approach uses a radio propagation model to describe the distance attenuation 
with path loss. However, a radio propagation loss model for the environment must be 
constructed first in order that the wireless receiver can use the propagation loss model to 
estimate the distance between the test points and beacon nodes, according to the received 
signal strength. Since a wireless signal is transmitted as an electromagnetic wave, phenomena, 
such as reflection, refraction, diffraction, scattering, and multipath, could easily occur in 
complex indoor spaces [3][4], resulting in intermittently strong signals. For example, indoor 
furniture, articles, and movement would affect the radio propagation in the room, thus, the 
received signal strength would be different from that of the free space propagation. Such 
differences would cause errors in estimating the difference between the test points and beacon 
nodes, and hence, affecting positioning accuracy. To address this problem, this study proposes 
a Path Loss Exponent Estimation for Indoor Wireless Sensors Positioning System, which only 
requires four beacon nodes to construct a indoor environment radio propagation loss model. It 
can improve positioning accuracy, and provide accurate positioning service with low cost and 
high efficiency. 

The remainder of this paper is organized as follows. Section 2 is the literature review, and 
explains the current indoor environment positioning services and related issues; Section 3 
introduces the positioning system framework; Section 4 describes the framework of a Path 
Loss Exponent Estimation Algorithm; Section 5 discusses the experimental data and results; 
and Section 6 proposes conclusions and suggestions for future studies. 

2. Related Work 
To date, there are four positioning models for positioning services in wireless sensor network 
environments [5][6][7][8]: AOA, TOA/TDOA, the hybrid angle and time of arrival, and the 
RSS approach. The AOA approach uses the angle of the mobile device signal detected by an 
antenna to achieve accurate positioning; the working principle is as follows: the data are 
measured by the directional antenna or antenna array, which then send to the blind nodes. The 
beacon nodes receive source directions from signals emitted by the blind nodes, or the 
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probable direction of the blind node position. The receiver uses this data and known 
coordinates to calculate the blind node coordinates. The TOA/TDOA approach obtains the 
relative distance between the receiver and the sender from the time required to transfer the 
wireless signal. The wireless signal propagation time between the blind node and beacon node 
is measured, then multiplied by the propagation rate (electromagnetic waves propagate like the 
velocity of light), in order to estimate the distance between the blind node and beacon node. 
The data are then used to estimate the blind node coordinates. The hybrid angle and time of 
arrival approach combines the two approaches mentioned above, this couples time difference 
and angle of received signal determine the blind node position. The RSS approach employs a 
radio propagation model to describe the distance attenuation with path loss; the strength of the 
signal received by the blind node indicates the RSS value. The received RSS value is 
substituted into the radio propagation model, which derives an estimated distance from the 
transfer point and estimates the blind node coordinates. Among these four approaches, 
TOA/TDOA achieves positioning based on estimating the time difference between the sender 
and receiver, with fast wireless network transmission rates and insignificant time variables. 
However, if the time variation is unknown the positioning would be erroneous, and thus, 
requires extra hardware for time synchronization in order to reduce the distance errors due to 
errors of time differences. AOA also requires an additional antenna array for positioning. 
Compared to TOA/TDOA and AOA, the RSS approach does not require additional 
positioning hardware for the radio propagation model. In terms of cost, the RSS approach has 
the lower cost, as compared to the other three approaches, and it is more suitable for indoor 
environments.  

Moreover, the other three approaches are vulnerable to the multi-path problems common in 
indoor environments, while the RSS approach can predict changes in signal strength 
displacement and the dependent variables of the obtained positions, thus, have higher 
measurement accuracy [9][10][11]. Based on the above, this study applies the RSS approach 
as the basic algorithm framework, which uses the radio propagation model to describe distance 
attenuation with path loss, and the radio propagation model to convert distances from senders 
when the receiver receives a sent RSS. The main parameter of the radio propagation model is 
the PLE, which is an attenuation exponent for the received signal, as the radio propagation 
distance is increased, thus, PLE varies with its environment [12]. In terms of indoor 
positioning, obstacle objects are a key factor. As indoor environments contain various 
furniture or decorations, and such articles have different absorptivity of signals and are often 
arranged irregularly, the wireless signal is easily absorbed when propagating in a room. As a 
result, positions and materials of articles should be considered when estimating indoor 
positions based on signals. Moreover, 70% of the human body consists of water; and therefore, 
absorbs wireless signal. Signal variations would be greater when used in a larger population or 
involving frequent human movements. Since obstacles absorb signals, many studies on 
positioning have treated the PLE as a constant; hence, the PLE is often not reflected in real 
environments, which may cause serious errors in complicated indoor environments. Many 
current studies have explored the above problems, for example, [13] proposed two methods to 
estimate PLE, which are the Cayley-Menger determinant and the Pattern matching approach, 
both of which assume that the loss factor of each link is the same. Whereas, [14] set up beacon 
nodes in a grid-based manner, and assumed that each link had a different PLE. The algorithm 
contains two steps: 1) Step 1: obtain the PLE of each link, and utilize the maximum and 
minimum PLE to position the region of the blind node; 2) Step 2: utilize related data derived 
from Step 1 to estimate the blind node position. [15] added Path-loss exponent estimation 
nodes (PLE node) to measure the environment of the PLE, and proposed two methods: 1) 
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average the PLEs of PLE nodes in an environment to obtain the environment PLE, and 2) 
choose the PLE nearest to PLE node for blind nodes, and then, use a triangulating approach to 
estimate the blind node position. In  the grid-based method [14], eight becan nodes are 
required to get the more accuracy. In contrast to other methods, [15] needs one more PLE node 
to get PLE values in the experiment environment. 

This study uses four beacon nodes to construct indoor PLE among the beacon nodes. In the 
other words, the current PLE could be estimated dynamically according to the environments. 
By combining PLE and a radio propagation model, the distance between the blind node and 
beacon node can be calculated, and then, a polygon approach is used to estimate the blind node 
position. 

In compliance with the two methods aboved, the proposed mechanism in this study could 
reduce the cost and improve precision of estimating the blind node positions. 

3. System Structure 
The system framework of this study is shown in Figure 1, which contains a server, a base 
station, beacon nodes, and blind nodes [16]. Blind nodes are the positioning nodes in the 
system, beacon nodes are the reference nodes for positioning, for which the actual coordinates 
of the beacon nodes in the system are shown in Figure 1, and are used as reference for 
positioning. The base station forms a wireless sensor network and feeds the relative RSS 
values detected by the beacon nodes and blind node back to the server. The sensor nodes of the 
8-bit processors used in this system are not suitable for mathematical operations, as frequent 
execution of such operations would lead to higher power consumption. Hence, the sensor 
nodes of this system are only responsible for collecting position-related information, which is 
sent to a server for operations. The server receives the related RSS values, and then uses the 
algorithm proposed in this study to accurately estimate the blind node position in the system. 
 

 
Fig. 1. System Architecture. 
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As shown in Fig. 1, when a blind node sends a positioning request to the base station, the 
station transfers the initial command to the beacon nodes by broadcasting. When the beacon 
nodes receive an initial command, they would detect the RSS propagated from other beacon 
nodes, and transfer the collected RSS to the server via the base station. The server employs the 
algorithm proposed in this paper to compute the PLE of the environment of the beacon nodes. 
After the initial stage, the base station sends a positioning command to the blind node, which 
receives the command, collects the RSS of each beacon node, and feeds this data back to the 
server via the base station. When the server receives the blind node feedback RSS, it employs 
the proposed algorithm to estimate the PLE coordinates of the blind node in the environment. 
The experiment confirmed that, the proposed algorithm can estimate blind node coordinates, 
with improved accuracy and low cost. 

4. Path Loss Exponent Estimation Algorithm 

4.1 Radio Model 
As shown in Eq.(1), in the wireless transmission propagation loss model [18][19][20], PL(d) 
denotes the strength of the signal, which the wireless receiver receives from d meters distance 
from the wireless sender (dBm), while d0 denotes the reference distance, which is set to 1m in 
this study;   denotes the path loss exponent, and the attenuation index of the received signal 
varies with the environment, as the wireless transmission distance increases;   denotes the 
shadow fading effect, which is a Gaussian random variable with a mean of 0 and standard 
deviation of   ; and   is related to the obstacle signal loss.  The measured received signal may 
differ due to different obstacles, even if the propagation distance is the same and emitted signal 
has the same strength. Eq.(2) is derived from Eq.(1), and is used to obtain the path loss 
exponent, n denotes the number of measurements of a single connection. When a receiver 
receives an RSS from a wireless sender, Eq.(1) is used to estimate the distance between the 
receiver and sender, d. 
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4.2 Estimation Algorithm 
This section introduces a Path Loss Exponent Estimation Algorithm, as shown in Fig. 2.  

(I) The Initialization state collects the mean RSS data between the beacon nodes in an 
environment, and feeds it back to a base station. After establishing the number of beacon 
nodes, and their actual coordinates, the server sends out an Initial command to the base station, 
which sequentially transfers the command to each beacon node by unicast. The GetRSS 
command is broadcasted to other beacon nodes after the receipt of the initial command. When 
the beacon nodes receive a GetRSS command, the mean RSS between the nodes is replied 
(average of 100 times), then, the mean RSS of other beacon nodes is fed back to the base 
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station, when base station collects all of the mean RSS data between the beacon nodes in an 
environment, base station will send it to the server as shown in Fig. 3. 
 

 

Fig. 2. Algorithm Flowchart. 

 

 
Fig. 3. Initialization State Interaction Figure. 
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(II) Estimate the PLE of the environment: Based on the mean RSS data between the beacon 

nodes, as collected in step (I), the Server uses Eq.(2) to compute the PLE between the beacon 
nodes, and then uses this information to analyze the PLE distribution in an environment, as 
shown in Fig. 4.  

 
Fig. 4. Estimate the PLE of the Environment State Interaction. 

 
(III) Estimate the PLE of the blind node: PLE distribution in an environment, as obtained in 

step (II), is used to estimate the PLE of blind node locations. The server first sends a 
Blind_Initial command to the base station, allowing the base station to transfer a Blind_Initial 
command to the blind node by unicast. Upon receipt of the command, a Get_Position_Info 
command is broadcasted to each beacon node. When the beacon node receives the 
Get_Position_Info command, the mean RSS between the blind nodes (average of 100 times) 
and actual coordinates are fed back to the blind node, which feeds the information back to the 
server via the base station. The server sorts the RSS values between the blind and beacon 
nodes in a descending order, and then, takes the two largest RSS values and determines the 
corresponding beacon nodes. Based on the results obtained in step (II), the Server can obtain 
the PLE between such two beacon nodes and average the two PLEs. This PLE is set as the PLE 
of the blind node environment, as shown in Fig. 5. 

(IV) Finally, according to the blind node environment of the PLE, as obtained in step (III), 
and the mean RSS data between blind nodes and each beacon node, the server uses Eq.(1) to 
obtain the distance between blind nodes and each beacon node. The Polygon Method is then 
employed to estimate the coordinates of the blind Node.  

5. Experiment and Result 
In this experiment, CC2431 demo boards were used as beacon nodes and blind nodes. The 
survey site was an office environment [17], as shown in Fig. 6. The beacon nodes are set from 
3 to 10, and their deployment is shown in Fig. 7, where the (a) number of beacon nodes is 3, 
while (b), (c), and (d) are the setup methods in the order of 4, 5, and 9 beacon nodes, 
respectively. Table 1 shows the experimental parameters. In this site of an 18m x 18m office, 
10 locations were set, and their coordinates were measured. The blind nodes were placed at 
those 10 locations, and three implemented positioning algorithms were employed for 
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estimations.  
 

 
Fig. 5. Estimate the PLE of the Blind Node State Interaction. 

 
In the same environment, the blind node at the same location can be positioned using 

different shadowing factors, different PLEs, and different numbers of beacon nodes. Each 
location was measured 50 times; the result after 500 times of positioning was obtained. The 
estimated coordinates and actual coordinates were used to compute the Root Mean Square 
Error (RMSE). The simulation of different PLEs was based on different scenarios in an office 
environment, including the number of persons in the office, their movements, and object 
obstructions. PLE values of the above scenarios were measured, and used to simulate the 
variable PLEs for positioning. This experiment employed three positioning methods: 1) the 
fixed method, which is the normal fixed PLE method, according to [18], the PLE of the in 
building line-of-sight environment, in this study, is defined as 1.8.; 2) the main method, using 
[15], regards the beacon node as a PLE node in order to estimate the environment of the PLE; 
and 3) the proposed method of this study. 

5.1 Experiment Parameter 
Table 1 shows the parameters in this experiment. The experiments were performed 500 times 
in the 18m x 18m field area of this environment. The parameters of radio output power and 
RSS detection threshold are assigned based on the hardware characteristics of CC2431. Except 
for the value less -93dBm initiated with RSS detection threshold, we adopt all the measured 
receive sensitivity. In this paper, the radio output power is set to 0 dBm according to the 
maximum output of CC2431 without power amplifier. 
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Fig. 6. Experiment Environment. 

 

 
Fig. 7. Deployment of the Beacon Nodes. 

 
Table 1. Experiment Parameters 

Simulation parameter Value  
Size of sensor field 18m x 18 m(office) 
Standard deviation 1~7dBm 
One meter RSS P0 -45dBm 
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RSS detection threshold -93dBm 
Radio Output Power 0 dBm 
Number of reference nodes 3~10 
The number of experiments 500 times 
The value of PLE (for fixed PLE method) 1.8 

5.2 Results and Discussion 
Fig. 8 shows the RMSEs measured by various numbers of beacon nodes, when PLE=3 and 
σ =2dBm. For the proposed method, when the number of beacon nodes is 4 and 8, 
respectively, the derived RMSEs differ insignificantly, indicating that if there are more than 4 
beacon nodes, good positioning accuracy could be achieved. For the fixed method in the same 
environment, more beacon nodes lead to lower RMSE. 
 

 
 

Fig. 9 shows the RMSEs measured using various numbers of beacon nodes, when PLE=4.5 
and  =6dBm. Compared with Figure 8, even in a variable environment unfavorable to RF 
transmission, when the number of beacon nodes is 4 and 8, respectively, the RMSEs obtained 
by the proposed method differ insignificantly. As shown in Fig. 9, when the number of beacon 
nodes is 4, the RMSE for the proposed method is about 1.87m. In comparison with the 
proposed method, when using the main method and the fixed method, and the numbers of 
beacon nodes are 8 and 9, respectively, RMSE falls below 2m. According to Figures 8 and 9, 
the proposed method can employ the least number of beacon nodes to achieve good accuracy, 
realizing the goal of low cost and high accuracy. 

Fig. 10 shows the RMSEs measured in the case of 4 beacon nodes, in a variable 
environment of PLE=4.5 and the variable. As compared with the main method and the fixed 
method, RMSE for the proposed method in variable environment could reach a maximum of 
2.13m, and minimum of 1.13m, indicating that accuracy can be maintained in a variable 

Fig. 8. RMSEs Measured by Various Numbers of Beacon Nodes (PLE=3 and σ  =2dBm). 
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environment. Taking the fixed method for example, as   increases, the RMSE becomes greater, 
and the maximum is 4.35m. For the main method, the result is generally between those of the 
proposed method and fixed method. 
 

 
 

 

 
Fig. 10. RMSEs Measured by Variable ( beacon nodes = 4). 

Fig. 9. RMSEs Measured by Various Numbers of Beacon Nodes (PLE=4.5 and σ  =6dBm). 
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Fig. 11. Estimation Times by Various Numbers of Beacon Nodes. 

 
By using the algorithm proposed in this paper, PLE can be obtained in real time and under 

different environments, while in cases of different numbers of beacon nodes, the required 
estimation times of the system would differ. For the proposed method, when the number of 
beacon nodes is 8, the required estimation time is 60.9s. For the main method and the fixed 
method, when the number of beacon nodes is 8, the required estimation time is 42s and 30s, 
respectively. Since the algorithm proposed in this paper has good accuracy, when the number 
of beacon nodes is 4, the proposed method system takes about 30s, which is close to the 25s of 
the main method, and the 20s of the fixed method, thus indicating good positioning accuracy, 
as shown in Fig. 11. 

5. Conclusions 
The RSS method may be influenced by environmental factors, and thus, cause errors in indoor 
positioning. The Path Loss Exponent Estimation for Indoor Wireless Sensors Positioning, as 
proposed in this paper, can estimate a environment PLE for variable environments, with the 
advantages of low cost and fast speed. The experiment proved that, the proposed algorithm can 
provide good accuracy, when the number of beacon nodes is 4, and system time consumption 
is about 30s. Maximal RMSE can reach 2.13m in cases of variable environments unfavorable 
to RF transmission, which is better than the 3.13m of the main method, and 4.35m of the fixed 
method. The proposed algorithm can provide accurate positioning services at a low cost, and 
be applied to digital homes and home care to achieve indoor positioning with only a few 
beacon nodes. These positioning services can provide better living quality and better medical 
service to users. Future studies will propose more accurate and faster positioning approaches 
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at a low cost for various indoor positioning purposes, improve the performance of this 
algorithm, and provide more applications. 
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