
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 2, April 2010 154
Copyright ⓒ 2010 KSII

DOI: 10.3837/tiis.2010.04.005

Multi-dimensional Query Authentication for
On-line Stream Analytics

Xiangrui Chen1, Gyoung-Bae Kim2 and Hae-Young Bae1

1 Dept. of Computer Science and Engineering, Inha University
253 Yonghyun-dong, Nam-gu Incheon, 402-751 - Korea

[e-mail: airchendb@gmail.com, hybae@inha.ac.kr]
2 Dept. of Computer Education, Seowon University

241 Musimsero, Heungdeok-gu, Cheongju, 361-742 - Korea
[e-mail: gbkim@seowon.ac.kr]

*Corresponding author: Gyoung-Bae Kim

Received January 28, 2010; revised March 17, 2010; accepted April 15, 2010;
Published April 29, 2010

Abstract

Database outsourcing is unavoidable in the near future. In the scenario of data stream
outsourcing, the data owner continuously publishes the latest data and associated
authentication information through a service provider. Clients may register queries to the
service provider and verify the result's correctness, utilizing the additional authentication
information. Research on On-line Stream Analytics (OLSA) is motivated by extending the
data cube technology for higher multi-level abstraction on the low-level-abstracted data
streams. Existing work on OLSA fails to consider the issue of database outsourcing, while
previous work on stream authentication does not support OLSA. To close this gap and solve
the problem of OLSA query authentication while outsourcing data streams, we propose
MDAHRB and MDAHB, two multi-dimensional authentication approaches. They are based
on the general data model for OLSA, the stream cube. First, we improve the data structure of
the H-tree, which is used to store the stream cube. Then, we design and implement two
authentication schemes based on the improved H-trees, the HRB- and HB-trees, in accordance
with the main stream query authentication framework for database outsourcing. Along with a
cost models analysis, consistent with state-of-the-art cost metrics, an experimental evaluation
is performed on a real data set. It exhibits that both MDAHRB and MDAHB are feasible for
authenticating OLSA queries, while MDAHRB is more scalable.

Keywords: Database outsourcing, multi-dimensional query authentication, on-line stream
Analytics (OLSA), stream cube

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 2, April 2010 155

1. Introduction

Because of its various advantages, database outsourcing [1] is currently attracting an
increasing number of researchers. The essential goal is to enable the Data Owners (DOs) to
publish their data/database through reliable third parties, named service providers (SPs).

Generally, SPs are the groups/companies that can maintain the necessary platform (e.g.
hardware) to support various advanced services on the basis of single or multiple databases.
The clients can register their query requests directly to the SP, without communication with
the DO. This framework benefits every party involved: 1. It does not matter whether the DO
can afford the platform expense, 2. The SP may run various legal businesses based on the
database(s), and achieve economies of scale by serving multiple DOs/clients, 3. The nearest
SP can respond to the clients' queries with lower overhead with respect to the network latency
[2].

However, since the honesty of the SPs is a factor beyond the control of others (e.g. DOs,
clients), techniques for the security and protection of the database are vital before outsourcing
actions. Furthermore, when clients obtain query results from SPs, they also want to be granted
the ability to authenticate the results. Generally, query results have two dimensions that should
be guaranteed, soundness and completeness. In detail, soundness assures the client of the
existence of returned records in the DO's database, without modification or any unauthentic
records. Completeness means that the returned records are guaranteed to cover all the records
that satisfy the query. Here we illustrate the idea of this paper by extending the framework of
the Next Generation SIMulation (NGSIM) program to an outsourced Intelligent
Transportation System (ITS). It was initiated by the U.S. Federal Highway Admistration
(FHWA) [3]. As depicted in Fig. 1, Cambridge Systematics, Inc. (CSI) manages the collection
of relevant information (e.g. videos, sensor data, maps). Replying to requests from the client
(FHWA), it can support historical traffic analysis corresponding to a specific time period,
relying on the collected disk-resident data. By analyzing the historical summary report sent by
CSI (DO), transportation professionals in FHWA (clients) can make substantial decisions on
topics like new roadway alignments and configurations, new interchange configurations and
locations, the addition of freeway auxiliary lanes, etc. It is meaningful to urban planning.

However, since traffic data is always in the form of data streams, whereas there is no stream
processing approach adopted, this framework cannot support monitoring/ scheduling
functions, in contrast to ITS.

Fig. 1. Next Generation SIMulation (NGSIM).

Furthermore, most data streams reside at a rather low level of abstraction (e.g. coordinate

streams), while an analyst is often more interested in higher multi-level abstraction. A
multi-dimensional on-line stream data analysis is needed, since it plays the kernel role in

156 Chen et al.: Multi-dimensional Query Authentication for On-line Stream Analytics

understanding the general statistics, trends (e.g. traffic jams) and outliers (e.g. accidents) for
traffic scheduling. Research on this substantial characteristic of data streams,
low-level-abstracted, sets a new direction, extending data cube technology for
multi-dimensional analytics of data streams [4], i.e. On-line Stream Analytics (OLSA) [5].
There is an essential difference between On-line Analytical Processing (OLAP) [6] and OLSA:
OLAP is related to OLTP for historical reporting, while OLSA handles issues like monitoring,
alerting, transformation, real-time visibility and reporting [5].

In other words, OLAP cannot support on-line data stream aggregation in contrast to OLSA.
However, since the expense of the necessary computational power and platform for OLSA is
unacceptably high for some companies (e.g, CSI in Fig. 2), data stream outsourcing is
unavoidable. Although relevant works on OLSA are noteworthy, none of them examines the
outsourcing issue, which motivates the idea of this paper, extending NGSIM to support OLSA
in outsourcing environments, taking into account query authentication issues.

Fig. 2. NGSIM outsourcing framework example.

The outsourced NGSIM framework example is depicted in Fig. 2. Following an asymmetric

cryptosystem (public key digital signature scheme) [7], the DO (CSI) obtains a private and
public key from the certificate authority. The private key can be known and used by DO to
generate the signature for the outsourced information, while the public key is published and
any client can use it. To enable the client to perform query authentication, DO constructs an
Authenticated Data Structure (ADS), which is much the same as a conventional index.

However, necessary additional authentication information is contained, e.g. hashing values
signed by the DO. Receiving the encrypted data and DO signature, the SP maintains and
updates the same ADS. When a client (FHWA) registers a continuous query, SP retrievals the
local ADS and generates a Verifcation Object (VO). Obtaining the VO and DO signature sent
by SP, the client can not only get the result, but also verify its correctness by reconstructing a
partial ADS. Alternative implementations of query authentication approaches differ on the
choice of signature techniques, design of ADS and verification algorithms [2]. In addition to
the primary consideration for disk-resident data sets, authenticating continuous stream queries
needs to accommodate more notable challenges, e.g. continuous validation upon fast updates,
cost minimization mechanisms for communication and verification, necessary integration of
relevant data sources, etc. Existing work on stream authentication considers these factors,
however, they ignore the low-level-abstracted features of data streams, and do not support
OLSA for high-level analysis. The idea of this paper aims to close this gap by proposing an
authentication scheme for OLSA in outsourcing environments. In our work, we first improve
the general approach for OLSA, stream cube [4], by proposing HRB- and HB-trees. Then, we
propose MDAHRB and MDAHB, two multi-dimensional authentication schemes for OLSA
in data stream outsourcing environments. Along with a cost model analysis consistent with

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 2, April 2010 157

state-of-the-art cost metrics, an experimental evaluation is performed on a real data set
(NGSIM U.S. 101 [3]). Our results exhibit that both MDAHRB and MDAHB are feasible for
authenticating OLSA queries, while MDAHRB is more scalable. The rest of the paper is
organized as follows. Section 2 reviews the relevant work. Section 3 presents the MDAHRB
idea, while Section 4 focuses on MDAHB demonstration. A detailed experimental evaluation
is illustrated in Section 5, and Section 6 concludes the paper with recommendations for future
work.

2. Related Work
Research on multi-dimensional query authentication for OLSA is an interdisciplinary work
between databases and security. Different from traditional query authentication for ad-hoc
queries with single dimensional processing, multi-dimensional query authentication involves
more dimensions.

For example, since OLSA processing needs to consider both spatial and temporal
dimensions, as explained in Section 2.3, query authentication for OLSA becomes a
challenging task for which we provide solutions in Section 3 and 4. In this section, we will
present the relevant work in these fields.

2.1 Cryptography Essentials
The public-key digital signature scheme presented in Section 1 aims at verifying the integrity
of a message, which originates from the DO. Thus, it is crucial to design structures that use the
minimum number of signing operations and utilize hashing instead. This is due to the high cost
of signing compared with hashing [8], as confirmed by experiments with two widely used
cryptography libraries, Crypto++ [9] and OpenSSL [10]. Hashing is a magic function H with
two typical properties: 1. No inverse function, which means that for any x, it is easy to
compute H(x), while given H(x), it is impossible to find any information about a pre-image x,
2. Collision resistance, which means that it is impossible to find a pair of (x,y) statisfying x≠
y and H(x)=H(y) [7]. In this paper, we employ SHA1 [11], which takes variable length inputs
and produces 160-bit (20-byte) outputs, and adopt the 128-byte digital signatures generated by
RSA.

Fig. 3. A Merkle hash tree (MH-tree).

The Merkle Hash Tree. The MH-tree is a main-memory binary hash tree first proposed in

[12]. It is constructed in a bottom-up manner by hashing records, which are sorted on the query
attribute. As depicted in Fig. 3, every leaf node in the MH-tree contains the hash value of a
record, and each internal node stores the hash value of the concatenation of its two children.
The DO signs the hash value stored in the root and generates a DO signature sign(hroot, SK)
using the private key SK, e.g. sign(h1234, SK). When a client sends a query that corresponds to

158 Chen et al.: Multi-dimensional Query Authentication for On-line Stream Analytics

a record rx (e.g. r4), the SP traverses the tree and creates a VO by inserting the hash values
stored in the siblings of every accessed node, h1. . . hn (e.g. h12, h3), in addition to the query
result rx (e.g. r4). Thus, the VO should be in the form of VO(h1. . . hn), e.g. VO(h12, h3). Given
the result rx, VO, sign(hroot, SK), and DO's public key PK, the client obtains the decrypted hroot
and a hash value h’

root by iteratively constructing a partial ADS, i.e. h’
root=H(h12|H(h3,H(r4))).

By matching h’
root against hroot, the correctness of rx returned from the SP can be authenticated,

where soundness is guaranteed by the collision resistance of hash function H, and
completeness is ensured by the construction of the MH-tree.

2.2 Query Authentication
The issue of database outsourcing first appeared in [1] and later a great deal of work on query
authentication for database outsourcing appeared [2][8][13][14][15], most of which applies
the concept of the MH-tree. Previous work generally utilizes two approaches, signature- and
index-based. A good survey is provided in [14], but our review is brief.

The Merkle B-tree (MB-tree) [8] is an improved MH-tree where the node fanout is
determined by the PC's block size, motivated by the idea of the B+-tree. The MB-tree is
disk-based, and does not consider the stream environment. Regarding authenticating queries
on the data stream, references are scarce. To the best of our knowledge, [2] and [13] is the most
predominant work. It is impossible to apply a signature-based approach to the data stream,
because of the high signing cost upon infinite data streams, as a result of which the
authentication schemes established in [2][13] are both index-based approaches. Researchers
have successfully confronted most challenges within processing and authenticating
continuous queries by proposing CADS [2], an elaborate indexing scheme and a virtual
caching mechanism. Furthermore, it is extended to the general case where multiple DOs
outsource their data to the same SP. The most relevant work to ours is [13]. They proposed
structures for authenticating multi-dimensional selection and aggregation queries over sliding
windows on data streams. The indices are implemented by extending the kd-tree, and were
firstly applied to work for multi-dimensional queries. With similar techniques, the R-tree was
extended for spatial database outsourcing [14]. Our work is distinguished from [12][13]
because CADS does not consider multi-dimensional authentication. The tuple-based sliding
window authentication index structure does not take into account the time dimension [13],
which is a substantial attribute of data streams. Moreover, the sliding window-based
aggregation approach is limited by the window size. We aim to close this gap by extending the
data cube technology.

In this case, our work differs from [12][13] because we focus more on a different branch,
multi-dimensional query authentication for OLSA, and support both provisions, temporal
soundness [2] and multi-dimensional aggregation [13]. State-of-the-art cost metrics for
evaluating query authentication schemes are given in [8]: 1. The computation overhead for the
owner, 2. The DO-SP communication cost, 3. The storage overhead for the server, 4. The
computation overhead for the server, 5. The client-SP communication cost, and 6. The
computation cost for the client (for verification). For consistency with previous work, we
follow these metrics in this paper.

2.3 On-line Stream Analytics (OLSA)
Due to the limited resources currently available to computers (e.g. memory, disk, etc.), it is
impossible to store an entire data stream or to scan through it multiple times. Although
previous studies (e.g. management and querying of stream data, data mining on data streams)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 2, April 2010 159

have established fundamental techniques to process data streams efficiently, research on
OLSA is still in its infancy. Corresponding to various applications, different data structures,
processing approaches and validated algorithms need to be specified, e.g. RFID [16], sequence
data [17]. Most of these approaches adopt the data cube technique.

C22Layer 1 (C2)

Root

A12

B12

C17

B21

Layer 2 (A1)

Layer 3 (B2)

Layer 4 (C1)

Layer 5 (B1)

C21

A12

B16

C16

B22

A11

B11

C15

B21

B13

C13

B22

B14

C17

B15B13B16

C11

C21
C22

…
A11

A12

…
B21

B22

…
C11
C17

…
B11

B12

…

Header
table Sidelink

… …

(A1,B1,C1)

(A1,B2,C1) (*,B1,C1) (A1,B1,C2)

(A1,*,C1) (*,B2,C1) (A1,B2,C2) (*,B1,C2)

(*,*,C1) (A1,*,C2) (*,B2,C2)

(*,*,C2)o-layer

m-layer

Fig. 4. Stream cube from m- to o-layer.

Fig. 5. A tilt time frame model.

In our work, we consider the general OLSA approach, stream cube [4], shown in Fig. 4,

which is proposed to enable on-line, multi-dimensional, multi-level analysis of data streams.
Specifically, we focus on extending it with a feasible authentication approach to facilitate
OLSA in database outsourcing environments (see Fig. 2). There are three notable techniques
within the stream cube: 1. A tilted time frame model (see Fig. 5), proposed as a
multi-resolution model to register time-related data, 2. Critical layers, i.e. observation layer
(o-layer) and minimal interesting layer (m-layer) (see Fig. 4), which enables flexible analysis
with low overhead, 3. An efficient cubing method, which only computes and maintains the
layers (cuboids) along a popular path (see Fig. 4, in bold red), leaving the other cuboids for
query-driven, on-line computation. As illustrated in Fig. 4, based on these techniques, raw
low-level-aggregated data streams (e.g. sensor coordinates streams) can be pre-aggregated to
the m-layer, (A1, B1, C1), according to the tilted time scale. Concurrently, it is further
aggregated following the popular drilling path (in bold red) to reach the observation layer, (*,
*, C2). Drilling from the o- to m-layer, there are a total of five materialized layers (cuboids)
during cube computation, within which relevant queries that precisely rely on these layers can
be answered directly without any further computation. Meanwhile, queries that deviate from
the path can be answered by on-line computation based on the reachable computed layers. As
established by previous work [4] [18][19][20][21], it is feasible to utilize the stream cube for
OLSA, computed and stored by a main-memory data structure, the H-tree. It is a hyper-linked
tree structure first introduced by [18]. It was revised in [4] to ensure that it can be maintained
in memory for efficient computation of multi-dimensional, multi-level aggregations requested
by continuous OLSA queries. Detailed construction steps can be found in [4]. The proposed
authentication methods are based on the authenticated data structures, HB- and HRB-tree,
which will be introduced in Section 3.1 and 4.1. However, both of them are the extension of
the H-tree in Fig. 4.

The latest work that considers the problem of secure outsourced aggregation, which seems
to be similar to our idea, is based on the unified use of a one-way chain [22]. However, it is
from the perspective of data collection and aggregation outsourcing, and does not support

160 Chen et al.: Multi-dimensional Query Authentication for On-line Stream Analytics

query answering and authentication. Meanwhile, our method is to extend the OLSA solution,
the stream cube, to the outsourcing future of OLSA, and support query authentication. Also,
the stream cube itself can support data aggregation.

3. Multi-dimensional Authentication Method - MDAHRB
Section 3.1 illustrates the idea of ADS in MDAHRB. Section 3.2 describes the authentication
scheme. Section 3.3 summarizes the cost models of MDAHRB. The summary of notations
used are listed in Table 1.

Table 1. Summary of notations used

Symbol Description Symbol Description
R A data stream tuple fx Node fanout of structure x
SR Number of arrived data stream tuples |x| Size of object x
N An H-tree node hx A hash value on x

Qnode A queue node inside N Sigx A signature on x
RBN A RB-tree indexed head table node Cx Cost of operation x
BN A B-tree indexed head table node H(x) A hash operation on input x
dx Height of structure x VO The verification object

3.1 HRB-tree
Based on the H-tree depicted in Fig. 4, information can be stored, updated, aggregated and
accessed at different levels. When a new tuple R arrives, it will be expanded to the m-layer
schema according to a concept hierarchical tree and inserted into the H-tree, with popular path
cuboids aggregated/computed inside the internal nodes. To sum up, for a specific cell's
information, which may be distributed among several same-labeled nodes in the layer, the
head table plays the role of linking them all together. Queries that precisely rely on these layers
can be directly returned by retrieving the head table in order to find all same-labeled nodes,
and examining whether it relates to the query (by checking the upper nodes). Briefly, the
ADSs are constructed by indexing the head table nodes.

PC1.sidePC1.child

Key = C1
hC1 = H(hC1.child|hC1.side)

hC1.child=H(hB4|hC2)

PC2.sidePC2.child

Key = C2

hC2 = H(hC2.child|hC2.side)
PB4.sidePB4.child

Key = B4
hB4 = H(hB4.child|hB4.side)

C1

Root

A1

C2

A1

B2B1 B4B3

H-tree

hside[1]

hside[n]hC1.side = H(hside[1]|...|hside[n])

PB2.sidePB2.child

Key = B2

hB2
PA1.sidePA1.child

Key = A1

hA1

Head table indexed by RedBlack-tree

Pside

Pchild

PB1.sidePB1.child

Key = B1

hB1

PB3.sidePB3.child

Key = B3
hB3

Fig. 6. HRB-tree for OLSA authentication.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 2, April 2010 161

For MDAHRB, the ADS improves the H-tree by adopting the Red-Black tree to organize
the head table. The intuitions behind this framework are: 1. The cost of tree construction can
be reduced by indexing the frequently accessed head table, 2. It is necessary to enable hash
operations of query authentication through a global tree structure. The height balance and
binary organized features of the Red-Black tree satisfy our intuitions. In this case, the ADS
(indexing structure) is designed to be a collaboration of the H- and RB-trees, named the
HRB-tree, which is illustrated in Fig. 6. Both the SP and the DO maintain and update the
HRB-tree locally.

Fig. 7. H-tree node hashing.

The hashing scheme in the HRB-tree, especially the organization in part of the RB-tree, is

similar to the aforementioned MH-tree, whereas it distinguishes from the MH-tree.
Specifically, since it is for authenticating data streams, the hash operations in MDAHRB are
expected to be performed in a query-driven manner. Moreover, the H-tree is constructed
dynamically paralleling the incoming Rs, while the RB-tree is constructed before any
processing , which should in principle organize all the head table nodes of the Red-Black tree.

Fig. 8. H-tree node hashing and H-tree hashing algorithms.

Suppose a query is detected. Before discussing RB-tree hashing, the H-tree will be hashed

as follows. As the cell, each node of the H-tree (N) incorporates a tilt time frame model to
maintain historical information. It is extended to support OLSA query authentication by
computing the hash value of N (hN). Taking the frame of 15 minutes, 4 quarters, 24 hours as an
example, the hashing operations inside N are organized as shown in Fig. 7, and hN is calculated

162 Chen et al.: Multi-dimensional Query Authentication for On-line Stream Analytics

following the steps shown in Fig. 8 (Algorithm 1). In detail, there are three time queues inside
N. Within each queue node (Qnode), multi-dimensional information is summarized by several
attributes, e.g. time, coordinates, etc. The hash values of these original dimensional records,
hAttr[i], are computed respectively(lines 3, 7, 11). We can obtain the hash value of each Qnode
by hashing the concatenation ('|') of all hAttr[i] (lines 4, 8, 12). Similarly, we can obtain the hash
value of all queues (i.e. hH, hQ, hM) (lines 5, 9, 13) and the final hN (line 14). Based on the hash
operation on N, HNodeHashing(N), it traverses and hashes the entire H-tree following the
steps described in Fig. 8 (Algorithm 2), calling HTreeHashing(N, HtreeEx) recursively.

RBNodeHashing(RBN)
RBN - A node in RB-tree indexed head table

- Hash value in node RBN
1. RBN is a leaf node
2. (0)
3.

4. (|)
5. ([1]|...| [])
6. (|)

RBTreeHashing(RBN, HRBtreeEx)
RBN - A node in RB-tree indexed head table,

HRBtreeEx - An HRB-tree
HRBtreeEx.RBtree is hashed

1. = and =
2. HRBtreeEx. ()
3.

4. = and
5. RBTreeHashing(RBN.right, HRBtreeEx)
6. HRBtreeEx. ()
7.

8. and =
9. RBTreeHashing(RBN.left, HRBtreeEx)

10. HRBtreeEx. ()
11.

12.

13. RBTreeHashing(RBN.left, HRBtreeEx)
14. RBTreeHashing(RBN.right, HRBtreeEx)
15. HRBtreeEx. ()
16.

Fig. 9. RB-tree node hashing and RB-tree hashing.

The RB-tree in the HRB-tree continues to be hashed after H-tree hashing. Different from the
MH-tree in particular, each RB-tree node (RBN) maintains a sidelink which points to the first
created N labeled with the key of RBN. When a second N with the same label is created, it will
be linked by the sidelink inside the first linked N. In short, the Ns carrying the same label must
be linked consecutively. The hashing method of RBN executes as depicted in Fig. 9
(Algorithm 3). If it is a leaf node, the hash value of its child (hRBN.child) is taken as H(0) (line 2).
For an intermediate node, however, hRBN.child is obtained by hashing the concatenation of the
hash values inside its left and right children (line 4). Specifically, the hash values of all linked
N(hside[n]) are utilized to compute hRBN.side (line 5), which guarantees the correctness of the
information stored in the H-tree. Finally, the hash value of RBN (hRBN) is returned (line 6).
Similarly, based on the function of RBNodeHashing(RBN), the RB-tree can be hashed by
running Algorithm 4 (Fig. 9). The DO signs the hash value of the root in the RB-tree (using the
private key) and sends SigRBroot to the SP.

3.2 Authentication Scheme
As discussed in Section 2.2, the essential aspect of query authentication in the SP side is to
construct a VO during query answering, and to enable the client to verify the correctness of the
result by reconstructing a partial ADS utilizing the additional VO. In this section, we will
describe the VO construction approach in the SP side, relying on the HRB-tree and the
verification steps in the client side within the scheme of MDAHRB. Given a point query Q that
relies on popular path cuboids in the stream cube, it will be processed according to the
following four steps: 1. Access the indexed head table and get the node RBNi, the label of

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 2, April 2010 163

which corresponds to the one-dimensional condition of Q, 2. Obtain all linked Ns by retrieving
along the sidelink inside RBNi and Ns. Note that the other dimensional requirements of Q are
restricted by the upper layers of N, 3. Examine whether the obtained N relates to Q by
matching the labels of its upper ancestor nodes with the other dimensional conditions of Q, 4.
Aggregate the attribute values of Q-related nodes and return it as the query results.

Thus, OLSA queries are answered efficiently by utilizing the pre-materialized popular path
of the stream cube. Since the data structure of the stream cube (HRB-tree) is retained in main
memory, continuous processing and operations is possible for answering OLSA queries. Hash
operations on ADS are query driven, and the SP will hash the entire HRB-tree before the VO
construction and query processing steps are forwarded. For collaborated HRB-tree hashing,
following H-tree hashing (Algorithm 2), the RB-tree is hashed on the basis of the hash values
of H-tree nodes by executing Algorithm 4.

Fig. 10. HRB-tree based verification.

Then, paralleling with query processing, VO is constructed. Fig. 10 (Algorithm 5)

illustrates the initial VO generation for a point query Q within an HRB-tree instance
HRBtreeEx. It starts by locating one of Q’s dimensional conditions specified by the client in
the indexed head table, RB-tree (lines 1-2), and the RBNk is returned. The hash values of its
children are concatenated and hashed for the calculation of RBNk's hchild, which is appended
into the VO entity tagged by VO.hchild (line 3). For all the linked Ns along the sidelink of
RBNk, the hash values of unrelated Ns (hN) are directly appended to the VO as the object of
VO.sideurHash (line 11).

On the other hand, there are several time queues and many Qnodes inside each Q relevant N
(Fig. 7). The attributes' values of related Qnodes are appended into VO as the object of
VO.siderV alue (line 7), while the hash values of unrelated queues (e.g. hH, hQ, hM) and Qnodes
(hQnode) are inserted into the object of VO.siderHash (line 8). Finally, similar to the VO
construction scheme of the MH-tree, the hash values of all siblings traversed (line 2) in the
RB-tree (hRBN) are appended to the substructure as VO.hsib (line 14). Obtaining the query result,
Res, additional authentication information (VO) and the signature of DO (SigRBroot), the client
is enabled to verify the soundness of the returned information from the SP using
HRBVerification(VO, SigRBroot). As shown in Fig. 10 (Algorithm 6), a partial ADS' is first
reconstructed (lines 3-13) and the hash value h'RBroot (the final h3 in the algorithm) at the root of
ADS' is computed (line 13). By matching h'RBroot against the decrypted hash value of SigRBroot,
the soundness of Res is guaranteed. Specifically, lines 3-9 depict the computation of hRBN.

164 Chen et al.: Multi-dimensional Query Authentication for On-line Stream Analytics

MADHRB guarantees the soundness of query authentication. Suppose that the attribute values
inside N or query results are modified. Because H(x) is a one-way, collision-resistant function,
the hRBN.side computed by the client is different from that of the DO.

Therefore, although the structure of reconstructed ADS' is the same as ADS in the DO side,
the computed h'RBroot differs from the original, which implies the failure of verification.

3.3 Cost Model
Consistent with the state-of-the-art cost metrics discussed in Section 2.2, we will present the
analytical cost models of MDAHRB. Each cost model of MDAHRB should consist of two
parts, the H- and RB-trees.

Node fanout and tree height: The node fanout of the RB-tree is no more than 2, which
implies fRBN ≤ 2. And the #RBN (φ) equals the #head table nodes. Then the height of the
RB-tree dRB ≤ 2lg(φ+1).

In the case of the H-tree, however, there are differences between layers. The # and the order
of layers is decided by the # and the top-down appearance order of different dimension
attributes along the pre-established popular path. The fanout of each layer depends on the
cardinality of the following layer. For instance, as depicted in Fig. 4, there are five distinct
dimension attributes along the popular path, appearing top-down in the order of C2, A1, B2, C1,
B1. Then there are 5 layers in the H-tree (the root node is at level 0), and the node fanout of
layer 2 (A1) equals the cardinality of layer 3 (B2). Here, let τ represent the # of different
dimension attributes, and θi depicts the cardinality of the ith layer. The dH = τ, and the fanout of
N in the ith layer fiN = θi+1, 0 ≤ i ≤τ - 1.

Storage cost: The total size of the HRB-tree is equal to: CsHRB = CsH + CsRB. It is easy to find
that φ and the cost of the RB-tree (CsRB) remains the same when Rs are incoming. Conversely,
the #N (γ) will change with continuously incoming Rs, which implies that CsH will fluctuate,
and the scale relies on the extensiveness of the incoming data. Until the H-tree is filled and any
incoming R can find an existing path, CsH turns out to be stable and we can get the final CsHRB.

Similar with the advantage of the MB-tree, CsHRB does not reflect the DO/SP
communication cost. Only the aggregated values inside Ns are transmitted to the SP, together
with the SigRBroot. Also, the SP needs to reconstruct the HRB-tree and perform the hash
operations incrementally from the H- to RB-trees. Compared with the signature-based
approaches referred to in Section 2.2, the small additional hash computation cost in the SP
reduces the DO/SP communication cost substantially.

Construction cost (hashing): Because the HRB-tree is an in-memory structure, there are
no disk I/O operations. The construction cost for building an HRB-tree depends on the hash
function computations and consists of three parts: CcHRB = CcH + CcRB(+CSig). Here CcRB =
φ · CH(RBN), and it is not affected by the incoming Rs. Since CcH is equal to γ · CH(N), it will
fluctuate when the H-tree is a partial tree. To sum up, the total cost for constructing the
HRB-tree is given by CcHRB = γ · CH(N) + φ · CH(RBN)(+CSig). Note that although both DO and SP
maintain the same HRB-tree locally, there is no CSig at the SP side.

Other costs: Since there is no disk I/O, the costs of VO construction (for SP) and
verification (for client) are rather low. For VO construction, the SP only needs to return
relevant hash and attribute values which are retained in memory. For verification, the client
needs to do several hash operations while reconstructing the partial HRB-tree, and decrypt
SigRBroot using DO's public key. The cost at the client side is given as:

Cv = x · CH(N) + CH(RBN) +y · CH(hlchild|hrchild) + C'Sig.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 2, April 2010 165

It is obvious that the in-memory processing feature of MDAHRB guarantees the feasibility
of authenticating OLSA queries. Moreover, adopting an RB-tree to index the head table
reduces the overhead of inserting Rs and query answering. Our experimental evaluation
exhibits that this effect will scale up with the growing speed of incoming data streams. On the
other hand, MDAHRB cannot support completeness verification by relying on the existing
work.

4. Multi-dimensional Authentication Method - MDAHB

Since there is no detailed previous work, we propose MDAHB as a competitor of MDAHRB.
Section 4.1 presents the HB-tree utilized by MDAHB. Section 4.2 introduces the
authentication scheme and gives relevant algorithms. Finally, the cost models of MDAHB are
discussed in Section 4.3.

4.1 HB-tree

Similar with the HRB-tree adopted in MDAHRB, we propose to index the head table using a
B-tree, as shown in Fig. 11. It is named an HB-tree, which can be utilized for authenticating
OLSA queries. The HB-tree consists of the H- and B-trees. The H-tree is the same structure
shown in Fig. 4, while the B-tree indexed head table has its own features compared with the
RB-tree in the HRB-tree. For example, the height of the B-tree is lower than that of the
RB-tree, while some memory space is wasted inside the B-tree's nodes. After all, with the
same intuitions that are behind the HRB-tree, the HB-tree can also reduce the construction cost
and support hash operations.

Fig. 11. HB-tree for OLSA authentication..

The MB-tree is the state-of-the-art ADS for index-based query authentication, and the

HB-tree differs from the MB-tree in four aspects: 1. An MB-tree is proposed for authenticating
records that are retained in disk, whereas the HB-tree is expected to handle in-memory
processing, 2. The motivation of embedding the B-tree in the HB-tree distinguishes from the
idea of adopting the B+-tree for the MB-tree. All the records in the B+-tree are only retained at
the leaf nodes, while each B-tree node (BN) maintains its own records locally, a feature which

166 Chen et al.: Multi-dimensional Query Authentication for On-line Stream Analytics

satisfies the requirement of indexing head table nodes, 3. The HB-tree is more complex than
the MB-tree and expected to be more effective because it can aggregate records at high levels
and dimensions, 4. The hash operation on BN inside the HB-tree correlates with a sidelink
value which does not exist in any of the MB-tree nodes.

To sum up, all these distinguishing characteristics are due to the different motivations and
application environments. As with the HRB-tree, the H-tree in the HB-tree is built
dynamically, and the B-tree is constructed before any incoming Rs, by using head table nodes.
The hash operations on H-tree nodes are organized by executing Algorithm 2, as shown in Fig.
7. Each H-tree node N maintains a hash value of hN, which conforms to the basis of hashing on
B-tree node BN. The hashing steps inside BN are summarized in Fig. 12 (Algorithm 7).

Fig. 12. B-tree node hashing and B-tree hashing algorithms

Given a node BN, we first compute the hash value of its children hchild[k], where k should be

no more than #Key+1. If there is no child, represented by pChild[k] = nil (line 3), we set the
hash value as H(0) (line 4). Otherwise, the hash value is obtained by hashing the concatenation
of all the keys' hash values inside the child (line 6). Specifically, each key inside BN is
associated with a sidelink which links all the same-labeled Ns together, by which each key's
side hash value (hBN[i].side) is computed (line 8) like calculating hRBN:side in the HRB-tree. Then
in particular, we can get the hash value of the ith key inside BN (hBN[i]) by hashing the
concatenation of its side hash value hBN[i].side and the hash values of its two adjacent children
(hchild[i-1], hchild[i]) (line 9). Thus, the entire HB-tree can be hashed by calling the function of
BTreeHashing(BN, HBtreeEx) summarized in Fig. 12 (Algorithm 8) recursively. The DO
signs the hash value of the B-tree's root (hBroot) using the private key, and sends the signature
SigBroot to the SP. Taking into consideration the side hash values hBN[i].side makes the hashing
process rather more complicated than the MB-tree. However, because all the operations are
in-memory and the hash cost is cheap, the seemingly complicated processing provides a basis
for HB-tree-based authentication, MDAHB.

4.2 Authentication Scheme
In this section, we will introduce the authentication scheme, MDAHB, based on the HB-tree. It
is similar to the steps of MDAHRB, what distinguishes it is the B-tree indexed head table. Like
other index based authentication approaches, MDAHB contains two stages, VO construction
in the SP side and verification by the client. Overall, it is query-driven. Supposing a OLSA
query Q is detected, the SP constructs the VO by executing Algorithm 9 in Fig. 13. After
hashing the entire HB-tree, the Q-related key is retrieved in the B-tree indexed head table (line
2), and represented by the kth key contained in BN (BN[k]). First of all, the concatenation
value of its adjacent children are inserted into the entity of VO, VO.hBN[k].child (line 3). Then, as

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 2, April 2010 167

with MDAHRB, the related values of the side-hash and the attributes are appended into
separate objects, VO.siderValue, VO.siderHash, VO.sideurHash (lines 4-12). Since there are other
keys inside a single BN, we need to append the hash values of BN[k]'s siblings (hBN[i], i != k)
into VO.hsib1 (line 14). Similarly, the hash values of all the traversed BN's siblings are inserted
into VO.hsib2 (line 16).

Fig. 13. HB-tree based verification.

By implementing Algorithm 10 in Fig. 13, which rebuilds a partial B-tree indexed head

table and matches the computed h'Broot against the DO's signature SigBroot, the client is able to
verify the soundness of the query result. Since the process executes in a manner similar to the
inverse version of Algorithm 9, here we omit the detailed description. Likewise, the soundness
is guaranteed by MDAHB, though the head table index structure differs from MDAHRB. Due
to the one-way and collision-resistant properties of the hash function applied in the index
structure (HB-tree), any modification of the attributes' value inside N ultimately leads to a
contradiction in the client's verification.

4.3 Cost Model
We will compare MDAHRB with MDAHB in the same aspects. Each cost model of MDAHB
should consist of two parts, the H- and B-trees.

Node fanout and tree height: The node fanout and height of the H-tree is the same as
MDAHRB as follows: dH = τ, fiN = θi+1, 0 ≤ i ≤ τ-1. Suppose the maximum #Key in each BN
in the B-tree indexed head table is σ (σ≥2), which means that the node fanout of B-tree fBN
=σ+1, we may deduce that dB ≤ logσ[(φ+1)/2]. It is clear that the cost of the head table tree in
the HB-tree is much lower than that in the HRB-tree, i.e. dB＜dRB.

Storage cost: Similarly, the total cost of the HB-tree CsHB = CsH + CsB. For CsH, there is no
difference between the HB- and HRB-trees. However, CsB is definitely larger than CsRB due to
the features of the B- and Red-Black trees. This is because there is no redundance in the key
space that exists in BN and is wasted in the RB-tree.

Construction cost (hashing): The HB-tree is also retained in memory. No disk I/O
implies that hash computation is the dominant construction cost. Likewise, it contains three
parts: CcHB = CcH + CcB(+ CSig). Given φ head table nodes, there are mostly φ/σ BNs in the

168 Chen et al.: Multi-dimensional Query Authentication for On-line Stream Analytics

HB-tree. Consequently, the cost of hashing the B-tree CcB ≤ (φ/σ) · CH(BN), and it is not affected
by SR. Since CcH is equal to γ · CH(N), it will fluctuate until the H-tree is filled. For simplicity,
the cost for constructing the HB-tree is given by CcHB ≤ γ · CH(N) + (φ/σ) · CH(BN) (+ CSig). We
will compare CcHB and CcHRB in Section 5.

Other costs: The cost models of VO construction and query verification at the SP and DO
sides are similar to those of MDAHRB. Because all issues are handled inside memory, the
costs are much lower than that of ADS construction. The verification cost model at the client
side is given by: C'v = x · CH(N) + CH(BN) + y · CH(hBN[i].side|hchild[i-1]|hchild[i]) + C'Sig.

5. Experimental Evaluation
We implemented MDAHRB and MDAHB on a P4 2.6GHz CPU with 2GBytes of RAM, using
the Crypto++ library [9]. All methods are implemented using Microsoft Visual C++ 6.0. The
performance study is based on the real data set of NGSIM U.S. 101 [3]. It is about traffic
information such as flow, speed and density, which is obtained from actual detailed vehicle
trajectories collected by Cambridge Systematics, Inc. under the framework shown in Fig. 1.

Table 2. System parameters
Parameter Default Range
Data size 100K 10K, 50K, 100K, 200K, 500K

#Head table node 6K 2K, 4K, 6K, 8K, 10K

We compare the construction cost of MDAHRB and MDAHB in detail. The HRB- and
HB-trees are both constructed dynamically with the incoming Rs. We split the cost evaluation
into two sub-sections. Section 5.1 analyzes the insertion cost without hashing the tree, while
Section 5.2 focuses on the hashing cost when a query request signal is detected by the DO. The
data size SR and #head table nodes are the two main factors that can affect the performance.
We take them as the evaluation parameters and summarize their ranges and default values (per
timestamp) in Table 2. For simplicity, we consider only the OLSA point query that can be
handled directly by drilling along a popular path. Since there is no obvious overhead gap
between these two schemes during the VO construction and query verification stages (both of
which take about 10-18 ms), we do not cover those experimental evaluations in this paper.

5.1 Insertion Cost
First, we inllustrate the effect of the data size SR, after setting #head table nodes to the default
value (6K).

0

0.5

1

1.5

2

2.5

3

3.5

10 50 100 200 500

HB‐tree
H‐tree
HRB‐tree

Data size (in K tuples)

Ru
nt
im
e
(in

 s)

0

1

2

3

4

5

6

7

8

10 50 100 200 500

HB‐tree
H‐tree
HRB‐tree

Data size (in K tuples)

M
em

or
y
sp
ac
e
(in

 M
B)

Fig. 14. Construction cost vs. Data size.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 2, April 2010 169

Fig. 14 shows the insertion cost per timestamp at the DO. Ideally, the runtime and memeory
space overhead of all trees should increase linearly, because the dynamic construction is
data-driven. But the memory space cost trend is not clear. This is due to the extensiveness of
incoming data that may affect the size of the H-tree. This means that some later Rs can find the
existing paths and new Ns are seldom built. Note that the gap between the HRB- and HB-trees
increases with increasing data size, especially for runtime overhead. This is because of the
search efficiency of the B- and RB-trees.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10

HB‐tree
H‐tree
HRB‐tree

Head table nodes (in K)

Ru
nt
im
e
(in

 s
)

0

1

2

3

4

5

6

2 4 6 8 10

HB‐tree
H‐tree
HRB‐tree

Head table nodes (in K)

M
em

or
y
sp
ac
e
(in

 M
B)

Fig. 15. Construction cost vs. #Head table nodes.

Setting the data size to the default value (100K), Fig. 15 depicts the insertion cost against

#head table nodes, changes in which affect the size and search efficiency of the head table.
Among three approaches, increasing the memory space is stable. Because of the additional
cost of indexing, the HB- and HRB-trees take more space than the H-tree. However, the
runtime overhead of the H-tree grows linearly, while the HRB- and HB-trees remain largely
unaffected. This is due to the advantage of indexing the head table, and the HRB-tree performs
best by utilizing this. Overall, the improved HRB- and HB-trees both perform better than the
original H-tree. And the HRB-tree exhibits lower insertion cost than the HB-tree.

5.2 Hashing Cost
In this section, we compare the hashing cost on the HRB- and HB-trees versus the data size
and #head table nodes. For each experiment, we demonstrate the cost from the perspectives of
runtime overhead and memory space usage. Specifically, the cost of the HRB- and HB-trees
consists of two parts, the H-tree and the indexed head table. We demonstrate it in detail
through Fig. 16, Fig. 17 and Fig. 18.

0

10

20

30

40

50

60

10 50 100 200 500

H‐tree hashing
HRB‐tree hashing
RB‐tree hashing

Data size (in K tuples)

Ru
nt
im
e
(in

 s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 50 100 200 500

H‐tree hashing
HRB‐tree hashing
RB‐tree hashing

Data size (in K tuples)

M
em

or
y
sp
ac
e
(in

 M
B)

Fig. 16. HRB-tree hashing cost vs. Data size.

Fig. 16 exhibits the hashing cost on the HRB-tree against data size. It is obvious that the

increasing hashing cost is due to the dynamic construction of the H-tree, driven by the
continuous data streams.

170 Chen et al.: Multi-dimensional Query Authentication for On-line Stream Analytics

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10

H‐tree hashing
HB‐tree hashing
B‐tree hashing

Head table nodes (in K)

M
em

or
y
sp
ac
e
(in

 M
B)

0

5

10

15

20

25

30

35

40

2 4 6 8 10

H‐tree hashing
HB‐tree hashing
B‐tree hashing

Head table nodes (in K)

Ru
nt
im
e
(in

 s)

Fig. 17. HRB-tree hashing cost vs. #Head table nodes.

Conversely, Fig. 17 shows that when #head table nodes increases, the hashing cost on the

indexed head table is dominant and increases linearly. Likewise, considering the HB-tree,
doing the same experiment yields consistent conclusions.

0

10

20

30

40

50

60

70

10 50 100 200 500

HB‐tree hashing
HRB‐tree hashing

Data size (in K tuples)

Ru
nt
im
e
(in

 s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 50 100 200 500

HB‐tree hashing
HRB‐tree hashing

Data size (in K tuples)

M
em

or
y
sp
ac
e
(in

 M
B)

Fig. 18. Hashing cost vs. Data size.

To sum up, we compare the hashing cost between the HRB- and HB-trees as follows. Fig.

18 summarizes the hashing cost verus data size. In this case, we have concluded that the cost
increase is mainly due to the construction method of the H-tree. Because it is embedded inside
both the HRB- and HB-trees, the overhead gap is stable and it is the result of the different
properties of the two indexing schemes. Overall, the HRB-tree performs better than the
HB-tree. And when the H-tree is constructed fully, there will be no increase against data size.

0

5

10

15

20

25

30

35

40

45

50

2 4 6 8 10

HB‐tree hashing
HRB‐tree hashing

Head table nodes (in K)

Ru
nt
im
e
(in

 s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10

HB‐tree hashing
HRB‐tree hashing

Head table nodes (in K)

M
em

or
y
sp
ac
e
(in

 M
B)

Fig. 19. Hashing cost vs. #Head table.

Fig. 19 assesses the effect of #head table nodes for these two schemes. Since both the B-tree

and the Red-Black tree are two classical indices with reliable searching effciency, the runtime
gap between the HB- and HRB-trees is not greatly affected by increasing #head table nodes.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 2, April 2010 171

However, the memory space gap becomes increasingly wider because of the wasted key space
in the B-tree indexed in the HB-tree. Also, the gap will always grow if we increase the #head
table nodes, even if the H-tree has already been filled. In this sense, the HRB-tree is more
scalable and effcient than the HB-tree in the case of very large #head table nodes. All in all, the
HRB-tree-based authentication method, MDAHRB, outperforms the HB-tree-based method,
MDAHB. From the constructing point of view, Section 5.1 confirms that the HRB-tree
exhibits lower insertion cost than the HB-tree. Also, Section 5.2 affims that the HRB-tree is
more scalable and efficient than the HB-tree.

6. Conclusions
Aiming at covering the gap between OLSA and query authentication, this paper proposed two
index-based authentication schemes, MDAHRB and MDAHB, which are based on the general
approach for OLSA, the stream cube. Through the performance evaluation, both schemes are
affirmed to be feasible. Moreover, the improved HRB- and HB-trees both perform better than
the original H-tree for the stream cube. Considering the aspect of scalability, MDAHRB is
more general than MDAHB. Future research work needs to support completeness verification,
which both MDAHRB and MDAHB have not considered. And, the authentication schemes
should be extended to support OLSA range queries, or even more complicated query types.
For continuous data streams, it is impossible to retain all data in main memory. Consequently,
the backup/mirror issues of the information on disk that least affects OLSA should be
considerd. Also, research on how to execute a hybrid query which relies on both main memory
and disk data, together with an appropriate authentication solution, is meaningful.
Furthermore, whether the multi-dimensional analysis approach of the stream cube can be
extended as a spatio-temporal cube to support spatio-temporal OLSA processing and
outsourcing is an open problem.

References
[1] H. Hacigumus, B. Iyer, S. Mehrotra, “Providing database as a service,” in Proc. of 18th Int Conf.on

Data Engineering (ICDE), IEEE Computer Society, pp.29-38, 2002.
[2] S. Papadopoulos, Y. Yang, D. Papadias, “CADS: Continuous authentication on data streams,” in

Proc. of 33th Int Conf. on Very Large Data Bases (VLDB), pp.135-146, 2007.
[3] C. S. Inc., “NGSIM: Next generation simulation,” http://ngsim.camsys.com, 2005.
[4] J. Han, Y. Chen, G. Dong, J. Pei, B. W. Wah, J. Wang, Y. D. Cai, “Stream cube: An architecture

for multi-dimensional analysis of data streams,” Distributed and Parallel Databases, vol.18, no.2,
pp.173-197, 2005.

[5] M. J. Franklin, “From moore to metcalf: The network as the next database platform,” in Proc. of
26th Int Workshop on Management of Data, 2007.

[6] E. F. Codd, S. B. Codd, C. T. Salley, “Providing OLAP (On-line Analytical Processing) to
User-Analysts: An IT Mandate,” Codd and Date. Inc, 1993.

[7] W. Mao, “Modern Cryptography: Theory and Practice,” Pearson Education, 2003.
[8] F. Li, M. Hadjieleftheriou, G. Kollios, L. Reyzin, “Dynamic authenticated index structures for

outsourced databases,” in Proc of. 25th Int Conf. on Management of Data, pp.121-132, 2006.
[9] Crypto++ library. http://www.eskimo.com/weidai/benchmark.html
[10] Openssl. http://www.openssl.org.
[11] “Fips pub 180-1: Secure hash standard,” National Institute of Standards and Technology, 1995.
[12] R. Merkle, “A certified digital signature,” in Proc of. 9th Int Conf. on Advances in Cryptology

(CRYPTO), pp.218-238, 1989.
[13] F. Li, K. Yi, M. Hadjieleftheriou, G. Kollios, “Proof-infused streams: Enabling authentication of

172 Chen et al.: Multi-dimensional Query Authentication for On-line Stream Analytics

sliding window queries on streams,” in Proc of. 33th Int Conf. on Very Large Data Bases (VLDB),
pp.147-158, 2007.

[14] Y. Yang, S. Papadopoulos, D. Papadias, G. Kollios, “Authenticated indexing for outsourced
spatial databases,” International Journal on Very Large Databases, vol.18, no.3, pp.631-648,
2009.

[15] Y. Yang, D. Papadias, S. Papadopoulos, P. Kalnis, “Authenticated join processing in outsourced
databases,” in Proc of. 28th Int Conf. on Management of Data, pp.5-18, 2009.

[16] H. Gonzalez, J. Han, X. Li, “Flowcube: Constructuing RFID flowcubes for multi-dimensional
analysis of commodity flows,” in Proc of. 32th Int Conf. on Very Large Data Bases (VLDB),
pp.834-845, 2006.

[17] E. Lo, B. Kao, W. S. Ho, S. D. Lee, C. K. Chui, D. W. Cheung, “OLAP on sequence data,” in Proc
of. 27th Int Conf. on Management of Data, pp.649-660, 2008.

[18] J. Han, J. Pei, G. Dong, K. Wang, “Efficient computation of iceberg cubes with complex
measures,” in Proc of. 20th Int ACM SIGMOD Conf. on Management of Data, pp.1-12, 2001.

[19] Y. Chen, G. Dong, J. Han, B. W. Wah, J. Wang, “Multi-dimensional regression analysis of
time-series data streams,” in Proc of. 28th Int Conf. on Very Large Data Bases (VLDB),
pp.323-334, 2002.

[20] Y. D. Cai, D. Clutter, G. Pape, J. Han, M. Welge, L. Auvil, “MAIDS: Mining alarming incidents
from data streams,” in Proc of. 23 th Int ACM SIGMOD Conf. on Management of Data,
pp.919-920, 2004.

[21] M. Cho, J. Pei, K. Wang, “Answering ad hoc aggregate queries from data streams using prefix
aggregate trees,” Knowl. Inf. Syst., vol.12, no.3, pp.301-329, 2007.

[22] S. Nath, H. Yu, H. Chan, “Secure outsourced aggregation via one-way chains,” in Proc of. 28 th Int
ACM SIGMOD Conf. on Management of Data, pp.31-44, 2009.

Xiangrui Chen is currently a master’s degree candidate at the Database Laboratory,
Inha University, Incheon, Korea. He received a B.S. degree from Chongqing University
of Posts and Telecommunications, China, in 2008. His research interests include data
mining, data outsourcing, cloud computing, ubiquitous computing and information
systems. He has received a full scholarship from the Institute of Information Technology
Assessment (IITA) in Korea.

Gyoung Bae Kim is an Associate Professor at Seowon University, Korea Republic. He
received a B.S. degree from Inha University, Korea Republic, in 1992, an M.S. degree
from Inha University, Korea Republic, in 1994. and a Ph. D in Computer Science and
Engineering from Inha University, Korea Republic, in 2000. He worked as a senior
researcher from 2000 to 2004 and he worked as an assistance professor at Seowon
University from 2004 to 2009. Prof. Kim’s areas of interest include moving object
databases, storage systems etc.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 2, April 2010 173

Hae Young Bae is a Professor at Inha University, Korea Republic. He received a B.S.
degree from Inha University, Korea Republic, in 1974, an M.S. degree from Yonsei
University, Korea Republic, in 1978, and a Ph. D in Computer Engineering from the
Soongsil University, Korea Republic, in 1989. He worked as the dean of the Graduate
School of Information Technology and Telecommunication at Inha University from 2004
to 2006, and he worked as the dean of the Graduate School at Inha University from 2006
to 2009. Prof. Bae’s areas of interest include spatial databases, multimedia databases etc.

