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Abstract 
 

Database outsourcing is unavoidable in the near future. In the scenario of data stream 
outsourcing, the data owner continuously publishes the latest data and associated 
authentication information through a service provider. Clients may register queries to the 
service provider and verify the result's correctness, utilizing the additional authentication 
information. Research on On-line Stream Analytics (OLSA) is motivated by extending the 
data cube technology for higher multi-level abstraction on the low-level-abstracted data 
streams. Existing work on OLSA fails to consider the issue of database outsourcing, while 
previous work on stream authentication does not support OLSA. To close this gap and solve 
the problem of OLSA query authentication while outsourcing data streams, we propose 
MDAHRB and MDAHB, two multi-dimensional authentication approaches. They are based 
on the general data model for OLSA, the stream cube. First, we improve the data structure of 
the H-tree, which is used to store the stream cube. Then, we design and implement two 
authentication schemes based on the improved H-trees, the HRB- and HB-trees, in accordance 
with the main stream query authentication framework for database outsourcing. Along with a 
cost models analysis, consistent with state-of-the-art cost metrics, an experimental evaluation 
is performed on a real data set. It exhibits that both MDAHRB and MDAHB are feasible for 
authenticating OLSA queries, while MDAHRB is more scalable. 
 
 
Keywords: Database outsourcing, multi-dimensional query authentication, on-line stream 
Analytics (OLSA), stream cube 
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1. Introduction 

Because of its various advantages, database outsourcing [1] is currently attracting an 
increasing number of researchers. The essential goal is to enable the Data Owners (DOs) to 
publish their data/database through reliable third parties, named service providers (SPs). 

Generally, SPs are the groups/companies that can maintain the necessary platform (e.g. 
hardware) to support various advanced services on the basis of single or multiple databases. 
The clients can register their query requests directly to the SP, without communication with 
the DO. This framework benefits every party involved: 1. It does not matter whether the DO 
can afford the platform expense, 2. The SP may run various legal businesses based on the 
database(s), and achieve economies of scale by serving multiple DOs/clients, 3. The nearest 
SP can respond to the clients' queries with lower overhead with respect to the network latency 
[2].  

However, since the honesty of the SPs is a factor beyond the control of others (e.g. DOs, 
clients), techniques for the security and protection of the database are vital before outsourcing 
actions. Furthermore, when clients obtain query results from SPs, they also want to be granted 
the ability to authenticate the results. Generally, query results have two dimensions that should 
be guaranteed, soundness and completeness. In detail, soundness assures the client of the 
existence of returned records in the DO's database, without modification or any unauthentic 
records. Completeness means that the returned records are guaranteed to cover all the records 
that satisfy the query. Here we illustrate the idea of this paper by extending the framework of 
the Next Generation SIMulation (NGSIM) program to an outsourced Intelligent 
Transportation System (ITS). It was initiated by the U.S. Federal Highway Admistration 
(FHWA) [3]. As depicted in Fig. 1, Cambridge Systematics, Inc. (CSI) manages the collection 
of relevant information (e.g. videos, sensor data, maps). Replying to requests from the client 
(FHWA), it can support historical traffic analysis corresponding to a specific time period, 
relying on the collected disk-resident data. By analyzing the historical summary report sent by 
CSI (DO), transportation professionals in FHWA (clients) can make substantial decisions on 
topics like new roadway alignments and configurations, new interchange configurations and 
locations, the addition of freeway auxiliary lanes, etc. It is meaningful to urban planning.  

However, since traffic data is always in the form of data streams, whereas there is no stream 
processing approach adopted, this framework cannot support monitoring/ scheduling 
functions, in contrast to ITS. 

 

 
Fig. 1. Next Generation SIMulation (NGSIM). 

 
Furthermore, most data streams reside at a rather low level of abstraction (e.g. coordinate 

streams), while an analyst is often more interested in higher multi-level abstraction. A 
multi-dimensional on-line stream data analysis is needed, since it plays the kernel role in 
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understanding the general statistics, trends (e.g. traffic jams) and outliers (e.g. accidents) for 
traffic scheduling. Research on this substantial characteristic of data streams, 
low-level-abstracted, sets a new direction, extending data cube technology for 
multi-dimensional analytics of data streams [4], i.e. On-line Stream Analytics (OLSA) [5]. 
There is an essential difference between On-line Analytical Processing (OLAP) [6] and OLSA: 
OLAP is related to OLTP for historical reporting, while OLSA handles issues like monitoring, 
alerting, transformation, real-time visibility and reporting [5].    

In other words, OLAP cannot support on-line data stream aggregation in contrast to OLSA. 
However, since the expense of the necessary computational power and platform for OLSA is 
unacceptably high for some companies (e.g, CSI in Fig. 2), data stream outsourcing is 
unavoidable. Although relevant works on OLSA are noteworthy, none of them examines the 
outsourcing issue, which motivates the idea of this paper, extending NGSIM to support OLSA 
in outsourcing environments, taking into account query authentication issues. 

 

 
Fig. 2. NGSIM outsourcing framework example. 

 
The outsourced NGSIM framework example is depicted in Fig. 2. Following an asymmetric 

cryptosystem (public key digital signature scheme) [7], the DO (CSI) obtains a private and 
public key from the certificate authority. The private key can be known and used by DO to 
generate the signature for the outsourced information, while the public key is published and 
any client can use it. To enable the client to perform query authentication, DO constructs an 
Authenticated Data Structure (ADS), which is much the same as a conventional index.  

However, necessary additional authentication information is contained, e.g. hashing values 
signed by the DO. Receiving the encrypted data and DO signature, the SP maintains and 
updates the same ADS. When a client (FHWA) registers a continuous query, SP retrievals the 
local ADS and generates a Verifcation Object (VO). Obtaining the VO and DO signature sent 
by SP, the client can not only get the result, but also verify its correctness by reconstructing a 
partial ADS. Alternative implementations of query authentication approaches differ on the 
choice of signature techniques, design of ADS and verification algorithms [2]. In addition to 
the primary consideration for disk-resident data sets, authenticating continuous stream queries 
needs to accommodate more notable challenges, e.g. continuous validation upon fast updates, 
cost minimization mechanisms for communication and verification, necessary integration of 
relevant data sources, etc. Existing work on stream authentication considers these factors, 
however, they ignore the low-level-abstracted features of data streams, and do not support 
OLSA for high-level analysis. The idea of this paper aims to close this gap by proposing an 
authentication scheme for OLSA in outsourcing environments. In our work, we first improve 
the general approach for OLSA, stream cube [4], by proposing HRB- and HB-trees. Then, we 
propose MDAHRB and MDAHB, two multi-dimensional authentication schemes for OLSA 
in data stream outsourcing environments. Along with a cost model analysis consistent with 
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state-of-the-art cost metrics, an experimental evaluation is performed on a real data set 
(NGSIM U.S. 101 [3]). Our results exhibit that both MDAHRB and MDAHB are feasible for 
authenticating OLSA queries, while MDAHRB is more scalable. The rest of the paper is 
organized as follows. Section 2 reviews the relevant work. Section 3 presents the MDAHRB 
idea, while Section 4 focuses on MDAHB demonstration. A detailed experimental evaluation 
is illustrated in Section 5, and Section 6 concludes the paper with recommendations for future 
work. 

2. Related Work 
Research on multi-dimensional query authentication for OLSA is an interdisciplinary work 
between databases and security. Different from traditional query authentication for ad-hoc 
queries with single dimensional processing, multi-dimensional query authentication involves 
more dimensions.  

For example, since OLSA processing needs to consider both spatial and temporal 
dimensions, as explained in Section 2.3, query authentication for OLSA becomes a 
challenging task for which we provide solutions in Section 3 and 4. In this section, we will 
present the relevant work in these fields. 

2.1 Cryptography Essentials 
The public-key digital signature scheme presented in Section 1 aims at verifying the integrity 
of a message, which originates from the DO. Thus, it is crucial to design structures that use the 
minimum number of signing operations and utilize hashing instead. This is due to the high cost 
of signing compared with hashing [8], as confirmed by experiments with two widely used 
cryptography libraries, Crypto++ [9] and OpenSSL [10]. Hashing is a magic function H with 
two typical properties: 1. No inverse function, which means that for any x, it is easy to 
compute H(x), while given H(x), it is impossible to find any information about a pre-image x, 
2. Collision resistance, which means that it is impossible to find a pair of (x,y) statisfying x≠
y and H(x)=H(y) [7]. In this paper, we employ SHA1 [11], which takes variable length inputs 
and produces 160-bit (20-byte) outputs, and adopt the 128-byte digital signatures generated by 
RSA. 
 

 
Fig. 3. A Merkle hash tree (MH-tree). 

 
The Merkle Hash Tree. The MH-tree is a main-memory binary hash tree first proposed in 

[12]. It is constructed in a bottom-up manner by hashing records, which are sorted on the query 
attribute. As depicted in Fig. 3, every leaf node in the MH-tree contains the hash value of a 
record, and each internal node stores the hash value of the concatenation of its two children. 
The DO signs the hash value stored in the root and generates a DO signature sign(hroot, SK) 
using the private key SK, e.g. sign(h1234, SK). When a client sends a query that corresponds to 
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a record rx (e.g. r4), the SP traverses the tree and creates a VO by inserting the hash values 
stored in the siblings of every accessed node, h1. . . hn (e.g. h12, h3), in addition to the query 
result rx (e.g. r4). Thus, the VO should be in the form of VO(h1. . . hn), e.g. VO(h12, h3). Given 
the result rx, VO, sign(hroot, SK), and DO's public key PK, the client obtains the decrypted hroot 
and a hash value h’

root by iteratively constructing a partial ADS, i.e. h’
root=H(h12|H(h3,H(r4))). 

By matching h’
root against hroot, the correctness of rx returned from the SP can be authenticated, 

where soundness is guaranteed by the collision resistance of hash function H, and 
completeness is ensured by the construction of the MH-tree. 

2.2 Query Authentication 
The issue of database outsourcing first appeared in [1] and later a great deal of work on query 
authentication for database outsourcing appeared [2][8][13][14][15], most of which applies 
the concept of the MH-tree. Previous work generally utilizes two approaches, signature- and 
index-based. A good survey is provided in [14], but our review is brief. 

The Merkle B-tree (MB-tree) [8] is an improved MH-tree where the node fanout is 
determined by the PC's block size, motivated by the idea of the B+-tree. The MB-tree is 
disk-based, and does not consider the stream environment. Regarding authenticating queries 
on the data stream, references are scarce. To the best of our knowledge, [2] and [13] is the most 
predominant work. It is impossible to apply a signature-based approach to the data stream, 
because of the high signing cost upon infinite data streams, as a result of which the 
authentication schemes established in [2][13] are both index-based approaches. Researchers 
have successfully confronted most challenges within processing and authenticating 
continuous queries by proposing CADS [2], an elaborate indexing scheme and a virtual 
caching mechanism. Furthermore, it is extended to the general case where multiple DOs 
outsource their data to the same SP. The most relevant work to ours is [13]. They proposed 
structures for authenticating multi-dimensional selection and aggregation queries over sliding 
windows on data streams. The indices are implemented by extending the kd-tree, and were 
firstly applied to work for multi-dimensional queries. With similar techniques, the R-tree was 
extended for spatial database outsourcing [14]. Our work is distinguished from [12][13] 
because CADS does not consider multi-dimensional authentication. The tuple-based sliding 
window authentication index structure does not take into account the time dimension [13], 
which is a substantial attribute of data streams. Moreover, the sliding window-based 
aggregation approach is limited by the window size. We aim to close this gap by extending the 
data cube technology.  

In this case, our work differs from [12][13] because we focus more on a different branch, 
multi-dimensional query authentication for OLSA, and support both provisions, temporal 
soundness [2] and multi-dimensional aggregation [13]. State-of-the-art cost metrics for 
evaluating query authentication schemes are given in [8]: 1. The computation overhead for the 
owner, 2. The DO-SP communication cost, 3. The storage overhead for the server, 4. The 
computation overhead for the server, 5. The client-SP communication cost, and 6. The 
computation cost for the client (for verification). For consistency with previous work, we 
follow these metrics in this paper. 

2.3 On-line Stream Analytics (OLSA) 
Due to the limited resources currently available to computers (e.g. memory, disk, etc.), it is 
impossible to store an entire data stream or to scan through it multiple times. Although 
previous studies (e.g. management and querying of stream data, data mining on data streams) 
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have established fundamental techniques to process data streams efficiently, research on 
OLSA is still in its infancy. Corresponding to various applications, different data structures, 
processing approaches and validated algorithms need to be specified, e.g. RFID [16], sequence 
data [17]. Most of these approaches adopt the data cube technique. 
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Fig. 4. Stream cube from m- to o-layer.  

 

 
Fig. 5. A tilt time frame model.  

 
In our work, we consider the general OLSA approach, stream cube [4], shown in Fig. 4, 

which is proposed to enable on-line, multi-dimensional, multi-level analysis of data streams. 
Specifically, we focus on extending it with a feasible authentication approach to facilitate 
OLSA in database outsourcing environments (see Fig. 2). There are three notable techniques 
within the stream cube: 1. A tilted time frame model (see Fig. 5), proposed as a 
multi-resolution model to register time-related data, 2. Critical layers, i.e. observation layer 
(o-layer) and minimal interesting layer (m-layer) (see Fig. 4), which enables flexible analysis 
with low overhead, 3. An efficient cubing method, which only computes and maintains the 
layers (cuboids) along a popular path (see Fig. 4, in bold red), leaving the other cuboids for 
query-driven, on-line computation. As illustrated in Fig. 4, based on these techniques, raw 
low-level-aggregated data streams (e.g. sensor coordinates streams) can be pre-aggregated to 
the m-layer, (A1, B1, C1), according to the tilted time scale. Concurrently, it is further 
aggregated following the popular drilling path (in bold red) to reach the observation layer, (*, 
*, C2). Drilling from the o- to m-layer, there are a total of five materialized layers (cuboids) 
during cube computation, within which relevant queries that precisely rely on these layers can 
be answered directly without any further computation. Meanwhile, queries that deviate from 
the path can be answered by on-line computation based on the reachable computed layers. As 
established by previous work [4] [18][19][20][21], it is feasible to utilize the stream cube for 
OLSA, computed and stored by a main-memory data structure, the H-tree. It is a hyper-linked 
tree structure first introduced by [18]. It was revised in [4] to ensure that it can be maintained 
in memory for efficient computation of multi-dimensional, multi-level aggregations requested 
by continuous OLSA queries. Detailed construction steps can be found in [4]. The proposed 
authentication methods are based on the authenticated data structures, HB- and HRB-tree, 
which will be introduced in Section 3.1 and 4.1. However, both of them are the extension of 
the H-tree in Fig. 4.  

The latest work that considers the problem of secure outsourced aggregation, which seems 
to be similar to our idea, is based on the unified use of a one-way chain [22]. However, it is 
from the perspective of data collection and aggregation outsourcing, and does not support 
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query answering and authentication. Meanwhile, our method is to extend the OLSA solution, 
the stream cube, to the outsourcing future of OLSA, and support query authentication. Also, 
the stream cube itself can support data aggregation.  

3. Multi-dimensional Authentication Method - MDAHRB 
Section 3.1 illustrates the idea of ADS in MDAHRB. Section 3.2 describes the authentication 
scheme. Section 3.3 summarizes the cost models of MDAHRB. The summary of notations 
used are listed in Table 1. 

 
Table 1. Summary of notations used 

Symbol Description Symbol Description 
R A data stream tuple fx Node fanout of structure x 
SR Number of arrived data stream tuples |x| Size of object x 
N An H-tree node hx A hash value on x 

Qnode A queue node inside N Sigx A signature on x 
RBN A RB-tree indexed head table node Cx Cost of operation x 
BN A B-tree indexed head table node H(x) A hash operation on input x 
dx Height of structure x VO The verification object 

3.1 HRB-tree 
Based on the H-tree depicted in Fig. 4, information can be stored, updated, aggregated and 
accessed at different levels. When a new tuple R arrives, it will be expanded to the m-layer 
schema according to a concept hierarchical tree and inserted into the H-tree, with popular path 
cuboids aggregated/computed inside the internal nodes. To sum up, for a specific cell's 
information, which may be distributed among several same-labeled nodes in the layer, the 
head table plays the role of linking them all together. Queries that precisely rely on these layers 
can be directly returned by retrieving the head table in order to find all same-labeled nodes, 
and examining whether it relates to the query (by checking the upper nodes). Briefly, the 
ADSs are constructed by indexing the head table nodes. 
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Fig. 6. HRB-tree for OLSA authentication. 
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For MDAHRB, the ADS improves the H-tree by adopting the Red-Black tree to organize 
the head table. The intuitions behind this framework are: 1. The cost of tree construction can 
be reduced by indexing the frequently accessed head table, 2. It is necessary to enable hash 
operations of query authentication through a global tree structure. The height balance and 
binary organized features of the Red-Black tree satisfy our intuitions. In this case, the ADS 
(indexing structure) is designed to be a collaboration of the H- and RB-trees, named the 
HRB-tree, which is illustrated in Fig. 6. Both the SP and the DO maintain and update the 
HRB-tree locally. 

 

 
Fig. 7. H-tree node hashing. 

 
The hashing scheme in the HRB-tree, especially the organization in part of the RB-tree, is 

similar to the aforementioned MH-tree, whereas it distinguishes from the MH-tree. 
Specifically, since it is for authenticating data streams, the hash operations in MDAHRB are 
expected to be performed in a query-driven manner. Moreover, the H-tree is constructed 
dynamically paralleling the incoming Rs, while the RB-tree is constructed before any 
processing , which should in principle organize all the head table nodes of the Red-Black tree. 
 

 
Fig. 8. H-tree node hashing and H-tree hashing algorithms. 

 
Suppose a query is detected. Before discussing RB-tree hashing, the H-tree will be hashed 

as follows. As the cell, each node of the H-tree (N) incorporates a tilt time frame model to 
maintain historical information. It is extended to support OLSA query authentication by 
computing the hash value of N (hN). Taking the frame of 15 minutes, 4 quarters, 24 hours as an 
example, the hashing operations inside N are organized as shown in Fig. 7, and hN is calculated 
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following the steps shown in Fig. 8 (Algorithm 1). In detail, there are three time queues inside 
N. Within each queue node (Qnode), multi-dimensional information is summarized by several 
attributes, e.g. time, coordinates, etc. The hash values of these original dimensional records, 
hAttr[i], are computed respectively(lines 3, 7, 11). We can obtain the hash value of each Qnode 
by hashing the concatenation ('|') of all hAttr[i] (lines 4, 8, 12). Similarly, we can obtain the hash 
value of all queues (i.e. hH, hQ, hM) (lines 5, 9, 13) and the final hN (line 14). Based on the hash 
operation on N, HNodeHashing(N), it traverses and hashes the entire H-tree following the 
steps described in Fig. 8 (Algorithm 2), calling HTreeHashing(N, HtreeEx) recursively. 
 

RBNodeHashing(RBN)
RBN - A node in RB-tree indexed head table

- Hash value in node RBN
1. RBN is a leaf node 
2. (0)
3. 

4. ( | )
5. ( [1]|...| [ ])
6. ( | )

RBTreeHashing(RBN, HRBtreeEx)
RBN - A node in RB-tree indexed head table,

HRBtreeEx - An HRB-tree
HRBtreeEx.RBtree is hashed

1. = and = 
2. HRBtreeEx. ( )
3. 

4. = and 
5. RBTreeHashing(RBN.right, HRBtreeEx)
6. HRBtreeEx. ( )
7. 

8. and = 
9. RBTreeHashing(RBN.left, HRBtreeEx)

10. HRBtreeEx. ( )
11.

12. 

13. RBTreeHashing(RBN.left, HRBtreeEx)
14. RBTreeHashing(RBN.right, HRBtreeEx)
15. HRBtreeEx. ( )
16.  

Fig. 9. RB-tree node hashing and RB-tree hashing. 
 

The RB-tree in the HRB-tree continues to be hashed after H-tree hashing. Different from the 
MH-tree in particular, each RB-tree node (RBN) maintains a sidelink which points to the first 
created N labeled with the key of RBN. When a second N with the same label is created, it will 
be linked by the sidelink inside the first linked N. In short, the Ns carrying the same label must 
be linked consecutively. The hashing method of RBN executes as depicted in Fig. 9 
(Algorithm 3). If it is a leaf node, the hash value of its child (hRBN.child) is taken as H(0) (line 2). 
For an intermediate node, however, hRBN.child is obtained by hashing the concatenation of the 
hash values inside its left and right children (line 4). Specifically, the hash values of all linked 
N(hside[n]) are utilized to compute hRBN.side (line 5), which guarantees the correctness of the 
information stored in the H-tree. Finally, the hash value of RBN (hRBN) is returned (line 6). 
Similarly, based on the function of RBNodeHashing(RBN), the RB-tree can be hashed by 
running Algorithm 4 (Fig. 9). The DO signs the hash value of the root in the RB-tree (using the 
private key) and sends SigRBroot to the SP. 

3.2 Authentication Scheme 
As discussed in Section 2.2, the essential aspect of query authentication in the SP side is to 
construct a VO during query answering, and to enable the client to verify the correctness of the 
result by reconstructing a partial ADS utilizing the additional VO. In this section, we will 
describe the VO construction approach in the SP side, relying on the HRB-tree and the 
verification steps in the client side within the scheme of MDAHRB. Given a point query Q that 
relies on popular path cuboids in the stream cube, it will be processed according to the 
following four steps: 1. Access the indexed head table and get the node RBNi, the label of 
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which corresponds to the one-dimensional condition of Q, 2. Obtain all linked Ns by retrieving 
along the sidelink inside RBNi and Ns. Note that the other dimensional requirements of Q are 
restricted by the upper layers of N, 3. Examine whether the obtained N relates to Q by 
matching the labels of its upper ancestor nodes with the other dimensional conditions of Q, 4. 
Aggregate the attribute values of Q-related nodes and return it as the query results. 

Thus, OLSA queries are answered efficiently by utilizing the pre-materialized popular path 
of the stream cube. Since the data structure of the stream cube (HRB-tree) is retained in main 
memory,  continuous processing and operations is possible for answering OLSA queries. Hash 
operations on ADS are query driven, and the SP will hash the entire HRB-tree before the VO 
construction and query processing steps are forwarded. For collaborated HRB-tree hashing, 
following H-tree hashing (Algorithm 2), the RB-tree is hashed on the basis of the hash values 
of H-tree nodes by executing Algorithm 4. 

 

 
Fig. 10. HRB-tree based verification. 

 
Then, paralleling with query processing, VO is constructed. Fig. 10 (Algorithm 5) 

illustrates the initial VO generation for a point query Q within an HRB-tree instance 
HRBtreeEx. It starts by locating one of Q’s dimensional conditions specified by the client in 
the indexed head table, RB-tree (lines 1-2), and the RBNk is returned. The hash values of its 
children are concatenated and hashed for the calculation of RBNk's hchild, which is appended 
into the VO entity tagged by VO.hchild (line 3). For all the linked Ns along the sidelink of 
RBNk, the hash values of unrelated Ns (hN) are directly appended to the VO as the object of 
VO.sideurHash (line 11).  

On the other hand, there are several time queues and many Qnodes inside each Q relevant N 
(Fig. 7). The attributes' values of related Qnodes are appended into VO as the object of 
VO.siderV alue (line 7), while the hash values of unrelated queues (e.g. hH, hQ, hM) and Qnodes 
(hQnode) are inserted into the object of VO.siderHash (line 8). Finally, similar to the VO 
construction scheme of the MH-tree, the hash values of all siblings traversed (line 2) in the 
RB-tree (hRBN) are appended to the substructure as VO.hsib (line 14). Obtaining the query result, 
Res, additional authentication information (VO) and the signature of DO (SigRBroot), the client 
is enabled to verify the soundness of the returned information from the SP using 
HRBVerification(VO, SigRBroot). As shown in Fig. 10 (Algorithm 6), a partial ADS' is first 
reconstructed (lines 3-13) and the hash value h'RBroot (the final h3 in the algorithm) at the root of 
ADS' is computed (line 13). By matching h'RBroot against the decrypted hash value of SigRBroot, 
the soundness of Res is guaranteed. Specifically, lines 3-9 depict the computation of hRBN. 
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MADHRB guarantees the soundness of query authentication. Suppose that the attribute values 
inside N or query results are modified. Because H(x) is a one-way, collision-resistant function, 
the hRBN.side computed by the client is different from that of the DO.  

Therefore, although the structure of reconstructed ADS' is the same as ADS in the DO side, 
the computed h'RBroot differs from the original, which implies the failure of verification. 

3.3 Cost Model 
Consistent with the state-of-the-art cost metrics discussed in Section 2.2, we will present the 
analytical cost models of MDAHRB. Each cost model of MDAHRB should consist of two 
parts, the H- and RB-trees.  

Node fanout and tree height: The node fanout of the RB-tree is no more than 2, which 
implies fRBN ≤ 2. And the #RBN (φ) equals the #head table nodes. Then the height of the 
RB-tree dRB ≤ 2lg(φ+1). 

In the case of the H-tree, however, there are differences between layers. The # and the order 
of layers is decided by the # and the top-down appearance order of different dimension 
attributes along the pre-established popular path. The fanout of each layer depends on the 
cardinality of the following layer. For instance, as depicted in Fig. 4, there are five distinct 
dimension attributes along the popular path, appearing top-down in the order of C2, A1, B2, C1, 
B1. Then there are 5 layers in the H-tree (the root node is at level 0), and the node fanout of 
layer 2 (A1) equals the cardinality of layer 3 (B2). Here, let τ represent the # of different 
dimension attributes, and θi depicts the cardinality of the ith layer. The dH = τ, and the fanout of 
N in the ith layer fiN = θi+1, 0 ≤ i ≤τ - 1. 

Storage cost: The total size of the HRB-tree is equal to: CsHRB = CsH + CsRB. It is easy to find 
that φ and the cost of the RB-tree (CsRB) remains the same when Rs are incoming. Conversely, 
the #N (γ) will change with continuously incoming Rs, which implies that CsH will fluctuate, 
and the scale relies on the extensiveness of the incoming data. Until the H-tree is filled and any 
incoming R can find an existing path, CsH turns out to be stable and we can get the final CsHRB. 

Similar with the advantage of the MB-tree, CsHRB does not reflect the DO/SP 
communication cost. Only the aggregated values inside Ns are transmitted to the SP, together 
with the SigRBroot. Also, the SP needs to reconstruct the HRB-tree and perform the hash 
operations incrementally from the H- to RB-trees. Compared with the signature-based 
approaches referred to in Section 2.2, the small additional hash computation cost in the SP 
reduces the DO/SP communication cost substantially.  

Construction cost (hashing): Because the HRB-tree is an in-memory structure, there are 
no disk I/O operations. The construction cost for building an HRB-tree depends on the hash 
function computations and consists of three parts: CcHRB = CcH + CcRB(+CSig). Here CcRB = 
φ · CH(RBN), and it is not affected by the incoming Rs. Since CcH is equal to γ · CH(N), it will 
fluctuate when the H-tree is a partial tree. To sum up, the total cost for constructing the 
HRB-tree is given by CcHRB = γ · CH(N) + φ · CH(RBN)(+CSig). Note that although both DO and SP 
maintain the same HRB-tree locally, there is no CSig at the SP side. 

Other costs: Since there is no disk I/O, the costs of VO construction (for SP) and 
verification (for client) are rather low. For VO construction, the SP only needs to return 
relevant hash and attribute values which are retained in memory. For verification, the client 
needs to do several hash operations while reconstructing the partial HRB-tree, and decrypt 
SigRBroot using DO's public key. The cost at the client side is given as:  

Cv = x · CH(N) + CH(RBN) +y · CH(hlchild|hrchild) + C'Sig.  
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It is obvious that the in-memory processing feature of MDAHRB guarantees the feasibility 
of authenticating OLSA queries. Moreover, adopting an RB-tree to index the head table 
reduces the overhead of inserting Rs and query answering. Our experimental evaluation 
exhibits that this effect will scale up with the growing speed of incoming data streams. On the 
other hand, MDAHRB cannot support completeness verification by relying on the existing 
work. 

4. Multi-dimensional Authentication Method - MDAHB 

Since there is no detailed previous work, we propose MDAHB as a competitor of MDAHRB. 
Section 4.1 presents the HB-tree utilized by MDAHB. Section 4.2 introduces the 
authentication scheme and gives relevant algorithms. Finally, the cost models of MDAHB are 
discussed in Section 4.3. 

4.1 HB-tree 

Similar with the HRB-tree adopted in MDAHRB, we propose to index the head table using a 
B-tree, as shown in Fig. 11. It is named an HB-tree, which can be utilized for authenticating 
OLSA queries. The HB-tree consists of the H- and B-trees. The H-tree is the same structure 
shown in Fig. 4, while the B-tree indexed head table has its own features compared with the 
RB-tree in the HRB-tree. For example, the height of the B-tree is lower than that of the 
RB-tree, while some memory space is wasted inside the  B-tree's nodes. After all, with the 
same intuitions that are behind the HRB-tree, the HB-tree can also reduce the construction cost 
and support hash operations. 
 

 
Fig. 11. HB-tree for OLSA authentication.. 

 
The MB-tree is the state-of-the-art ADS for index-based query authentication, and the 

HB-tree differs from the MB-tree in four aspects: 1. An MB-tree is proposed for authenticating 
records that are retained in disk, whereas the HB-tree is expected to handle in-memory 
processing, 2. The motivation of embedding the B-tree in the HB-tree distinguishes from the 
idea of adopting the B+-tree for the MB-tree. All the records in the B+-tree are only retained at 
the leaf nodes, while each B-tree node (BN) maintains its own records locally, a feature which 
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satisfies the requirement of indexing head table nodes, 3. The HB-tree is more complex than 
the MB-tree and expected to be more effective because it can aggregate records at high levels 
and dimensions, 4. The hash operation on BN inside the HB-tree correlates with a sidelink 
value which does not exist in any of the MB-tree nodes. 

To sum up, all these distinguishing characteristics are due to the different motivations and 
application environments. As with the HRB-tree, the H-tree in the HB-tree is built 
dynamically, and the B-tree is constructed before any incoming Rs, by using head table nodes. 
The hash operations on H-tree nodes are organized by executing Algorithm 2, as shown in Fig. 
7. Each H-tree node N maintains a hash value of hN, which conforms to the basis of hashing on 
B-tree node BN. The hashing steps inside BN are summarized in Fig. 12 (Algorithm 7). 

 
 

 
Fig. 12. B-tree node hashing and B-tree hashing algorithms 

 
Given a node BN, we first compute the hash value of its children hchild[k], where k should be 

no more than #Key+1. If there is no child, represented by pChild[k] = nil (line 3), we set the 
hash value as H(0) (line 4). Otherwise, the hash value is obtained by hashing the concatenation 
of all the keys' hash values inside the child (line 6). Specifically, each key inside BN is 
associated with a sidelink which links all the same-labeled Ns together, by which each key's 
side hash value (hBN[i].side) is computed (line 8) like calculating hRBN:side in the HRB-tree. Then 
in particular, we can get the hash value of the ith key inside BN (hBN[i]) by hashing the 
concatenation of its side hash value hBN[i].side and the hash values of its two adjacent children 
(hchild[i-1], hchild[i]) (line 9). Thus, the entire HB-tree can be hashed by calling the function of 
BTreeHashing(BN, HBtreeEx) summarized in Fig. 12 (Algorithm 8) recursively. The DO 
signs the hash value of the B-tree's root (hBroot) using the private key, and sends the signature 
SigBroot to the SP. Taking into consideration the side hash values hBN[i].side makes the hashing 
process rather more complicated than the MB-tree. However, because all the operations are 
in-memory and the hash cost is cheap, the seemingly complicated processing provides a basis 
for HB-tree-based authentication, MDAHB. 

4.2 Authentication Scheme 
In this section, we will introduce the authentication scheme, MDAHB, based on the HB-tree. It 
is similar to the steps of MDAHRB, what distinguishes it is the B-tree indexed head table. Like 
other index based authentication approaches, MDAHB contains two stages, VO construction 
in the SP side and verification by the client. Overall, it is query-driven. Supposing a OLSA 
query Q is detected, the SP constructs the VO by executing Algorithm 9 in Fig. 13. After 
hashing the entire HB-tree, the Q-related key is retrieved in the B-tree indexed head table (line 
2), and represented by the kth key contained in BN (BN[k]). First of all, the concatenation 
value of its adjacent children are inserted into the entity of VO, VO.hBN[k].child (line 3). Then, as 
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with MDAHRB, the related values of the side-hash and the attributes are appended into 
separate objects, VO.siderValue, VO.siderHash, VO.sideurHash (lines 4-12). Since there are other 
keys inside a single BN, we need to append the hash values of BN[k]'s siblings (hBN[i], i != k) 
into VO.hsib1 (line 14). Similarly, the hash values of all the traversed BN's siblings are inserted 
into VO.hsib2 (line 16). 

 

 
Fig. 13. HB-tree based verification. 

 
By implementing Algorithm 10 in Fig. 13, which rebuilds a partial B-tree indexed head 

table and matches the computed h'Broot against the DO's signature SigBroot, the client is able to 
verify the soundness of the query result. Since the process executes in a manner similar to the 
inverse version of Algorithm 9, here we omit the detailed description. Likewise, the soundness 
is guaranteed by MDAHB, though the head table index structure differs from MDAHRB. Due 
to the one-way and collision-resistant properties of the hash function applied in the index 
structure (HB-tree), any modification of the attributes' value inside N ultimately leads to a 
contradiction in the client's verification. 

4.3 Cost Model 
We will compare MDAHRB with MDAHB in the same aspects. Each cost model of MDAHB 
should consist of two parts, the H- and B-trees.  

Node fanout and tree height: The node fanout and height of the H-tree is the same as 
MDAHRB as follows: dH = τ, fiN = θi+1, 0 ≤ i ≤ τ-1. Suppose the maximum #Key in each BN 
in the B-tree indexed head table is σ (σ≥2), which means that the node fanout of B-tree fBN 
=σ+1, we may deduce that dB ≤ logσ[(φ+1)/2]. It is clear that the cost of the head table tree in 
the HB-tree is much lower than that in the HRB-tree, i.e. dB＜dRB. 

Storage cost: Similarly, the total cost of the HB-tree CsHB = CsH + CsB. For CsH, there is no 
difference between the HB- and HRB-trees. However, CsB is definitely larger than CsRB due to 
the features of the B- and Red-Black trees. This is because there is no redundance in the key 
space that exists in BN and is wasted in the RB-tree. 

Construction cost (hashing): The HB-tree is also retained in memory. No disk I/O 
implies that hash computation is the dominant construction cost. Likewise, it contains three 
parts: CcHB = CcH + CcB( + CSig). Given φ head table nodes, there are mostly φ/σ BNs in the 
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HB-tree. Consequently, the cost of hashing the B-tree CcB ≤ (φ/σ) · CH(BN), and it is not affected 
by SR. Since CcH is equal to γ · CH(N), it will fluctuate until the H-tree is filled. For simplicity, 
the cost for constructing the HB-tree is given by CcHB ≤ γ · CH(N) + (φ/σ) · CH(BN) ( + CSig). We 
will compare CcHB and CcHRB in Section 5. 

Other costs: The cost models of VO construction and query verification at the SP and DO 
sides are similar to those of MDAHRB. Because all issues are handled inside memory, the 
costs are much lower than that of ADS construction. The verification cost model at the client 
side is given by: C'v = x · CH(N) + CH(BN) + y · CH(hBN[i].side|hchild[i-1]|hchild[i]) + C'Sig. 

5. Experimental Evaluation 
We implemented MDAHRB and MDAHB on a P4 2.6GHz CPU with 2GBytes of RAM, using 
the Crypto++ library [9]. All methods are implemented using Microsoft Visual C++ 6.0. The 
performance study is based on the real data set of NGSIM U.S. 101 [3]. It is about traffic 
information such as flow, speed and density, which is obtained from actual detailed vehicle 
trajectories collected by Cambridge Systematics, Inc. under the framework shown in Fig. 1. 
 

Table 2. System parameters 
Parameter Default Range 
Data size 100K 10K, 50K, 100K, 200K, 500K 

#Head table node 6K 2K, 4K, 6K, 8K, 10K 
 
We compare the construction cost of MDAHRB and MDAHB in detail. The HRB- and 
HB-trees are both constructed dynamically with the incoming Rs. We split the cost evaluation 
into two sub-sections. Section 5.1 analyzes the insertion cost without hashing the tree, while 
Section 5.2 focuses on the hashing cost when a query request signal is detected by the DO. The 
data size SR and #head table nodes are the two main factors that can affect the performance. 
We take them as the evaluation parameters and summarize their ranges and default values (per 
timestamp) in Table 2. For simplicity, we consider only the OLSA point query that can be 
handled directly by drilling along a popular path. Since there is no obvious overhead gap 
between these two schemes during the VO construction and query verification stages (both of 
which take about 10-18 ms), we do not cover those experimental evaluations in this paper. 

5.1 Insertion Cost 
First, we inllustrate the effect of the data size SR, after setting #head table nodes to the default 
value (6K). 
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Fig. 14. Construction cost vs. Data size. 
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Fig. 14 shows the insertion cost per timestamp at the DO. Ideally, the runtime and memeory 
space overhead of all trees should increase linearly, because the dynamic construction is 
data-driven. But the memory space cost trend is not clear. This is due to the extensiveness of 
incoming data that may affect the size of the H-tree. This means that some later Rs can find the 
existing paths and new Ns are seldom built. Note that the gap between the HRB- and HB-trees 
increases with increasing data size, especially for runtime overhead. This is because of the 
search efficiency of the B- and RB-trees. 
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Fig. 15. Construction cost vs. #Head table nodes. 

 
Setting the data size to the default value (100K), Fig. 15 depicts the insertion cost against 

#head table nodes, changes in which affect the size and search efficiency of the head table. 
Among three approaches, increasing the memory space is stable. Because of the additional 
cost of indexing, the HB- and HRB-trees take more space than the H-tree. However, the 
runtime overhead of the H-tree grows linearly, while the HRB- and HB-trees remain largely 
unaffected. This is due to the advantage of indexing the head table, and the HRB-tree performs 
best by utilizing this. Overall, the improved HRB- and HB-trees both perform better than the 
original H-tree. And the HRB-tree exhibits lower insertion cost than the HB-tree. 

5.2 Hashing Cost 
In this section, we compare the hashing cost on the HRB- and HB-trees versus the data size 
and #head table nodes. For each experiment, we demonstrate the cost from the perspectives of 
runtime overhead and memory space usage. Specifically, the cost of the HRB- and HB-trees 
consists of two parts, the H-tree and the indexed head table. We demonstrate it in detail 
through Fig. 16, Fig. 17 and Fig. 18.  
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Fig. 16. HRB-tree hashing cost vs. Data size. 

 
Fig. 16 exhibits the hashing cost on the HRB-tree against data size. It is obvious that the 

increasing hashing cost is due to the dynamic construction of the H-tree, driven by the 
continuous data streams. 
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Fig. 17. HRB-tree hashing cost vs. #Head table nodes. 

 
Conversely, Fig. 17 shows that when #head table nodes increases, the hashing cost on the 

indexed head table is dominant and increases linearly. Likewise, considering the HB-tree, 
doing the same experiment yields consistent conclusions.  
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Fig. 18. Hashing cost vs. Data size. 

 
To sum up, we compare the hashing cost between the HRB- and HB-trees as follows. Fig. 

18 summarizes the hashing cost verus data size. In this case, we have concluded that the cost 
increase is mainly due to the construction method of the H-tree. Because it is embedded inside 
both the HRB- and HB-trees, the overhead gap is stable and it is the result of the different 
properties of the two indexing schemes. Overall, the HRB-tree performs better than the 
HB-tree. And when the H-tree is constructed fully, there will be no increase against data size. 
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Fig. 19. Hashing cost vs. #Head table. 

 
Fig. 19 assesses the effect of #head table nodes for these two schemes. Since both the B-tree 

and the Red-Black tree are two classical indices with reliable searching effciency, the runtime 
gap between the HB- and HRB-trees is not greatly affected by increasing #head table nodes. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 2, April 2010                                                 171 

However, the memory space gap becomes increasingly wider because of the wasted key space 
in the B-tree indexed in the HB-tree. Also, the gap will always grow if we increase the #head 
table nodes, even if the H-tree has already been filled. In this sense, the HRB-tree is more 
scalable and effcient than the HB-tree in the case of very large #head table nodes. All in all, the 
HRB-tree-based authentication method, MDAHRB, outperforms the HB-tree-based method, 
MDAHB. From the constructing point of view, Section 5.1 confirms that the HRB-tree 
exhibits lower insertion cost than the HB-tree. Also, Section 5.2 affims that the HRB-tree is 
more scalable and efficient than the HB-tree. 

6. Conclusions 
Aiming at covering the gap between OLSA and query authentication, this paper proposed two 
index-based authentication schemes, MDAHRB and MDAHB, which are based on the general 
approach for OLSA, the stream cube. Through the performance evaluation, both schemes are 
affirmed to be feasible. Moreover, the improved HRB- and HB-trees both perform better than 
the original H-tree for the stream cube. Considering the aspect of scalability, MDAHRB is 
more general than MDAHB. Future research work needs to support completeness verification, 
which both MDAHRB and MDAHB have not considered. And, the authentication schemes 
should be extended to support OLSA range queries, or even more complicated query types. 
For continuous data streams, it is impossible to retain all data in main memory. Consequently, 
the backup/mirror issues of the information on disk that least affects OLSA should be 
considerd. Also, research on how to execute a hybrid query which relies on both main memory 
and disk data, together with an appropriate authentication solution, is meaningful. 
Furthermore, whether the multi-dimensional analysis approach of the stream cube can be 
extended as a spatio-temporal cube to support spatio-temporal OLSA processing and 
outsourcing is an open problem. 
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