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Abstract 

 
Aiming at the problem of software defect prediction difficulty caused by insufficient software 
defect marker samples and unbalanced classification, a semi-supervised software defect 
prediction model based on a tri-training algorithm was proposed by combining feature 
normalization, over-sampling technology, and a Tri-training algorithm. First, the feature 
normalization method is used to smooth the feature data to eliminate the influence of too large 
or too small feature values on the model's classification performance. Secondly, the 
oversampling method is used to expand and sample the data, which solves the unbalanced 
classification of labelled samples. Finally, the Tri-training algorithm performs machine 
learning on the training samples and establishes a defect prediction model. The novelty of this 
model is that it can effectively combine feature normalization, oversampling techniques, and 
the Tri-training algorithm to solve both the under-labelled sample and class imbalance 
problems. Simulation experiments using the NASA software defect prediction dataset show 
that the proposed method outperforms four existing supervised and semi-supervised learning 
in terms of Precision, Recall, and F-Measure values. 
 
 
Keywords: Feature Normalization, Oversampling Techniques, Software Defect Prediction, 
Semi-supervised Learning, Unbalanced Classification 
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1. Introduction 

Software defects are the antithesis of software quality and threaten it [1]. As software 
development progresses, the size and structure of programs become larger and more complex, 
making defects hide deeper and more challenging to detect. Undetected defects can lead to 
more server problems as the software iterates, resulting in more server consequences when 
defects break out. Research and practice have long shown that the earlier software defects are 
found, the lower the cost of fixing them, and the more damage can be recovered [2]. The cost 
of finding and fixing defects in the early coding phase of software development is 
approximately one to two orders of magnitude lower than in the later testing or release phase 
of software development. As a result, academia and industry are interested in finding software 
defects early and fixing them at a lower cost. In this context, the accurate prediction of 
defective modules at the early stages of software development has become a critical technical 
problem that needs to be addressed. 

Generally, software defect prediction is divided into dynamic defect prediction and static 
defect prediction. Dynamic defect prediction generally requires a running program. However, 
in the early coding stages of software development, dynamic defect prediction is not applicable 
in the early stages of software development as the code is not yet ready to run. Static defect 
prediction can predict defective modules in a software system without running the program, 
based on defect-related metrics, using methods such as machine learning [3]. Therefore, static 
defect prediction is ideal for identifying defects in a program at the early stages of software 
development. 

Standard machine learning methods for static defect prediction include logistic regression, 
decision trees, Bayesian methods, artificial neural networks, and support vector machines [4]. 
These methods require learning a large number of marker samples in order to build a defect 
prediction model. However, marker samples need to be created by manually reviewing the 
code, which is time-consuming. Furthermore, it is almost impossible to obtain many marker 
samples from a new project without a historical version when the amount of code in the early 
stages of development is already tiny. As a result, defect prediction in the early stages of 
software development often faces insufficient marker samples. 

In order to solve the above problems, academics have started to experiment with semi-
supervised methods to predict software defects. Compared to supervised learning, semi-
supervised learning can make full use of unlabeled samples to achieve defect prediction and 
better classification results with only a small number of labelled samples [5]. Furthermore, in 
software testing, 80% of defects are found in 20% of the code, meaning that most software 
defects are concentrated in a few software modules. Therefore, software defect history data is 
characterized by significant "class imbalance"[6], leading to poor learning and inaccurate 
prediction. 

In order to simultaneously solve the problems of insufficient labelled samples and class 
imbalance, this paper proposes a semi-supervised software defect prediction model based on 
Tri-training (Tri_SSDPM), which firstly uses feature normalization to smooth the feature data. 
The first step is to smoothen the feature data by using the feature normalization method to 
eliminate the impact of too large or too small feature values on the model's classification 
performance. Secondly, the SOMTE sampling method expands and samples the data to 
alleviate the unbalanced classification of labelled samples. Finally, the labelled and unlabeled 
training sets are randomly selected by setting the index, and the labelled and unlabeled training 
sets are input to the Tri-Training algorithm for machine learning and building the defect 
prediction model. It not only solves the class imbalance problem of labelled samples but also 
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makes full use of unlabeled samples to improve the prediction performance of the classifier. 
The rest of the paper is organized as follows: Section 2 reviews related work; Section 3 

describes a semi-supervised software prediction model based on Tri-training, including the 
general framework, data pre-processing and the Tri-training algorithm; Section 4 tests the 
validity of the model by describing the experimental procedure; Section 5 summarizes the 
work of the paper and describes the focus of the next steps. 

2. Related Work 
From recent research in the field of static defect prediction, it is easy to see that supervised 
machine learning methods rely on a large amount of learning data, and the prediction accuracy 
of such methods is low when there is not enough learning data. In practical applications, 
unlabeled data is readily available, but labelled data is challenging to obtain. Researchers have 
noticed semi-supervised learning in this context and gradually applied it to software defect 
prediction [4]. 

In recent years, different types of semi-supervised learning techniques have been applied 
to the field of software defects [7]. In general, semi-supervised methods for defect prediction 
can usually be classified into the following categories: expectation maximization [9], 
constraint-based semi-supervised clustering [10], naive bayesian algorithm [11], labelled 
propagation [12], sample-based approaches [13-17] and preprocessing strategy [18-20]. These 
studies have shown the practical value of semi-supervised methods in defect prediction [8]. 

Seliya et al. [9] proposed a semi-supervised model based on the EM algorithm to achieve 
good prediction performance on the NASA public dataset. The model applied the EM 
algorithm to label the unlabeled data in the training set, thus solving difficult access to labelled 
data. Seliya et al. [10] also proposed a semi-supervised clustering method, a constraint-based 
semi-supervised clustering method, using k-means as the base clustering algorithm. Catal et 
al. [11] studied a semi-supervised defect prediction model using the naive bayesian algorithm. 
Their results show that the naive bayesian algorithm is the best choice for building semi-
supervised defect prediction models for small-scale datasets, and the proposed two-stage 
YATSI method can improve the performance of plain Bayesian on large-scale datasets. Zhang 
et al. [12] proposed a label propagation method based on non-negative sparse graphs, which 
uses a small amount of labelled data and a large amount of unlabeled data to improve 
generalization ability. 

Sample-based approaches [13-17] and preprocessing strategy [18-20] are widely used in 
software defects prediction. Li et al. [13] used an active sampling method to find samples that 
are prone to misclassification in the training samples and then manually labelled them, solving 
the problem that these samples are mislabeled during semi-supervised learning reduced model 
performance. This method achieved better prediction performance than traditional machine 
learning methods on the PROMISE dataset. Lu et al. [14] proposed an iterative semi-
supervised method FTF, which first used the model to set labels for all unlabeled instances to 
ensure that all instances in the sample were labelled and then trained the model on the whole 
dataset. The results show that FTF has relatively apparent advantages over traditional 
supervised methods. Abadi et al. [15] proposed an automated software defect prediction model 
based on the semi-supervised hybrid self-organizing mapping. The model is a semi-supervised 
model based on self-organizing mapping and artificial neural networks, which can predict the 
labels of modules in a semi-supervised manner using software measurement thresholds in the 
presence of insufficient label data. Experiments have shown that the model has good prediction 
results. Jiang et al. [16] proposed a semi-supervised software defect prediction method 
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ROCUS. The method utilizes a large number of unlabeled examples and solves the class 
imbalance problem. Thung et al. [17] proposed a semi-supervised defect prediction method. 
The method selects a fraction of different information-rich defect examples to be labelled, and 
it can improve model performance in the presence of insufficient labelled samples. Lu et al. 
[18] proposed a semi-supervised software defect prediction model. A dimensionality reduction 
method was incorporated in the method to reduce the dimensional complexity of the software 
metric. Experimental results showed that the semi-supervised learning algorithm with 
dimensionality reduction preprocessing outperformed random forests, one of the best 
performing supervised learning algorithms, in the few cases where labelled samples were 
available for training. They [19] also tried to incorporate a feature scaling method and obtained 
better prediction results. Ma et al. [20] improved the Tri-training algorithm by using a random 
under-sampling method combined with Tri-training, which effectively reduced the impact of 
class imbalance and the insufficient number of labelled samples on the model prediction. 

Most of the above methods only address one problem in software defect prediction, i.e., 
they only study the case of low marker samples or unbalanced class distribution, and there are 
relatively few studies that consider both cases together. Furthermore, relatively little research 
combines feature normalization, SMOTE sampling methods, and Tri-training algorithms in 
software defect prediction. The SMOTE sampling method can achieve better results in solving 
class imbalance and the insufficient number of training samples, while the Tri-training method 
can effectively use unlabeled samples to improve the prediction performance of the classifier. 
Therefore, this paper innovatively and effectively combines the three methods to solve 
insufficient labelled samples and class imbalance simultaneously. 

3. Model construction 

3.1 Overall Framework 
The overall architecture of the model in this paper is divided into two main parts: the training 
model phase and the prediction phase. As shown in Fig. 1, the feature data is first normalized 
and compressed to a specific interval in the training phase.  
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The data is expanded and sampled using the SOMTE sampling method to generate a new 
training data set, and then labelled and unlabeled training sets are randomly selected by 
proportionally setting the index and the labelled and unlabeled training sets are input to the 
Tri-training algorithm for learning. In the prediction phase, the test module is input to the 
trained classifier to predict whether the module has defects. 

3.2 Data preprocessing 

3.2.1 Feature normalization 
The software metrics commonly used for static software defect prediction are shown in Table 
1. 21 feature metrics extracted from the project's source code, generated by metrics such as 
McCabe [21], Halstead [22], which objectively characterize the quality features associated 
with software quality. These 21 feature metrics are used as independent variables in this 
experiment, and the dependent variable is a binary variable (0 or 1) to indicate whether the 
code is defective or non-defective. As some feature values are too large or too small, they can 
affect the classification results of the final model. The data with a relatively significant 
skewness can first be transformed using the 𝑙𝑙𝑙𝑙𝑙𝑙1𝑝𝑝 function to compress the feature data to a 
specific interval, making it more obedient to the Gaussian distribution while avoiding the 
problem of complex values, which may lead to a good result for our subsequent classification 
results. 
 

Table 1. Feature metrics 
Feature Description 

McCabe's line count of code It counts the lines of code in module. 

McCabe "cyclomatic complexity" It indicates complexity of the module on basis of 
number of linearly independent paths. 

McCabe "essential complexity" It indicates the extent to which a flowgraph can 
be reduced. 

McCabe "design complexity" It indicates cyclomatic complexity of its reduced 
flowgraph. 

Halstead total operators +operands It gives the count of operators and operands used 
in the module. 

Halstead "volume" It measures the product of length and log of 
vocabulary on base. 

Halstead "program length" It indicates the length of the program. 

Halstead "difficulty" 
It is related to the difficulty of the program to 
write or understand. Also computed as reciprocal 
of length. 

Halstead "intelligence" It determines amount of intelligence presented in 
the module. 

Halstead "effort" It translates into actual coding time. 
Halstead It is a base Halstead measure. 

Halstead's time estimator It evaluates the testing time of C/C++codes. 
Halstead's line count It indicates the numbers of lines in the code. 

Halstead's count of lines of comments It indicates the number of lines of comments. 
Halstead's count of blank It indicates the number of lines of comments. 

Lines of code and comments It gives the lines of code and comment in the 
module. 

Unique operators It counts the total number of distinct operators in 
the module. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021                       4033 

Unique operands It counts the total number of operators in the 
module. 

Total operators It counts the total number of operands in the 
module. 

Branch count of the flow graph It gives the count of branches in the flow graph. 

 

3.2.2 SOMTE oversampling 
In practice, there are usually fewer defective instances than non-defective ones, known as the 
class imbalance problem in software defect prediction [23]. If a random division of the dataset 
or an under-sampling preprocessing approach is used directly, the training dataset will likely 
contain very little or even no defective data, and it is not easy to train a better prediction model 
using such data the training set. The basic idea is to generate more samples with fewer labels 
according to the pattern of samples with fewer labels, thus making the data more balanced and 
solving insufficient initial samples. A typical oversampling type is the SMOTE (Synthetic 
Minority Oversampling Technique) algorithm proposed by Chawal [24]. The steps of this 
algorithm are as follows. 

(1) For each sample 𝑥𝑥 in the minority class, calculate its Euclidean distance to all samples 
in the minority class sample set 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠, To obtain its 𝑘𝑘-nearest neighbours. 

(2) Set a sampling ratio according to the sample imbalance ratio to determine the sampling 
multiplier 𝑁𝑁. For each minority class sample 𝑥𝑥, select some samples at random from its 𝑘𝑘 
nearest neighbours, assuming the selected nearest neighbours are 𝑥𝑥𝑛𝑛. 

(3) For each randomly selected nearest neighbor 𝑥𝑥𝑛𝑛 , construct a new sample with the 
original sample respectively according to the following formula. 

 
𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) ∗ |𝑥𝑥𝑛𝑛 − 𝑥𝑥|                                      (1) 

 

3.2.3 Tri-training 
Zhou and Li [25] proposed the Tri-training algorithm to improve the co-training algorithm Co-
training proposed by A. Blum and T. Mitchell [26]. The Co-training algorithm requires two 
fully redundant dataset views, but this is not easy to achieve in practice. The Tri training 
algorithm does not require fully redundant views and different supervised learning algorithms, 
which is more widely applicable. The basic idea is to first repeatably sample the labelled 
example set to obtain three labelled training sets, generate one classifier from each training set, 
and then use these three classifiers to generate pseudo-labelled samples in a 'majority rule' 
fashion. For example, if two classifiers predict an unlabeled sample to be defective and a third 
classifier predicts it to be non-defective, that sample is provided to the third classifier for 
learning as a defective sample. Specifically, if both classifiers predict the same unlabeled 
sample equally, the sample is considered to have high confidence in the labelling and is added 
to the labelled training set of the third classifier after labelling. After the final training is 
completed, the three classifiers are used as a single classifier integration through a voting 
mechanism. Thus, Tri-training uses both semi-supervised and integrated learning mechanisms, 
resulting in a further improvement in learning performance. Algorithm 1 shows a simplified 
pseudo-code of the Tri-training method, and more details can be found in the literature [25]. 
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Algorithm 1: Pseudo code of simplified Tri-training. 
Input: Training set 𝐿𝐿 = {𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑙𝑙 ,𝑈𝑈 = {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑢𝑢  
Three classifiers ℎ1,ℎ2,ℎ3 
Output: Ensemble ℎ using majority vote; 

1.        for 𝑖𝑖 = 1,2,3 do 
2.            Train ℎ𝑖𝑖 on 𝐿𝐿; 
3.        end 
4.        while any of {ℎ1,ℎ2,ℎ3} changes do 
5.            for 𝑖𝑖 = 1,2,3 do 
6.                𝐿𝐿𝑖𝑖 = ∅ ; 
7.                for 𝑥𝑥 ∈ 𝑈𝑈 do 
8.                    if ℎ𝑗𝑗(𝑥𝑥) = ℎ𝑘𝑘(𝑥𝑥)(𝑗𝑗,𝑘𝑘 ≠ 𝑖𝑖) then 
9.                        𝐿𝐿𝑖𝑖 = 𝐿𝐿𝑖𝑖 ∪ (𝑥𝑥,ℎ𝑗𝑗(𝑥𝑥)); 
10.                  end 
11.              end 
12.          end 
13.          for 𝑖𝑖 = 1,2,3 do 
14.              Train ℎ𝑖𝑖 on 𝐿𝐿 ∪ 𝐿𝐿𝑖𝑖; 
15.          end 
16.      end 

 
The Tri-training algorithm labels unlabeled samples by first labelling any unlabeled sample 

𝑥𝑥 ∈ 𝑈𝑈 by any two of the classifiers ℎ1 and ℎ2. If both classifiers have the same labelling result 
for x, one of the labelling results is chosen as the training sample for the classifier ℎ3, i.e.: 
ℎ1(𝑥𝑥) = ℎ2(𝑥𝑥), then 𝐿𝐿𝑖𝑖 = ��𝑥𝑥, ℎ2(𝑥𝑥)��,𝑥𝑥 ∈ 𝑈𝑈 is added to the training set of ℎ3. 

The training result will be optimized if ℎ3 can achieve high accuracy during the training 
process; on the contrary, it will introduce noise into the training set of ℎ3 and reduce the 
labeling performance of the classifier. Based on this, Zhou et al. [25] made the following proof. 

 

|𝐿𝐿 ∪ 𝐿𝐿𝑡𝑡| �1− 2 𝜂𝜂𝐿𝐿|𝐿𝐿|+𝑒𝑒1�
𝑡𝑡�𝐿𝐿𝑡𝑡�

|𝐿𝐿∪𝐿𝐿𝑡𝑡| �
2

> |𝐿𝐿 ∪ 𝐿𝐿𝑡𝑡| �1− 2 𝜂𝜂𝐿𝐿|𝐿𝐿|+𝑒𝑒1�
𝑡𝑡−1�𝐿𝐿𝑡𝑡−1�

|𝐿𝐿∪𝐿𝐿𝑡𝑡−1| �
2
              (2) 

 
where 𝐿𝐿𝑡𝑡: the newly labelled training samples of ℎ1, ℎ2 for ℎ3 at the tth iteration. 𝑒𝑒1� 𝑡𝑡: the 

ratio of the number of incorrectly labelled samples in ℎ1 , ℎ2  labelled samples at the tth 
iteration. 𝜂𝜂𝐿𝐿: the noise rate of the initial training set 𝐿𝐿. 

In the PAC learnable framework, if the newly labelled training samples are large enough 
and can satisfy the conditions in equation (2), the classification performance of the hypothesis 
will improve when ℎ3 is trained again. 

The classification noise rate after the 𝑡𝑡 th iteration can be expressed by the following 
equation. 

𝜂𝜂𝑡𝑡 = 𝜂𝜂|𝐿𝐿|+𝑒𝑒1�
𝑡𝑡�𝐿𝐿𝑡𝑡�

|𝐿𝐿∪𝐿𝐿𝑡𝑡|                                                        (3) 
 

When 0 < 𝑒𝑒1� 𝑡𝑡, 𝑒𝑒1� 𝑡𝑡−1 < 0.5 and |𝐿𝐿𝑡𝑡| > |𝐿𝐿𝑡𝑡−1|, it follows that: 
 

𝑒𝑒1� 𝑡𝑡|𝐿𝐿𝑡𝑡| < 𝑒𝑒1� 𝑡𝑡−1|𝐿𝐿𝑡𝑡−1|                                                (4) 
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Thus, equation (2) can be transformed as follows. 
 

0 < 𝑒𝑒1�
𝑡𝑡

𝑒𝑒1�
𝑡𝑡−1 < |𝐿𝐿𝑡𝑡−1|

𝐿𝐿𝑡𝑡
                                                    (5) 

 
In the process of labelling unlabeled samples, equation (5) can be used to determine 

whether the samples ��𝑥𝑥,ℎ2(𝑥𝑥)��  labelled by classifiers ℎ1  and ℎ2  can be added to the 
classifier ℎ3 as training samples for a new round. 

4. Experiment and Analysis 

4.1 Experimental Data 
The NASA MDP defect dataset from the PROMISE library [27], which develops software 
defect datasets, was selected for experimentation in this paper. NASA implements these 
datasets in C or java. They contain descriptions of the modules in the dataset with or without 
defective annotations and descriptions of the dataset's attributes generated by McCabe [21], 
Halstead [22], and other metrics. McCabe, Halstead can objectively characterize the quality 
features associated with software quality. Table 2 gives basic information about the five sub-
datasets selected, including the dataset name, system, the total number of modules, number of 
defective modules and defect rate. 
 
 

Table 2. NASA Defect Prediction Dataset 
Datasets System Module number Defects Defects rate /% 

CM1 Spacecraft instrument 498 49 9.8 
PC1 Flight software 1109 77 6.9 
KC1 Storage management 2109 326 15.5 
KC2 Scientific data processing 522 107 20.5 

 

4.2 Experimental Evaluation Index 
Software defect propensity prediction is whether a software module is a defective or clean 
module, and it is a binary classification problem. Therefore, model evaluation metrics for 
classification problems in machine learning can be used, and the confusion matrix is a 
presentation tool to evaluate how good a classification model is [1]. As shown in Fig. 2, TP 
indicates that the true class of the instance is a defective module and the prediction result of 
the prediction model is also a defective module. FN indicates that the true class of the instance 
is a defective module and the prediction result of the prediction model is a defect-free module. 
FP indicates that the true class of the instance is a defect-free module and the prediction result 
of the prediction model is a defective module. TN indicates that the true class of the instance 
is a defect-free module and the prediction result of the prediction model is a defect-free module. 
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Fig. 2. Confusion matrix 

 
Other evaluation metrics can be calculated based on the confusion matrix, such as accuracy, 

recall and accuracy, and the overall evaluation metric F-value. 
Accuracy represents the ratio of the number of correct predictions by the prediction model 

to the total number of instances in the data set. The following formula calculates it: 
 

+
=

+ + +
TP TNAccuracy

TP FN FP TN
                                        (6) 

 
In general, the higher the Precision, the better the prediction model is. The following 

formula calculates it: 

=
+

TPPrecision
TP FP

                                                 (7) 

 
Recall indicates the number of instances predicted by the prediction model to be defective 

as a proportion of true defective instances. In general, a higher Recall indicates that the model 
correctly predicts more defective modules and that the prediction model is more effective, but 
a higher Recall is often coded for reduced accuracy. The following formula calculates it: 

 

=
+

TPRecall
TP FN

                                                    (8) 

 
The F-measure is a composite metric that provides a trade-off between recall and precision, 

with higher F-measure values indicating better model performance. The following formula 
calculates it: 

 
×

= ×
+

Precision RecallF
Precision Recall

2                                              (9) 
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4.3 Analysis of Results 
In this paper, two classical learning algorithms, Decision Tree and NaiveBayes, an Adaboost 
integrated learning algorithm and the semi-supervised algorithm S4VM+ proposed in the 
literature [4] were selected for analysis of the NASA MDP dataset and compared with the 
Tri_SSDPM proposed in this paper to calculate the prediction accuracy, recall, accuracy and 
overall evaluation index F. The default values in sklearn were used for the running parameters 
of Decision Tree, NaiveBayes and Adaboost learning algorithms. 

This experiment was set up as follows, with each expanded dataset randomly divided into 
a training set and a test set according to a 4:1 ratio. Then the training set was further randomly 
divided into a labelled training set and an unlabeled training set according to a specific 
labelling rate R. The larger the R, the more labelled modules in the training set. In this 
experiment, three different R values were used, and R was taken to be 0.2, 0.3 and 0.4, 
respectively. In order to eliminate chance from the experimental results, the experiment was 
repeated 20 times for each tagging rate R for the method in this paper and the chosen 
comparison method, and the average of the 20 times was taken as the final result of the 
experiment. 
 

Table 4. Experimental results of each classifier on the CM1 dataset with different sample 
labelling rates 

Classifier Accuracy Precision Recall F-Measure 
R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4 

DecisionTree 0.835 0.838 0.845 0.190 0.196 0.164 0.182 0.228 0.178 0.174 0.199 0.162 
NaiveBayes 0.705 0.696 0.710 0.505 0.582 0.591 0.174 0.207 0.208 0.250 0.268 0.287 

Adaboost 0.854 0.874 0.864 0.103 0.187 0.168 0.134 0.246 0.214 0.107 0.199 0.177 
S4VM+ 0.879 0.880 0.878 0.261 0.338 0.298 0.142 0.146 0.150 0.177 0.191 0.195 

Tri_SSDPM 0.850 0.867 0.885 0.865 0.896 0.916 0.775 0.818 0.830 0.816 0.854 0.870 
 

As shown in Table 4, Tri_SSDPM does not always obtain optimal values compared to the 
other four methods, but its Accuracy value differs from the other methods by a maximum of 
0.069 (0.879-0.810), which still gives comparable results to the comparison methods. Since 
the proposed method obtained the best values for Precision, Recall and F-Measure for all three 
marking rates. Therefore, overall, our proposed method outperforms the other four methods in 
terms of prediction performance. 
 

Table 5. Experimental results of each classifier on the PC1 dataset with different sample 
labelling rates 

Classifier Accuracy Precision Recall F-Measure 
R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4 

DecisionTree 0.888 0.893 0.901 0.317 0.314 0.327 0.254 0.243 0.301 0.271 0.265 0.304 
NaiveBayes 0.761 0.772 0.775 0.496 0.497 0.483 0.138 0.167 0.149 0.213 0.245 0.225 

Adaboost 0.910 0.915 0.925 0.198 0.238 0.238 0.331 0.340 0.429 0.236 0.266 0.285 
S4VM+ 0.926 0.930 0.929 0.435 0.489 0.477 0.146 0.155 0.149 0.207 0.230 0.218 

Tri_SSDPM 0.935 0.943 0.939 0.937 0.941 0.959 0.869 0.889 0.915 0.901 0.914 0.936 
 

As shown in Table 5, Tri_SSDPM in this paper obtained optimal values at all three 
labelling rates compared to the other four methods. 
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Table 6. Experimental results of each classifier on the KC1 dataset with different sample 
labelling rates 

Classifier Accuracy Precision Recall F-Measure 
R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4 

DecisionTree 0.796 0.809 0.810 0.335 0.345 0.351 0.344 0.363 0.376 0.337 0.352 0.361 
NaiveBayes 0.743 0.745 0.737 0.643 0.659 0.665 0.324 0.331 0.328 0.430 0.439 0.438 

Adaboost 0.831 0.842 0.846 0.268 0.241 0.231 0.452 0.509 0.517 0.333 0.321 0.317 
S4VM+ 0.842 0.850 0.851 0.494 0.478 0.526 0.284 0.295 0.290 0.357 0.361 0.371 

Tri_SSDPM 0.822 0.833 0.847 0.824 0.861 0.872 0.773 0.814 0.831 0.797 0.836 0.851 
 

As shown in Table 6, Tri_SSDPM does not always obtain the optimal value in Accuracy, 
but its F-Measure values are higher than those of the comparison methods. Therefore, our 
proposed method still outperforms the other four methods in terms of prediction performance. 

 
Table 7. Experimental results of each Classifier on the KC2 dataset with different sample 

labelling rates 

Classifier Accuracy Precision Recall F-Measure 
R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4 

DecisionTree 0.797 0.790 0.784 0.516 0.416 0.451 0.503 0.488 0.499 0.499 0.443 0.466 
NaiveBayes 0.770 0.784 0.778 0.748 0.786 0.796 0.476 0.476 0.468 0.577 0.590 0.584 

Adaboost 0.787 0.801 0.810 0.433 0.422 0.501 0.476 0.493 0.558 0.445 0.452 0.512 
S4VM+ 0.820 0.815 0.815 0.562 0.546 0.576 0.438 0.434 0.433 0.487 0.486 0.490 

Tri_SSDPM 0.854 0.850 0.861 0.817 0.874 0.875 0.797 0.802 0.823 0.803 0.835 0.848 
 

As shown in Table 7, Tri_SSDPM obtained optimal values at all three labelling rates. 
The data in Tables 4 to Tables 7 were counted, and the Tri-training-based semi-supervised 

software defect prediction model obtained optimal values 43 times out of a total of 48 
evaluations performed at the three labelling rates, accounting for 89.58%. At the same time, 
the F-Measure values of the supervised learning algorithm and the unsupervised learning 
algorithm increased as the R-value increased, indicating that the prediction effect subsequently 
became better when there were more and more labelled modules in the training set. 

 
Table 8. Average of each classifier under the four metrics 

Classifier Accuracy Precision Recall F-Measure 
DecisionTree 0.832 0.327 0.330 0.320 
NaiveBayes 0.748 0.621 0.287 0.379 

Adaboost 0.855 0.269 0.391 0.304 
S4VM+ 0.866 0.457 0.340 0.314 

Tri_SSDPM 0.874 0.886 0.828 0.855 
 

The results of each classifier under the four metrics were averaged, as shown in Table 8. 
In order to visualize the classification effect of each classification model, the average values 
of Accuracy, Precision, Recall and F-Measure for each classification model under the three 
labelling rates are represented in a bar chart. As can be seen from Fig. 3, the proposed method 
achieved the highest average values for Accuracy, Precision, Recall and F-Measure compared 
to the other methods. Also, combined with Table 8, it can be concluded that each metric 
improved by at least 0.008 (0.874-0.866), 0.265 (0.886-0.621), 0.437 (0.828-0.3910) and 
0.476 (0.855-0.379) respectively. 
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Fig. 3. Average of each classifier under the four metrics 

 
The Tri_SSDPM model achieves higher accuracy than the four existing methods because 

the Decision Tree and NaiveBayes algorithms do not consider the lack of labelled samples and 
classification imbalance, resulting in poor classification results. S4VM+ semi-supervised 
model can make full use of unlabeled samples to improve the model's prediction performance, 
but it suffers from defective samples in the sampling stage. The number of defective samples 
is too low in proportion to the total number of samples, and it also does not consider the impact 
of too large and too small feature values on the model learning. However, the Tri_SSDPM 
model proposed in this paper ensures that the number of defective samples in the training 
samples is not too small, solves the problem of unbalanced classification of training samples, 
makes full use of the unlabeled data in the learning phase, improves the model's defect 
prediction performance, and also eliminates the influence of too large or too small feature 
values on the model learning, so that the optimal values of all indicators are obtained in the 
experimental results.  

Combining the experimental results in Tables 4 to Tables 8, it can be concluded that 
feature normalization, expansion of training samples, and the use of unlabeled samples can 
improve the prediction model's performance to a certain extent. Our proposed method is an 
effective semi-supervised software defect prediction model with better learning capability than 
several other methods. 

5. Conclusion 
This paper proposes a semi-supervised software defect prediction model based on Tri-training, 
which not only makes full use of a large number of unmarked samples in software defect 
prediction and solves the problem of insufficient marked samples but also uses the 
oversampling method to expand and sample the marked samples to solve the problem of 
unbalanced classification of marked samples. The problem of unbalanced classification of 
tagged samples is also solved. In addition, the feature metric values are normalized to eliminate 
the effect of too large or too small feature values on model learning. Experimental results show 
that the method achieves better prediction performance on the four NASA public datasets, 
outperforming DecisionTree, NaiveBayes, Adaboost and S4VM+ for different labelled 
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training samples. 
Considering that the larger the dimensionality of the sample features, the worse the training 

effect of the model will be. However, academics have continued to increase the number of 
feature metrics to accurately represent software defects, resulting in sample features of 
excessive dimensionality. Therefore, the focus of the following work is to explore the impact 
of each feature metric on software defect prediction, select metric elements with high 
correlation with software defects, and thus reduce the feature dimensionality to improve the 
effectiveness of software defect prediction. 
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