
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, Nov. 2021 4028
Copyright ⓒ 2021 KSII

This work is supported by the Science and Technology Research Project of Jilin Provincial Department of
Education "Research on Overtime Risk Assessment and Early Warning Technology of Industrial Control Code"
(No. JJKH20210097KJ).

http://doi.org/10.3837/tiis.2021.11.009 ISSN : 1976-7277

Semi-supervised Software Defect
Prediction Model Based on Tri-training

Fanqi Meng1,2, Wenying Cheng1*, Jingdong Wang1*

1School of Computer Science, Northeast Electric Power University,
Jilin 132012, China

[e-mail: 2202000697@neepu.edu.cn, wangjingdong@neepu.edu.cn]
2Guangdong Atv Academy For Performing Arts,

Guangdong 523710, China
[e-mail: mengfanqi@neepu.edu.cn]

*Corresponding author: Wenying Cheng, Jingdong Wang

Received September 7, 2021; accepted October 24, 2021;
published November 30, 2021

Abstract

Aiming at the problem of software defect prediction difficulty caused by insufficient software
defect marker samples and unbalanced classification, a semi-supervised software defect
prediction model based on a tri-training algorithm was proposed by combining feature
normalization, over-sampling technology, and a Tri-training algorithm. First, the feature
normalization method is used to smooth the feature data to eliminate the influence of too large
or too small feature values on the model's classification performance. Secondly, the
oversampling method is used to expand and sample the data, which solves the unbalanced
classification of labelled samples. Finally, the Tri-training algorithm performs machine
learning on the training samples and establishes a defect prediction model. The novelty of this
model is that it can effectively combine feature normalization, oversampling techniques, and
the Tri-training algorithm to solve both the under-labelled sample and class imbalance
problems. Simulation experiments using the NASA software defect prediction dataset show
that the proposed method outperforms four existing supervised and semi-supervised learning
in terms of Precision, Recall, and F-Measure values.

Keywords: Feature Normalization, Oversampling Techniques, Software Defect Prediction,
Semi-supervised Learning, Unbalanced Classification

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021 4029

1. Introduction

Software defects are the antithesis of software quality and threaten it [1]. As software
development progresses, the size and structure of programs become larger and more complex,
making defects hide deeper and more challenging to detect. Undetected defects can lead to
more server problems as the software iterates, resulting in more server consequences when
defects break out. Research and practice have long shown that the earlier software defects are
found, the lower the cost of fixing them, and the more damage can be recovered [2]. The cost
of finding and fixing defects in the early coding phase of software development is
approximately one to two orders of magnitude lower than in the later testing or release phase
of software development. As a result, academia and industry are interested in finding software
defects early and fixing them at a lower cost. In this context, the accurate prediction of
defective modules at the early stages of software development has become a critical technical
problem that needs to be addressed.

Generally, software defect prediction is divided into dynamic defect prediction and static
defect prediction. Dynamic defect prediction generally requires a running program. However,
in the early coding stages of software development, dynamic defect prediction is not applicable
in the early stages of software development as the code is not yet ready to run. Static defect
prediction can predict defective modules in a software system without running the program,
based on defect-related metrics, using methods such as machine learning [3]. Therefore, static
defect prediction is ideal for identifying defects in a program at the early stages of software
development.

Standard machine learning methods for static defect prediction include logistic regression,
decision trees, Bayesian methods, artificial neural networks, and support vector machines [4].
These methods require learning a large number of marker samples in order to build a defect
prediction model. However, marker samples need to be created by manually reviewing the
code, which is time-consuming. Furthermore, it is almost impossible to obtain many marker
samples from a new project without a historical version when the amount of code in the early
stages of development is already tiny. As a result, defect prediction in the early stages of
software development often faces insufficient marker samples.

In order to solve the above problems, academics have started to experiment with semi-
supervised methods to predict software defects. Compared to supervised learning, semi-
supervised learning can make full use of unlabeled samples to achieve defect prediction and
better classification results with only a small number of labelled samples [5]. Furthermore, in
software testing, 80% of defects are found in 20% of the code, meaning that most software
defects are concentrated in a few software modules. Therefore, software defect history data is
characterized by significant "class imbalance"[6], leading to poor learning and inaccurate
prediction.

In order to simultaneously solve the problems of insufficient labelled samples and class
imbalance, this paper proposes a semi-supervised software defect prediction model based on
Tri-training (Tri_SSDPM), which firstly uses feature normalization to smooth the feature data.
The first step is to smoothen the feature data by using the feature normalization method to
eliminate the impact of too large or too small feature values on the model's classification
performance. Secondly, the SOMTE sampling method expands and samples the data to
alleviate the unbalanced classification of labelled samples. Finally, the labelled and unlabeled
training sets are randomly selected by setting the index, and the labelled and unlabeled training
sets are input to the Tri-Training algorithm for machine learning and building the defect
prediction model. It not only solves the class imbalance problem of labelled samples but also

4030 Meng et al.: Semi-supervised Software Defect Prediction Model Based on Tri-training

makes full use of unlabeled samples to improve the prediction performance of the classifier.
The rest of the paper is organized as follows: Section 2 reviews related work; Section 3

describes a semi-supervised software prediction model based on Tri-training, including the
general framework, data pre-processing and the Tri-training algorithm; Section 4 tests the
validity of the model by describing the experimental procedure; Section 5 summarizes the
work of the paper and describes the focus of the next steps.

2. Related Work
From recent research in the field of static defect prediction, it is easy to see that supervised
machine learning methods rely on a large amount of learning data, and the prediction accuracy
of such methods is low when there is not enough learning data. In practical applications,
unlabeled data is readily available, but labelled data is challenging to obtain. Researchers have
noticed semi-supervised learning in this context and gradually applied it to software defect
prediction [4].

In recent years, different types of semi-supervised learning techniques have been applied
to the field of software defects [7]. In general, semi-supervised methods for defect prediction
can usually be classified into the following categories: expectation maximization [9],
constraint-based semi-supervised clustering [10], naive bayesian algorithm [11], labelled
propagation [12], sample-based approaches [13-17] and preprocessing strategy [18-20]. These
studies have shown the practical value of semi-supervised methods in defect prediction [8].

Seliya et al. [9] proposed a semi-supervised model based on the EM algorithm to achieve
good prediction performance on the NASA public dataset. The model applied the EM
algorithm to label the unlabeled data in the training set, thus solving difficult access to labelled
data. Seliya et al. [10] also proposed a semi-supervised clustering method, a constraint-based
semi-supervised clustering method, using k-means as the base clustering algorithm. Catal et
al. [11] studied a semi-supervised defect prediction model using the naive bayesian algorithm.
Their results show that the naive bayesian algorithm is the best choice for building semi-
supervised defect prediction models for small-scale datasets, and the proposed two-stage
YATSI method can improve the performance of plain Bayesian on large-scale datasets. Zhang
et al. [12] proposed a label propagation method based on non-negative sparse graphs, which
uses a small amount of labelled data and a large amount of unlabeled data to improve
generalization ability.

Sample-based approaches [13-17] and preprocessing strategy [18-20] are widely used in
software defects prediction. Li et al. [13] used an active sampling method to find samples that
are prone to misclassification in the training samples and then manually labelled them, solving
the problem that these samples are mislabeled during semi-supervised learning reduced model
performance. This method achieved better prediction performance than traditional machine
learning methods on the PROMISE dataset. Lu et al. [14] proposed an iterative semi-
supervised method FTF, which first used the model to set labels for all unlabeled instances to
ensure that all instances in the sample were labelled and then trained the model on the whole
dataset. The results show that FTF has relatively apparent advantages over traditional
supervised methods. Abadi et al. [15] proposed an automated software defect prediction model
based on the semi-supervised hybrid self-organizing mapping. The model is a semi-supervised
model based on self-organizing mapping and artificial neural networks, which can predict the
labels of modules in a semi-supervised manner using software measurement thresholds in the
presence of insufficient label data. Experiments have shown that the model has good prediction
results. Jiang et al. [16] proposed a semi-supervised software defect prediction method

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021 4031

ROCUS. The method utilizes a large number of unlabeled examples and solves the class
imbalance problem. Thung et al. [17] proposed a semi-supervised defect prediction method.
The method selects a fraction of different information-rich defect examples to be labelled, and
it can improve model performance in the presence of insufficient labelled samples. Lu et al.
[18] proposed a semi-supervised software defect prediction model. A dimensionality reduction
method was incorporated in the method to reduce the dimensional complexity of the software
metric. Experimental results showed that the semi-supervised learning algorithm with
dimensionality reduction preprocessing outperformed random forests, one of the best
performing supervised learning algorithms, in the few cases where labelled samples were
available for training. They [19] also tried to incorporate a feature scaling method and obtained
better prediction results. Ma et al. [20] improved the Tri-training algorithm by using a random
under-sampling method combined with Tri-training, which effectively reduced the impact of
class imbalance and the insufficient number of labelled samples on the model prediction.

Most of the above methods only address one problem in software defect prediction, i.e.,
they only study the case of low marker samples or unbalanced class distribution, and there are
relatively few studies that consider both cases together. Furthermore, relatively little research
combines feature normalization, SMOTE sampling methods, and Tri-training algorithms in
software defect prediction. The SMOTE sampling method can achieve better results in solving
class imbalance and the insufficient number of training samples, while the Tri-training method
can effectively use unlabeled samples to improve the prediction performance of the classifier.
Therefore, this paper innovatively and effectively combines the three methods to solve
insufficient labelled samples and class imbalance simultaneously.

3. Model construction

3.1 Overall Framework
The overall architecture of the model in this paper is divided into two main parts: the training
model phase and the prediction phase. As shown in Fig. 1, the feature data is first normalized
and compressed to a specific interval in the training phase.

M
odule m

etric

…
…

Training dataset

Defect
label

Set index
Tri-training

 classification model

Test module

Defective module

Clean module

Feature
normalization

SOMTE
oversampling

Data preprocessing
New training dataset

M
odule m

etric

…
…

Labeled dataset

Defect
label

M
odule m

etric

…
…

Unlabeled dataset

Tri-training
 classification model

Training stage

Prediction stage

Fig. 1. General architecture diagram for semi-supervised software defect prediction based on

Tri-Training

4032 Meng et al.: Semi-supervised Software Defect Prediction Model Based on Tri-training

The data is expanded and sampled using the SOMTE sampling method to generate a new
training data set, and then labelled and unlabeled training sets are randomly selected by
proportionally setting the index and the labelled and unlabeled training sets are input to the
Tri-training algorithm for learning. In the prediction phase, the test module is input to the
trained classifier to predict whether the module has defects.

3.2 Data preprocessing

3.2.1 Feature normalization
The software metrics commonly used for static software defect prediction are shown in Table
1. 21 feature metrics extracted from the project's source code, generated by metrics such as
McCabe [21], Halstead [22], which objectively characterize the quality features associated
with software quality. These 21 feature metrics are used as independent variables in this
experiment, and the dependent variable is a binary variable (0 or 1) to indicate whether the
code is defective or non-defective. As some feature values are too large or too small, they can
affect the classification results of the final model. The data with a relatively significant
skewness can first be transformed using the 𝑙𝑙𝑙𝑙𝑙𝑙1𝑝𝑝 function to compress the feature data to a
specific interval, making it more obedient to the Gaussian distribution while avoiding the
problem of complex values, which may lead to a good result for our subsequent classification
results.

Table 1. Feature metrics
Feature Description

McCabe's line count of code It counts the lines of code in module.

McCabe "cyclomatic complexity" It indicates complexity of the module on basis of
number of linearly independent paths.

McCabe "essential complexity" It indicates the extent to which a flowgraph can
be reduced.

McCabe "design complexity" It indicates cyclomatic complexity of its reduced
flowgraph.

Halstead total operators +operands It gives the count of operators and operands used
in the module.

Halstead "volume" It measures the product of length and log of
vocabulary on base.

Halstead "program length" It indicates the length of the program.

Halstead "difficulty"
It is related to the difficulty of the program to
write or understand. Also computed as reciprocal
of length.

Halstead "intelligence" It determines amount of intelligence presented in
the module.

Halstead "effort" It translates into actual coding time.
Halstead It is a base Halstead measure.

Halstead's time estimator It evaluates the testing time of C/C++codes.
Halstead's line count It indicates the numbers of lines in the code.

Halstead's count of lines of comments It indicates the number of lines of comments.
Halstead's count of blank It indicates the number of lines of comments.

Lines of code and comments It gives the lines of code and comment in the
module.

Unique operators It counts the total number of distinct operators in
the module.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021 4033

Unique operands It counts the total number of operators in the
module.

Total operators It counts the total number of operands in the
module.

Branch count of the flow graph It gives the count of branches in the flow graph.

3.2.2 SOMTE oversampling
In practice, there are usually fewer defective instances than non-defective ones, known as the
class imbalance problem in software defect prediction [23]. If a random division of the dataset
or an under-sampling preprocessing approach is used directly, the training dataset will likely
contain very little or even no defective data, and it is not easy to train a better prediction model
using such data the training set. The basic idea is to generate more samples with fewer labels
according to the pattern of samples with fewer labels, thus making the data more balanced and
solving insufficient initial samples. A typical oversampling type is the SMOTE (Synthetic
Minority Oversampling Technique) algorithm proposed by Chawal [24]. The steps of this
algorithm are as follows.

(1) For each sample 𝑥𝑥 in the minority class, calculate its Euclidean distance to all samples
in the minority class sample set 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠, To obtain its 𝑘𝑘-nearest neighbours.

(2) Set a sampling ratio according to the sample imbalance ratio to determine the sampling
multiplier 𝑁𝑁. For each minority class sample 𝑥𝑥, select some samples at random from its 𝑘𝑘
nearest neighbours, assuming the selected nearest neighbours are 𝑥𝑥𝑛𝑛.

(3) For each randomly selected nearest neighbor 𝑥𝑥𝑛𝑛 , construct a new sample with the
original sample respectively according to the following formula.

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) ∗ |𝑥𝑥𝑛𝑛 − 𝑥𝑥| (1)

3.2.3 Tri-training
Zhou and Li [25] proposed the Tri-training algorithm to improve the co-training algorithm Co-
training proposed by A. Blum and T. Mitchell [26]. The Co-training algorithm requires two
fully redundant dataset views, but this is not easy to achieve in practice. The Tri training
algorithm does not require fully redundant views and different supervised learning algorithms,
which is more widely applicable. The basic idea is to first repeatably sample the labelled
example set to obtain three labelled training sets, generate one classifier from each training set,
and then use these three classifiers to generate pseudo-labelled samples in a 'majority rule'
fashion. For example, if two classifiers predict an unlabeled sample to be defective and a third
classifier predicts it to be non-defective, that sample is provided to the third classifier for
learning as a defective sample. Specifically, if both classifiers predict the same unlabeled
sample equally, the sample is considered to have high confidence in the labelling and is added
to the labelled training set of the third classifier after labelling. After the final training is
completed, the three classifiers are used as a single classifier integration through a voting
mechanism. Thus, Tri-training uses both semi-supervised and integrated learning mechanisms,
resulting in a further improvement in learning performance. Algorithm 1 shows a simplified
pseudo-code of the Tri-training method, and more details can be found in the literature [25].

4034 Meng et al.: Semi-supervised Software Defect Prediction Model Based on Tri-training

Algorithm 1: Pseudo code of simplified Tri-training.
Input: Training set 𝐿𝐿 = {𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑙𝑙 ,𝑈𝑈 = {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑢𝑢
Three classifiers ℎ1,ℎ2,ℎ3
Output: Ensemble ℎ using majority vote;

1. for 𝑖𝑖 = 1,2,3 do
2. Train ℎ𝑖𝑖 on 𝐿𝐿;
3. end
4. while any of {ℎ1,ℎ2,ℎ3} changes do
5. for 𝑖𝑖 = 1,2,3 do
6. 𝐿𝐿𝑖𝑖 = ∅ ;
7. for 𝑥𝑥 ∈ 𝑈𝑈 do
8. if ℎ𝑗𝑗(𝑥𝑥) = ℎ𝑘𝑘(𝑥𝑥)(𝑗𝑗,𝑘𝑘 ≠ 𝑖𝑖) then
9. 𝐿𝐿𝑖𝑖 = 𝐿𝐿𝑖𝑖 ∪ (𝑥𝑥,ℎ𝑗𝑗(𝑥𝑥));
10. end
11. end
12. end
13. for 𝑖𝑖 = 1,2,3 do
14. Train ℎ𝑖𝑖 on 𝐿𝐿 ∪ 𝐿𝐿𝑖𝑖;
15. end
16. end

The Tri-training algorithm labels unlabeled samples by first labelling any unlabeled sample

𝑥𝑥 ∈ 𝑈𝑈 by any two of the classifiers ℎ1 and ℎ2. If both classifiers have the same labelling result
for x, one of the labelling results is chosen as the training sample for the classifier ℎ3, i.e.:
ℎ1(𝑥𝑥) = ℎ2(𝑥𝑥), then 𝐿𝐿𝑖𝑖 = ��𝑥𝑥, ℎ2(𝑥𝑥)��,𝑥𝑥 ∈ 𝑈𝑈 is added to the training set of ℎ3.

The training result will be optimized if ℎ3 can achieve high accuracy during the training
process; on the contrary, it will introduce noise into the training set of ℎ3 and reduce the
labeling performance of the classifier. Based on this, Zhou et al. [25] made the following proof.

|𝐿𝐿 ∪ 𝐿𝐿𝑡𝑡| �1− 2 𝜂𝜂𝐿𝐿|𝐿𝐿|+𝑒𝑒1�
𝑡𝑡�𝐿𝐿𝑡𝑡�

|𝐿𝐿∪𝐿𝐿𝑡𝑡| �
2

> |𝐿𝐿 ∪ 𝐿𝐿𝑡𝑡| �1− 2 𝜂𝜂𝐿𝐿|𝐿𝐿|+𝑒𝑒1�
𝑡𝑡−1�𝐿𝐿𝑡𝑡−1�

|𝐿𝐿∪𝐿𝐿𝑡𝑡−1| �
2
 (2)

where 𝐿𝐿𝑡𝑡: the newly labelled training samples of ℎ1, ℎ2 for ℎ3 at the tth iteration. 𝑒𝑒1� 𝑡𝑡: the

ratio of the number of incorrectly labelled samples in ℎ1 , ℎ2 labelled samples at the tth
iteration. 𝜂𝜂𝐿𝐿: the noise rate of the initial training set 𝐿𝐿.

In the PAC learnable framework, if the newly labelled training samples are large enough
and can satisfy the conditions in equation (2), the classification performance of the hypothesis
will improve when ℎ3 is trained again.

The classification noise rate after the 𝑡𝑡 th iteration can be expressed by the following
equation.

𝜂𝜂𝑡𝑡 = 𝜂𝜂|𝐿𝐿|+𝑒𝑒1�
𝑡𝑡�𝐿𝐿𝑡𝑡�

|𝐿𝐿∪𝐿𝐿𝑡𝑡| (3)

When 0 < 𝑒𝑒1� 𝑡𝑡, 𝑒𝑒1� 𝑡𝑡−1 < 0.5 and |𝐿𝐿𝑡𝑡| > |𝐿𝐿𝑡𝑡−1|, it follows that:

𝑒𝑒1� 𝑡𝑡|𝐿𝐿𝑡𝑡| < 𝑒𝑒1� 𝑡𝑡−1|𝐿𝐿𝑡𝑡−1| (4)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021 4035

Thus, equation (2) can be transformed as follows.

0 < 𝑒𝑒1�
𝑡𝑡

𝑒𝑒1�
𝑡𝑡−1 < |𝐿𝐿𝑡𝑡−1|

𝐿𝐿𝑡𝑡
 (5)

In the process of labelling unlabeled samples, equation (5) can be used to determine

whether the samples ��𝑥𝑥,ℎ2(𝑥𝑥)�� labelled by classifiers ℎ1 and ℎ2 can be added to the
classifier ℎ3 as training samples for a new round.

4. Experiment and Analysis

4.1 Experimental Data
The NASA MDP defect dataset from the PROMISE library [27], which develops software
defect datasets, was selected for experimentation in this paper. NASA implements these
datasets in C or java. They contain descriptions of the modules in the dataset with or without
defective annotations and descriptions of the dataset's attributes generated by McCabe [21],
Halstead [22], and other metrics. McCabe, Halstead can objectively characterize the quality
features associated with software quality. Table 2 gives basic information about the five sub-
datasets selected, including the dataset name, system, the total number of modules, number of
defective modules and defect rate.

Table 2. NASA Defect Prediction Dataset
Datasets System Module number Defects Defects rate /%

CM1 Spacecraft instrument 498 49 9.8
PC1 Flight software 1109 77 6.9
KC1 Storage management 2109 326 15.5
KC2 Scientific data processing 522 107 20.5

4.2 Experimental Evaluation Index
Software defect propensity prediction is whether a software module is a defective or clean
module, and it is a binary classification problem. Therefore, model evaluation metrics for
classification problems in machine learning can be used, and the confusion matrix is a
presentation tool to evaluate how good a classification model is [1]. As shown in Fig. 2, TP
indicates that the true class of the instance is a defective module and the prediction result of
the prediction model is also a defective module. FN indicates that the true class of the instance
is a defective module and the prediction result of the prediction model is a defect-free module.
FP indicates that the true class of the instance is a defect-free module and the prediction result
of the prediction model is a defective module. TN indicates that the true class of the instance
is a defect-free module and the prediction result of the prediction model is a defect-free module.

4036 Meng et al.: Semi-supervised Software Defect Prediction Model Based on Tri-training

Predicted results
Defective

Predicted results
Clean

TP
True Positive

FP
False Positive

FN
False Negative

TN
True Negative

T
ru

e
va

lu
e

D
ef

ec
tiv

e
T

ru
e

va
lu

e
C

le
an

Fig. 2. Confusion matrix

Other evaluation metrics can be calculated based on the confusion matrix, such as accuracy,

recall and accuracy, and the overall evaluation metric F-value.
Accuracy represents the ratio of the number of correct predictions by the prediction model

to the total number of instances in the data set. The following formula calculates it:

+
=

+ + +
TP TNAccuracy

TP FN FP TN
 (6)

In general, the higher the Precision, the better the prediction model is. The following

formula calculates it:

=
+

TPPrecision
TP FP

 (7)

Recall indicates the number of instances predicted by the prediction model to be defective

as a proportion of true defective instances. In general, a higher Recall indicates that the model
correctly predicts more defective modules and that the prediction model is more effective, but
a higher Recall is often coded for reduced accuracy. The following formula calculates it:

=
+

TPRecall
TP FN

 (8)

The F-measure is a composite metric that provides a trade-off between recall and precision,

with higher F-measure values indicating better model performance. The following formula
calculates it:

×

= ×
+

Precision RecallF
Precision Recall

2 (9)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021 4037

4.3 Analysis of Results
In this paper, two classical learning algorithms, Decision Tree and NaiveBayes, an Adaboost
integrated learning algorithm and the semi-supervised algorithm S4VM+ proposed in the
literature [4] were selected for analysis of the NASA MDP dataset and compared with the
Tri_SSDPM proposed in this paper to calculate the prediction accuracy, recall, accuracy and
overall evaluation index F. The default values in sklearn were used for the running parameters
of Decision Tree, NaiveBayes and Adaboost learning algorithms.

This experiment was set up as follows, with each expanded dataset randomly divided into
a training set and a test set according to a 4:1 ratio. Then the training set was further randomly
divided into a labelled training set and an unlabeled training set according to a specific
labelling rate R. The larger the R, the more labelled modules in the training set. In this
experiment, three different R values were used, and R was taken to be 0.2, 0.3 and 0.4,
respectively. In order to eliminate chance from the experimental results, the experiment was
repeated 20 times for each tagging rate R for the method in this paper and the chosen
comparison method, and the average of the 20 times was taken as the final result of the
experiment.

Table 4. Experimental results of each classifier on the CM1 dataset with different sample
labelling rates

Classifier Accuracy Precision Recall F-Measure
R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4

DecisionTree 0.835 0.838 0.845 0.190 0.196 0.164 0.182 0.228 0.178 0.174 0.199 0.162
NaiveBayes 0.705 0.696 0.710 0.505 0.582 0.591 0.174 0.207 0.208 0.250 0.268 0.287

Adaboost 0.854 0.874 0.864 0.103 0.187 0.168 0.134 0.246 0.214 0.107 0.199 0.177
S4VM+ 0.879 0.880 0.878 0.261 0.338 0.298 0.142 0.146 0.150 0.177 0.191 0.195

Tri_SSDPM 0.850 0.867 0.885 0.865 0.896 0.916 0.775 0.818 0.830 0.816 0.854 0.870

As shown in Table 4, Tri_SSDPM does not always obtain optimal values compared to the
other four methods, but its Accuracy value differs from the other methods by a maximum of
0.069 (0.879-0.810), which still gives comparable results to the comparison methods. Since
the proposed method obtained the best values for Precision, Recall and F-Measure for all three
marking rates. Therefore, overall, our proposed method outperforms the other four methods in
terms of prediction performance.

Table 5. Experimental results of each classifier on the PC1 dataset with different sample
labelling rates

Classifier Accuracy Precision Recall F-Measure
R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4

DecisionTree 0.888 0.893 0.901 0.317 0.314 0.327 0.254 0.243 0.301 0.271 0.265 0.304
NaiveBayes 0.761 0.772 0.775 0.496 0.497 0.483 0.138 0.167 0.149 0.213 0.245 0.225

Adaboost 0.910 0.915 0.925 0.198 0.238 0.238 0.331 0.340 0.429 0.236 0.266 0.285
S4VM+ 0.926 0.930 0.929 0.435 0.489 0.477 0.146 0.155 0.149 0.207 0.230 0.218

Tri_SSDPM 0.935 0.943 0.939 0.937 0.941 0.959 0.869 0.889 0.915 0.901 0.914 0.936

As shown in Table 5, Tri_SSDPM in this paper obtained optimal values at all three
labelling rates compared to the other four methods.

4038 Meng et al.: Semi-supervised Software Defect Prediction Model Based on Tri-training

Table 6. Experimental results of each classifier on the KC1 dataset with different sample
labelling rates

Classifier Accuracy Precision Recall F-Measure
R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4

DecisionTree 0.796 0.809 0.810 0.335 0.345 0.351 0.344 0.363 0.376 0.337 0.352 0.361
NaiveBayes 0.743 0.745 0.737 0.643 0.659 0.665 0.324 0.331 0.328 0.430 0.439 0.438

Adaboost 0.831 0.842 0.846 0.268 0.241 0.231 0.452 0.509 0.517 0.333 0.321 0.317
S4VM+ 0.842 0.850 0.851 0.494 0.478 0.526 0.284 0.295 0.290 0.357 0.361 0.371

Tri_SSDPM 0.822 0.833 0.847 0.824 0.861 0.872 0.773 0.814 0.831 0.797 0.836 0.851

As shown in Table 6, Tri_SSDPM does not always obtain the optimal value in Accuracy,
but its F-Measure values are higher than those of the comparison methods. Therefore, our
proposed method still outperforms the other four methods in terms of prediction performance.

Table 7. Experimental results of each Classifier on the KC2 dataset with different sample

labelling rates

Classifier Accuracy Precision Recall F-Measure
R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4 R=0.2 R=0.3 R=0.4

DecisionTree 0.797 0.790 0.784 0.516 0.416 0.451 0.503 0.488 0.499 0.499 0.443 0.466
NaiveBayes 0.770 0.784 0.778 0.748 0.786 0.796 0.476 0.476 0.468 0.577 0.590 0.584

Adaboost 0.787 0.801 0.810 0.433 0.422 0.501 0.476 0.493 0.558 0.445 0.452 0.512
S4VM+ 0.820 0.815 0.815 0.562 0.546 0.576 0.438 0.434 0.433 0.487 0.486 0.490

Tri_SSDPM 0.854 0.850 0.861 0.817 0.874 0.875 0.797 0.802 0.823 0.803 0.835 0.848

As shown in Table 7, Tri_SSDPM obtained optimal values at all three labelling rates.
The data in Tables 4 to Tables 7 were counted, and the Tri-training-based semi-supervised

software defect prediction model obtained optimal values 43 times out of a total of 48
evaluations performed at the three labelling rates, accounting for 89.58%. At the same time,
the F-Measure values of the supervised learning algorithm and the unsupervised learning
algorithm increased as the R-value increased, indicating that the prediction effect subsequently
became better when there were more and more labelled modules in the training set.

Table 8. Average of each classifier under the four metrics

Classifier Accuracy Precision Recall F-Measure
DecisionTree 0.832 0.327 0.330 0.320
NaiveBayes 0.748 0.621 0.287 0.379

Adaboost 0.855 0.269 0.391 0.304
S4VM+ 0.866 0.457 0.340 0.314

Tri_SSDPM 0.874 0.886 0.828 0.855

The results of each classifier under the four metrics were averaged, as shown in Table 8.
In order to visualize the classification effect of each classification model, the average values
of Accuracy, Precision, Recall and F-Measure for each classification model under the three
labelling rates are represented in a bar chart. As can be seen from Fig. 3, the proposed method
achieved the highest average values for Accuracy, Precision, Recall and F-Measure compared
to the other methods. Also, combined with Table 8, it can be concluded that each metric
improved by at least 0.008 (0.874-0.866), 0.265 (0.886-0.621), 0.437 (0.828-0.3910) and
0.476 (0.855-0.379) respectively.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021 4039

Fig. 3. Average of each classifier under the four metrics

The Tri_SSDPM model achieves higher accuracy than the four existing methods because

the Decision Tree and NaiveBayes algorithms do not consider the lack of labelled samples and
classification imbalance, resulting in poor classification results. S4VM+ semi-supervised
model can make full use of unlabeled samples to improve the model's prediction performance,
but it suffers from defective samples in the sampling stage. The number of defective samples
is too low in proportion to the total number of samples, and it also does not consider the impact
of too large and too small feature values on the model learning. However, the Tri_SSDPM
model proposed in this paper ensures that the number of defective samples in the training
samples is not too small, solves the problem of unbalanced classification of training samples,
makes full use of the unlabeled data in the learning phase, improves the model's defect
prediction performance, and also eliminates the influence of too large or too small feature
values on the model learning, so that the optimal values of all indicators are obtained in the
experimental results.

Combining the experimental results in Tables 4 to Tables 8, it can be concluded that
feature normalization, expansion of training samples, and the use of unlabeled samples can
improve the prediction model's performance to a certain extent. Our proposed method is an
effective semi-supervised software defect prediction model with better learning capability than
several other methods.

5. Conclusion
This paper proposes a semi-supervised software defect prediction model based on Tri-training,
which not only makes full use of a large number of unmarked samples in software defect
prediction and solves the problem of insufficient marked samples but also uses the
oversampling method to expand and sample the marked samples to solve the problem of
unbalanced classification of marked samples. The problem of unbalanced classification of
tagged samples is also solved. In addition, the feature metric values are normalized to eliminate
the effect of too large or too small feature values on model learning. Experimental results show
that the method achieves better prediction performance on the four NASA public datasets,
outperforming DecisionTree, NaiveBayes, Adaboost and S4VM+ for different labelled

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DecisionTree NaiveBayes Adaboost S4VM+ Tri_SSDPM

V
al

ue

Classifier

Accuracy average Precision average Recall average F-Measure average

4040 Meng et al.: Semi-supervised Software Defect Prediction Model Based on Tri-training

training samples.
Considering that the larger the dimensionality of the sample features, the worse the training

effect of the model will be. However, academics have continued to increase the number of
feature metrics to accurately represent software defects, resulting in sample features of
excessive dimensionality. Therefore, the focus of the following work is to explore the impact
of each feature metric on software defect prediction, select metric elements with high
correlation with software defects, and thus reduce the feature dimensionality to improve the
effectiveness of software defect prediction.

References
[1] L. N. Gong, S. J. Jiang and L. Jiang, “Research progress of software defect prediction,” Journal of

Software, vol. 30, no. 10, pp. 3090–3114, 2019. Article (CrossRef Link)
[2] L. Cai, Y. R. Fan, M. Yan and X. Xia, “Just-in-time software defect prediction: Literature review,”

Journal of Software, vol. 30, no. 5, pp. 1288−1307, 2019. Article (CrossRef Link)
[3] X. Chen, Q. Gu, W. S. Liu, S. L. Liu and C. Ni, “Survey of static software defect prediction,”

Journal of Software, vol. 27, no. 1, pp. 1−25, 2016. Article (CrossRef Link)
[4] S. P. Liao, L. Xu and M. Yan, “Software defect prediction using semi-supervised support vector

machine with sampling,” Computer Engineering and Applications, vol. 53, no. 14, pp. 161−166,
2017. Article (CrossRef Link)

[5] T. J. Wang, F. Wu and X. Y. Jing, “Semi-supervised Ensemble Learning Based Software Defect
Prediction,” Pattern Recognition and Artificial Intelligence, vol. 30, no. 7, pp. 646−652, 2017.
Article (CrossRef Link)

[6] X. Zhang and L. M. Wang, “Semi-supervised Ensemble Learning Approach for Software Defect
Prediction,” Journal of Chinese Computer Systems, vol. 39, no. 10, pp. 2138−2145, 2018.
Article (CrossRef Link)

[7] Z. W. Zhang, X. Y. Jing and F. Wu, “Twice Learning Based Semi-supervised Dictionary Learning
for Software Defect Prediction,” Pattern Recognition and Artificial Intelligence, vol. 30, no. 3, pp.
242−250, 2017. Article (CrossRef Link)

[8] W. W. Li, W. Z. Zhang, X. Y. Jia and Z. Q. Huang, “Effort-Aware Semi-Supervised Just-in-
Time Defect Prediction,” Information and Software Technology, vol. 126, 2020.
Article (CrossRef Link)

[9] N. Seliya and T. M. Khoshgoftaar, “Software quality estimation with limited fault data: a semi-
supervised learning perspective,” Software Quality Journal, vol. 15, no. 3, pp. 327−344, 2007.
Article (CrossRef Link)

[10] N. Seliya and T. M. Khoshgoftaar, “Software Quality Analysis of Unlabeled Program Modules
With Semisupervised Clustering,” IEEE Transactions on Systems, Man, and Cybernetics - Part A:
Systems and Humans, vol. 37, no. 2, pp. 201-211, March 2007. Article (CrossRef Link)

[11] C. Catal and B. Diri, “Unlabeled extra data do not always mean extra performance for semi-
supervised fault prediction,” Expert Systems, vol. 26, no. 5, pp. 458-471, 2009.
 Article (CrossRef Link)

[12] Z. W. Zhang, X. Y. Jing and T. J. Wang, “Label propagation-based semi-supervised learning for
software defect prediction,” Automated Software Engineering, vol. 24, no. 1, pp. 47-69, 2017.
Article (CrossRef Link)

[13] M. Li, H. Y. Zhang, R. X. Wu and Z. H. Zhou, “Sample-based software defect prediction with
active and semi-supervised learning,” Automated Software Engineering, vol. 19, no. 2, pp. 201-
230, 2012. Article (CrossRef Link)

[14] H. Lu, B. Cukic and M. Culp, “An iterative semi-supervised approach to software fault prediction,”
in Proc. of the 7th International Conference on Predictive Models in Software Engineering, pp. 1-
10, 2011. Article (CrossRef Link)

http://doi.org/doi:10.13328/j.cnki.jos.005790
http://doi.org/doi:10.13328/j.cnki.jos.005713
http://doi.org/doi:10.13328/j.cnki.jos.004923
http://doi.org/doi:%2010.3778/j.issn.1002-8331.1601-0447
http://doi.org/doi:%2010.16451/j.cnki.issn1003-6059.201707007
http://doi.org/doi:%2010.3969/j.issn.1000-1220.2018.10.003
http://doi.org/doi:%2010.16451/j.cnki.issn1003-6059.201703006
http://doi.org/doi:10.1016/j.infsof.2020.106364
http://doi.org/doi:%2010.1007/s11219-007-9013-8
http://doi.org/doi:10.1109/TSMCA.2006.889473
http://doi.org/doi:10.1111/j.1468-0394.2009.00509.x
http://doi.org/doi:%2010.1007/s10515-016-0194-x
http://doi.org/doi:10.1007/s10515-011-0092-1
http://doi.org/doi:10.1145/2020390.2020405

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021 4041

[15] G. Abadi, A. Selamat and H. Fujita, “An empirical study based on semi-supervised hybrid self-
organizing map for software fault prediction,” Knowledge-Based Systems, vol. 74, pp. 28-39, 2015.
Article (CrossRef Link)

[16] Y. Jiang, M. Li and Z. H. Zhou, “Software Defect Detection with Rocus,” Journal of Computer
Science & Technology, vol. 26, no. 2, pp. 328-342, 2011. Article (CrossRef Link)

[17] F. Thung, X. D. Le and D. Lo, “Active Semi-supervised Defect Categorization,” in Proc. of 2015
IEEE 23rd International Conference on Program Comprehension, pp. 60-70, May 2015.
Article (CrossRef Link)

[18] H. Lu, B. Cukic and M. Culp, “Software defect prediction using semi-supervised learning with
dimension reduction,” in Proc. of 27th IEEE/ACM International Conference on Automated
Software Engineering, pp. 314-317, Sept 2012. Article (CrossRef Link)

[19] H. Lu, B. Cukic and M. Culp, “A Semi-supervised Approach to Software Defect Prediction,” in
Proc. of 2014 IEEE 38th Annual Computer Software and Applications Conference, pp. 416-425,
July 2014. Article (CrossRef Link)

[20] Y. Ma, W. W. Pan, S. Z. Zhu, H. Y. Yin and J. Lou, “An improved semi-supervised learning
method for software defect prediction,” Journal of Intelligent & Fuzzy Systems, vol. 27, no. 5, pp.
2473-2480, Jan. 2014. Article (CrossRef Link)

[21] T. J. McCabe, “A Complexity Measure,” IEEE Transactions on Software Engineering, vol. SE-2,
no. 4, pp. 308-320, Dec. 1976. Article (CrossRef Link)

[22] M. H. Halstead, Elements of Software Science (Operating and Programming Systems Series), New
York: Elsevierence, 1977.

[23] S. Feng, J. Keung, X. Yu, X. Yan and M. Zhang, “Investigation on the stability of SMOTE-based
oversampling techniques in software defect prediction,” Information and Software Technology,
vol. 139, June 2021. Article (CrossRef Link)

[24] N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer, “SMOTE: Synthetic Minority
Over-sampling Technique,” Journal of artificial intelligence research, vol. 16, pp. 321-357, Jun.
2002. Article (CrossRef Link)

[25] Z. H. Zhou and M. Li, “Tri-training: exploiting unlabeled data using three classifiers,” IEEE
Transactions on Knowledge and Data Engineering, vol. 17, no. 11, pp. 1529-1541, Nov. 2005.
Article (CrossRef Link)

[26] A. Blum and T. Mitchell, “Combining labelled and unlabeled data with co-training,” in Proc. of
Eleventh Conference on Computational Learning Theory, pp. 92-100, July 1998.
Article (CrossRef Link)

[27] M. Shepperd, Q. Song, Z. Sun and C. Mair, “Data Quality: Some Comments on the NASA
Software Defect Datasets,” IEEE Transactions on Software Engineering, vol. 39, no. 9, pp. 1208-
1215, Sept. 2013. Article (CrossRef Link)

http://doi.org/doi:%2010.1016/j.knosys.2014.10.017
https://doi.org/10.1007/s11390-011-9439-0
http://doi.org/doi:10.1109/ICPC.2015.15
http://doi.org/doi:10.1145/2351676.2351734
http://doi.org/doi:%2010.1109/COMPSAC.2014.65
http://doi.org/doi:10.3233/IFS-141220
http://doi.org/doi:10.1109/TSE.1976.233837
http://doi.org/doi:10.1016/j.infsof.2021.106662
http://doi.org/doi:10.1613/jair.953
http://doi.org/doi:10.1109/TKDE.2005.186
http://doi.org/doi:10.1145/279943.279962
http://doi.org/doi:10.1109/TSE.2013.11

4042 Meng et al.: Semi-supervised Software Defect Prediction Model Based on Tri-training

FANQI MENG received the B.E. degree in computer science and technology from
Northwest Agriculture and Forest University, Yangling, in 2003 and the M.E. degree in
computer application technology from Northeast Electric Power University, Jilin, in 2010 and
the Ph.D. degree in computer application technology from Harbin Institute of Technology,
Harbin, in 2018.He has been working at the Northeast Electric Power University since 2003.
He is currently an Associate Professor in the School of Computer Science. His research
interests include software safety, natural language processing, fault diagnosis of electric
power equipment and other aspects, involve software engineering, artificial intelligence, data
mining and other fields.

WENYING CHENG received the B.S. degree from Binzhou Medical College in 2020. He
is currently pursuing a master's degree in the School of Computer Science, Northeastern
Electric Power University. His main research interests are software defect prediction and
software defect localization.

JINGDONG WANG received the B.E. degree and M.E. degree in computer science and
technology from Northeast Electric Power University, Jilin and the Ph.D. degree in
information science from University of Science and technology of China, in 2017.He has been
working at the Northeast Electric Power University since 2008. From 2008 to 2011, he was a
Teaching Assistant. From 2011 to 2016, he was a Lecturer. Since 2017, he has been an
Associate Professor with the School of Computer Science. His research interests include
public security, natural language processing, text mining, knowledge graph and other aspects,
involve software engineering, artificial intelligence, emotional analysis and other fields.

