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Abstract 

 
Intelligently detecting anomalies in health sensor data streams (e.g., Electrocardiogram, ECG) 
can improve the development of E-health industry. The physiological signals of patients are 
collected through sensors. Timely diagnosis and treatment save medical resources, promote 
physical health, and reduce complications. However, it is difficult to automatically classify the 
ECG data, as the features of ECGs are difficult to extract. And the volume of labeled ECG 
data is limited, which affects the classification performance. In this paper, we propose a 
Generative Adversarial Network (GAN)-based deep learning framework (called CAB) for 
heart arrhythmia classification. CAB focuses on improving the detection accuracy based on a 
small number of labeled samples. It is trained based on the class-imbalance ECG data. 
Augmenting ECG data by a GAN model eliminates the impact of data scarcity. After data 
augmentation, CAB classifies the ECG data by using a Bidirectional Long Short Term 
Memory Recurrent Neural Network (Bi-LSTM). Experiment results show a better 
performance of CAB compared with state-of-the-art methods. The overall classification 
accuracy of CAB is 99.71%. The F1-scores of classifying Normal beats (N), Supraventricular 
ectopic beats (S), Ventricular ectopic beats (V), Fusion beats (F) and Unclassifiable beats (Q) 
heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively. 
Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, 
respectively.  
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1. Introduction 

Heart arrhythmia is a common disease in elderly people [1]. It can lead to serious health 
problems and even sudden death [2]. Therefore, it is important to have immediate diagnosis 
and treatment for heart arrhythmias [3]. Electrocardiogram (ECG) is a popular sensor signal 
for diagnosing heart diseases [4]. However, manually analyzing the complex ECG signals is 
difficult [5] [6]. Therefore, it is necessary to develop efficient methods to assist experts in 
detecting heart arrhythmias automatically [7].  

The Association for Advancement of Medical Instrumentation (AAMI) groups the 
heartbeats of arrhythmia patients into five categories: Normal beat (N), Ventricular ectopic 
beat (V), Supraventricular ectopic beat (S), Unclassifiable beat (Q) and Fusion beat (F) [8]. 
Heartbeats in class N are normal or bundle branch block heartbeats. Class S includes abnormal 
supraventricular heartbeats and premature heartbeats. Class V refers to ventricular ectopic 
beats, which are not paced by the sinus node of the ventricle. Class F refers to the fusion 
heartbeat, and Q refers to the unclassified heartbeat. Fig. 1 shows the heartbeat types contained 
in each category.  

 

 
Fig. 1. Five categories of heartbeat types defined by AAMI. 

 
In ECG data, some classes of data are rare, such as F and Q classes. Therefore, data 

imbalance is a significant problem in ECG classification. The lack of data can make the 
classification model not adequately trained. Insufficient model training can affect the accuracy 
of heartbeat classification, especially the classification accuracy of rare heartbeats. To solve 
the data imbalance problem, some data augmentation methods have been proposed. A 
commonly used algorithm for time series data augmentation is Synthetic Minority 
Oversampling Technique (SMOTE) [9]. However, SMOTE has the following limitations: (1) 
it has blindness in the selection of neighbors; (2) the problem of data distribution cannot be 
overcome, and it is easy to cause distribution marginalization [9]. So we propose a data 
augmentation method based on Generative Adversarial Network (GAN). It can generate high-
quality ECG data to prevent data imbalance from affecting classification.  

GAN is a generative model [10] for data generation. It is composed of a generator and a 
discriminator. When the generator is fixed, the discriminator is optimized to maximize 
discriminant accuracy. When the discriminator model is fixed, the generator is optimized to 
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minimize the discriminant accuracy [11]. Long Short Term Memory Recurrent Neural 
Network (LSTM) is a kind of special Recurrent Neural Network (RNN). Its cellular state is 
more complex than that of the ordinary RNN [12]. LSTM stores information in gated units 
that can store, write, or read information [13].  

In this paper, we propose a GAN-based framework (called CAB) to Classify Arrhythmias 
(N, S, V, F, and Q) based on imBalanced ECG sensor data. In CAB, we design a GAN to 
generate data for the heartbeat categories with sparse samples. In addition, we develop a 
stacked Bidirectional Long Short Term Memory Recurrent Neural Network (Bi-LSTM) to 
classify heartbeats. Our main contributions are as follows:  

• design a GAN-based data augmentation algorithm for augmenting ECG data. The 
algorithm can effectively capture the characteristics of ECG data to generate high-quality ECG 
data. Then it generates enough heartbeat data for classes with sparse samples to train the 
classification model.  

• propose a deep neural network based on stacked Bi-LSTM. The network is trained by the 
original data and the data augmented by GAN. CAB classifies heartbeats based on the 
morphology of heartbeats. It can extract timing features, thus improving the accuracy of 
heartbeat classification based on a small set of labeled samples.  

• conduct comprehensive experiments to evaluate CAB by comparing it with state-of-the-
art methods. The overall classification accuracy is 99.71%. The F1- scores of classifying N, S, 
V, F, and Q heartbeats are 99.86%, 97.66%, 99.05%, 98.57%, and 99.88%, respectively.  

The rest structure of this paper is: Section 2 introduces related work Section 3 introduces 
CAB; Section4 describes experiments and results, and Section 5 concludes this paper.  

2. Related Work 
2.1 Arrhythmia Heartbeat Classification Methods  

2.1.1 Machine Learning Classification Methods 

Elhaj et al. [14] proposed a classification method combining Bayesian algorithm with Extreme 
Learning Machine (ELM), which can avoid the problem of overfitting. Mondéjar-Guerra et al. 
[15] proposed a multi-support vector machines-based classification method. This method uses 
the time intervals and the morphology of heartbeats as features. Shi et al. [16] developed a 
classification method using the weighted extreme gradient boosting. Garcia et al. [17] 
proposed a new ECG representation based on an ECG vector, called Temporal 
VectorCardioGram (TVCG). The classification method uses Support Vector Machines (SVMs) 
as a classifier and performs feature selection with a Particle Swarm Optimization (PSO) 
algorithm. Alfaras et al. [18] proposed an automatic and fast ECG arrhythmia classifier based 
on a brain-inspired machine learning method called Echo State Networks. Houssein et al. [19] 
proposed a heartbeat classification method based on Twin Support Vector Machines (TWSVM) 
and Particle Swarm Optimization (PSOGSA). Empirical Mode Decomposition (EMD) is 
applied to ECG noise removal and feature extraction. PSOGSA is used to find the optimal 
parameters of TWSVM to improve the classification process.   

2.1.2 Deep Learning Classification Methods 
Jiang et al. [20] proposed a sequence-to-sequence (seq2seq) model based on LSTM with 
Convolutional Neural Network (CNN)-based embedding. Specifically, local channel-wise 
attention is used to highlight more discriminative features. Li et al. [21] developed a DNN 
based on the residual network. Chazal et al. [22] used the ECG morphology, heartbeat interval, 
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and RR interval to select the optimal classifier configuration. Niu et al. [23] designed a 
heartbeat classification framework based on Multi-Perspective CNN. This method 
automatically learns features and classifies heartbeats based on the symbolic representation of 
heartbeat. Hannun et al. [24] proposed a deep neural network (DNN) that can classify 12 kinds 
of ECG signals, including 10 arrhythmias, one sinus rhythm, and one noise. Saadatnejad et al. 
[25] proposed a heartbeat classification framework composed of wavelet transform and 
multiple LSTM.  Lu et al. [26] proposed a hybrid ECG classification model based on LSTM 
and CNN. The model can learn the structural features of ECG signals and mine the time 
correlation between ECG signal points.  

Li et al. [27] proposed a heartbeat classification model based on the Bi-LSTM and Bi-LSTM 
Attention algorithm. Wang et al. [28] proposed a classification method based on semantic 
coding, and Bi-LSTM is used as the classification model. The model uses a Stack Denoising 
AutoEncoder (SDAE) as the encoder to automatically learn the semantic encoding of the 
heartbeat. Yildirim [29] proposed a wavelet sequence classification model called DBLSTM-
WS based on a deep Bi-LSTM network. This model divides the ECG signal into sub-bands of 
different scales based on wavelets and inputs them into the LSTM network. Wu et al. [30] 
proposed an ECG signal analysis method based on residual network and Bi-LSTM. This 
method uses the statistical time domain, frequency domain, nonlinear domain, and deep 
features of the ECG signal to distinguish basic heart diseases. The combination of residual 
network and Bi-LSTM can better pay attention to the sequence information contained in the 
ECG signal. Li et al. [31] proposed a heartbeat classification method based on General CNN.  

Li et al. [32] proposed a customizable CNN-based automatic patient-specific classification 
method and a channel-wise attention module to selectively emphasize the information features.  
Zhai and Tin [33] proposed a CNN-based classifier. According to the change of heart rate, the 
single-channel ECG signal is divided into beats and the beat value is converted into a two-beat 
coupling matrix. The coupling matrix input into the CNN classifier can not only obtain the 
morphology of beats in ECG but also the correlation of beats to beats. Xia et al. [34] proposed 
a sparse constraint SDAE to learn ECG features. Mousavi and Afghah [35] developed an 
automatic heartbeat classification method using deep CNN and sequence-to-sequence models 
for unbalanced datasets. Xu et al. [36] proposed a signal alignment method based on deep 
learning and a feature extraction method using DNN. Wang et al. [37] proposed an improved 
CNN for accurate classification. Each convolution layer of CNN uses cores of different sizes, 
making full use of the characteristics of different scales.  

2.2 Data Augmentation Methods 
Shaker et al. [38] proposed two methods: (1) an end-to-end deep learning method, (2) a two-
stage hierarchical learning method based on deep CNNs. The designed GAN for the balance 
of the dataset is based on fully connected layers. Wang et al. [39] proposed a classification 
method using stacked residual networks and LSTM. They used an Auxiliary Classifier 
Generative Adversarial Network (ACGAN)  for data augmentation. Zhou et al. [40] proposed 
an arrhythmia classification system based on GAN. The generator of GAN is used for data 
augmentation. The discriminator is used as the arrhythmia classifier. Golany et al. [41] 
proposed an Ordinary Differential Equation (ODE) system. The ODE system uses GAN to 
generate ECG data. Golany and Radinsky [42] proposed a  patient-specific ECG classification 
method using semi-supervised approach . A GAN-based augmentation model is designed to 
learn and synthesize patient-specific ECG signals. 
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Acharya et al. [43] designed a 9-layer CNN to classify heartbeat and a method based on Z-

score normalization to augment data. Rajesh and Dhuli [9] proposed a nonstationary nonlinear 
decomposition method to extract features. The AdaBoost integrated classifier is used for 
heartbeat classification. Besides, Re-sampling, SMOTE, and Distribution based data sampling 
are used for data augmentation. Sellami and Hwang [44] proposed a new deep CNN for 
heartbeat classification. A batch weighted loss function is proposed to quantify the loss to 
overcome the problem of data imbalance. Romdhane et al. [45] proposed a CNN-based method 
and an optimized loss function for data augmentation. Nazi et al. [46] proposed a classification 
framework based on the dot Residual LSTM network. Conditional Variational AutoEncoder 
(CVAE) and LSTM network are used to increase training samples to solve data imbalance. 

 

2.3 Abnormal Heartbeat Detection 
Atrial Fibrillation (AF) is the most common arrhythmia, and the incidence of AF increases 
with age. To prevent atrial fibrillation from affecting people’s health, it must be diagnosed and 
treated as soon as possible. Many studies are devoted to the detection of AF. These studies can 
screen out AF. Zhou et al. [47] proposed an algorithm based on GAN called BeatGAN for 
detecting abnormal heartbeats. Lai et al. [48] proposed a lightweight CNN to automatically 
identify AF, using representative rhythmic features of AF. Shen et al. [49] developed a 50-
layer CNN to detect AF. Fan et al. [50] proposed a Multi-Scale deep CNN (MS-CNN) fusion 
algorithm. MS-CNN uses double-stream convolutional network architecture with filters of 
different sizes to capture features of different scales. Zhao et al. [51] proposed a Bayesian 
spectral time representation method for ECG signals based on the state-space model and 
Kalman filter. A dense CNN is used as a classifier.  

There are also some studies that classify ECG records. Dang et al. [52] proposed a model 
based on Bi-LSTM and CNN for AF heartbeat detection. Wu et al. [53] used the feature of the 
wavelet coefficient matrix based on the continuous wavelet transform. And a CNN with a 
specific structure is used as a detection model. Limam and Precioso [54] designed a 
classification network using Convolutional Recurrent Neural Network (CRNN). The network 
is composed of two independent CNNs, one RNN, and an SVM. Zabihi et al. [55] selected the 
ECG signal features from time, frequency, time-frequency domains, and phase space 
reconstruction. Finally, a random forest classifier is used to classify the selected features.  

Many studies have used the MIT-BIH dataset to classify the heartbeats of N, S, V, F, and 
Q. Li et al. [27] developed a Bi-LSTM network for heartbeat classification. Chen et al. [56] 
proposed an SVM algorithm to classify heartbeats. Wang et al. [57] developed a two-layer 
classifier. Each layer contains two independent fully connected networks. Acharya et al. [43] 
designed a nine-layer CNN for classification. Wang et al. [37] developed an improved CNN, 
where the kernel sizes of convolution layers are different from each other. Experiment results 
show that CAB performs better than the classification models in [27] [37][43] [56][57][59][60] 
(see Section 4).  
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Fig. 2. Structure of CAB framework. 

3. The Proposed Framework for Heartbeat Classification 
CAB consists of two parts: (1) a GAN for generating data to solve the problem of class 
imbalance; and (2) a stacked Bi-LSTM for heartbeat classification. The framework of CAB is 
shown in Fig. 2. The GAN generates data for the classes with small samples. And then the 
generated data combined with the original data are used to train the classification model.  

3.1 GAN for Data Augmentation 

 
Fig. 3. Structure of the generator and discriminator of CAB. 
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Fig. 3 shows the GAN structure of CAB. The input of the discriminator is a heartbeat sequence 
𝑋𝑋𝑖𝑖={𝑥𝑥1,𝑥𝑥2,⋯ , 𝑥𝑥𝑡𝑡}, where 𝑥𝑥𝑗𝑗(𝑗𝑗 ∈ [1,⋯𝑡𝑡]) is an ECG signal value at the 𝑗𝑗𝑡𝑡ℎ time tick. The 
input of the generator is a sequence of noise signals 𝑍𝑍𝑖𝑖 = {𝑧𝑧1, 𝑧𝑧2,⋯ , 𝑧𝑧𝑡𝑡}. Z is a random noise 
satisfying the Gaussian distribution. Finally, GAN outputs the generated ECG sequence 𝑋𝑋𝑖𝑖′ =
{x0′ , x1′ ,⋯ , xt′}. The target function of the GAN is represented by (1).  

 
 V(D, G) = EXi~pdata(Xi)[log D(Xi)] + EZi~pZi(Zi) �log �10D�G(Zi)��� (1) 

 
Both the discriminator and generator are implemented on a full-connection basis. The 

generator adds the Batch Normalization to process the data, and the discriminator uses the 
Flatten layer to transform multi-dimensional inputs into one-dimensional data. The generator 
has five repeated blocks. Each block has a fully connected layer, a LeakyReLu layer, and a 
Batch Normalization. The discriminator has five repeated blocks too. Each block consists of a 
fully connected layer and a LeakyReLu layer. 

 

3.2 Stacked Bi-LSTM for Classification 
Our classification model combines the stacked Bi-LSTM with the fully connected layer. It 

also adds several dropout layers to prevent overfitting. ReLu is used as the activation function. 
After using GAN to generate enough data, we integrate the generated data with the original 
data (represented by 𝑋𝑋𝑖𝑖′′ = {𝑥𝑥1′′,𝑥𝑥2′′,⋯ , 𝑥𝑥𝑡𝑡′′}). 𝑋𝑋𝑖𝑖′′ is input to the Stacked Bi-LSTM. At last, the 
classification model outputs the probability of each type of heartbeat. The type with the highest 
probability is the type of the input heartbeat.  

In each LSTM cell, the forgotten gate determines the discarding of information. Equation 
(2) is the activation function of the forgotten gate. The input of the 𝑡𝑡𝑡𝑡ℎ forgotten gate is 𝑥𝑥𝑡𝑡 and 
the output of cell ℎ𝑡𝑡−1 . The input gate adds useful new information to the cellular state. 
Equation (3) decides which information needs to be updated. Equation (4) determines the 
alternate content to be updated. And  𝐶̃𝐶𝑡𝑡  is optional for updating. Equation (5) adds new 
information to the cell state 𝐶𝐶𝑡𝑡 to replace the old state 𝐶𝐶𝑡𝑡−1. The output gate selects important 
information from the current state as the output of the cellular state, (6) determines 𝑜𝑜𝑡𝑡, i.e., the 
output information. Equation (7) transforms 𝑜𝑜𝑡𝑡 to the final output ℎ𝑡𝑡.  

 
 𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓 ∙ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡′′] + 𝑏𝑏𝑓𝑓� (2) 
  

𝑖𝑖𝑡𝑡 = σ(Wi ∙ [ht−1, xt′′] + bi) 
 

(3) 
  

𝐶̃𝐶𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑐𝑐 ∙ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡′′] + 𝑏𝑏𝑐𝑐) 
 

(4) 
  

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶̃𝐶𝑡𝑡 
 

(5) 
  

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡′′] + 𝑏𝑏𝑜𝑜) 
 

(6) 
  

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝑡𝑡) 
 

(7) 
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CAB uses the Bi-LSTM network, whose output result is determined by both the previous 
input and the later input. The forward LSTM combining with the backward LSTM forms Bi-
LSTM. Besides, a stacked structure is used to deepen the depth of the model. The Bi-LSTM 
uses the Adam gradient descent algorithm and the spars categorical cross-entropy loss function. 
The parameter settings of the Stacked Bi-LSTM are shown in Table 1. 
 

Table 1. The numbers of cells in different layers 
Layer The number of cells 

1st LSTM 320 
2nd LSTM 320 
1st Dense 64 
2nd Dense 32 

 

4.  Experiment  
The experimernt is based on the MIT-BIH arrhythmia database. It is performed on a 

computer with a GPU of NVIDIA GeForce GTX 950M and 3049 MB memory.  

4.1 Arrhythmia Dataset 
The MIT-BIH arrhythmia database contains 48 two-channel ECG recordings from Beth Israel 
hospital. The duration of each record is half an hour. The ECG signals are from 47 patients. 
And they are digitized at a rate of 360 samples per second per channel, with an 11-bit 
resolution of more than 10 mV. In addition, two or more experts annotated each record to iron 
out their differences [59].  

4.2 Experimental Setup 
The experiment includes the following steps: (1) heartbeat segmentation; (2) data generation; 
(3) training, testing, and validation dataset partition; and (4) model training and evaluation. 

4.2.1 Heartbeats Segmentation 
 

 
Fig. 4. Heartbeat segmentation. 
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The procedure of heartbeat segmentation refers to the method of [47]. At first, we de-noise 
ECG signals and locate the R peak. An ECG record is divided by taking 140-time ticks in front 
of R peaks and 180-time ticks behind R peaks. Therefore, a heartbeat contains a total of 320-
time ticks. Fig. 4 shows the heartbeat segmentation. According to AAMI [8], the signals in the 
recordings named 102, 104, 107, and 218 are of poor quality, so we do not extract the signals 
in these four recordings. Finally, the number of extracted heartbeats of each type is shown in 
Table 2. 
 

Table 2. Heartbeat distributions in MIT-BIH arrhythmia dataset 
Heartbeat class The number of heartbeat 

N 86717 
S 3026 
V 7008 
F 802 
Q 15 

 

4.2.2 Data Generation 
As can be seen from Table 2, the numbers of different types of heartbeat vary greatly. The 
heartbeat numbers of F and Q are much fewer than the numbers of the other three types. To 
solve this class imbalance problem, we use GAN to respectively expand the samples of F and 
Q to 2500. 

4.2.3 Training, Testing, and Validation Dataset Partition  
We first partition the original dataset as 90% for training and 10% for testing. And then we 
partition the training dataset as 80% for training and 20% for validating. Figure 1 shows that 
each category contains several subclasses. To make the subclasses evenly distributed in the 
dataset, data are shuffled before partitioning the data set. We divide all the ECG sequences 
into ten equal portions, one portion for testing, and the other nine portions for training. This 
operation is repeated ten times by shifting the testing portion. Each time the evaluation metrics 
are evaluated. Finally, the average performance of CAB is calculated. 

4.2.4 Model Training  
Table 3. The important parameter settings of classification model 
Parameter Value 
Optimizer Adam 

Loss function Sparse categorical crossentropy 
Dropout rate 0.3 

Epoch 100 
Validation rate 0.2 

 
Before the training, we shuffle the training set again to effectively avoid the occurrence of 
overfitting. The settings of important parameters are shown in Table 3. The classification 
model uses Adam [60] as the optimizer. The loss function is the sparse categorical cross-
entropy. Equation (8) expresses the cross-entropy. 

 
   C = −

1
n
�[y ln a + (1 − y) ln(1 − a)]  

(8) 
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where, 𝑛𝑛 is the number of categories, 𝑦𝑦 is the desired output, 𝑎𝑎 is the actual output of the 
neuron, and 𝑥𝑥 is the input.  
 

 
 

Fig. 5. The train history of training set. 

4.2.5 Evaluation Metrics 
Four metrics are used to evaluate the performance of CAB, which are the accuracy(ACC), 
precision (PRE), recall (REC), and f1 score (F1) (see (9)-(12)).  

 
 ACC =

TP + TN
TP + TN + FP + FN

  
(9) 

  

PRE =
TP

TP + FP
 

 
 

(10) 
  

REC =
TP

TP + FN
 

 
 

(11) 
  

𝐹𝐹1 =
2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅

 

 
 

(12) 
 
where, TP, FP, TN and FN represent the true positives, false positives, true negatives and false 
negatives respectively.  
 

4.3   Results 

4.3.1 Training  
The average ACC, PRE, REC, and F1 of CAB based on the training set are 99.71%, 99.30%, 
98.73%, and 99.01% respectively (see Fig. 6). The ACCs of training and validation for 100 
epochs are shown in Fig. 5. We can see that the ACCs increase when the epoch number 
increases. 
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Fig. 6. The classification PRE, REC, and F1 of CAB and No-GAN basedon the training set. 
 

 
 

Fig. 7. The classification PRE, REC, and F1 on testing set of CAB and No-GAN. 
 
 

Fig. 6 also shows the training results based on the raw unbalanced data, i.e. without using 
the GAN to balance classes (called No-GAN). The average ACC, PRE, REC, and F1 of No-
GAN based on the training set are 97.92%, 97.92%, 94.09%, and 95.76% respectively. We 
can see from Fig. 6 that the average performance of CAB is better than the average 
performance of No-GAN. No-GAN performs as well as CAB in terms of classifying N, S, and 
V heartbeats. However, CAB performs much better than No-GAN for classifying F and Q 
heartbeats. The average PRE, REC, and F1 of CAB are 2%, 5%, and 3% higher than those of 
No-GAN respectively.  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021                                    2315 

4.3.2 Testing 
Table 4. Compare CAB with State of the Art 

 
Work 

Over
all 

ACC 
 (%) 

 
N (%) 

 
S (%) 

 

 
V (%) 

 
F (%) 

 
Q (%) 

CAB 

 
99.71 

PRE = 99.82 
REC = 99.90 
F1 = 99.86 

PRE = 98.37 
REC = 96.96 
F1 = 97.66 

PRE = 98.98 
REC = 
99.13 

F1 = 99.05 

PRE = 99.36 
REC = 97.80 
F1 = 98.57 

PRE = 99.95 
REC= 99.82 
F1 = 99.88 

No-GAN 

 
99.48 

PRE = 99.82 
REC = 99.88 
F1 = 99.85 

PRE = 97.79 
REC = 96.98 
F1 = 97.38 

PRE = 99.31 
REC = 
98.56 

F1 = 98.93 

PRE = 92.69 
REC = 95.87 
F1 = 94.25 

PRE = 100.0 
REC= 79.17 
F1 = 88.37 

Li et al. 
[27] 

 
99.49 

PRE = 99.67 
REC = 99.86 
F1 = 99.76 

PRE = 97.08 
REC = 92.09 
F1 = 94.52 

PRE = 98.10 
REC = 
98.47 

F1 = 98.28 

 
- 

 
- 

Chen et 
al. [56] 

 
93.1 

PRE = 95.4 
REC = 98.4 
F1 = 96.9 

PRE = 38.4 
REC = 29.5 
F1 = 33.37 

PRE = 85.1 
REC = 93.1 
F1 = 91.3 

 
- 

 
- 

Wang et 
al. [57] 

 
93.4 

PRE = 98.3 
REC = 93.4 
F1 = 95.8 

PRE = 43.5 
REC = 92.1 
F1 = 59.1 

PRE = 89.5 
REC = 93.1 
F1 = 91.3 

PRE = 89.9 
REC = 62.1 
F1 = 73.5 

 
- 

Acharya 
et al. 
[43] 

 
94.03 

PRE = 89.68 
REC = 88.41 
F1 = 89.04 

PRE = 95.78 
REC = 84.21 
F1 = 89.62 

PRE = 97.27 
REC = 
91.67 

F1 = 94.39 

PRE = 96.50 
REC = 88.53 
F1 = 92.34 

PRE = 98.83 
REC= 95.63 
F1 = 97.20 

Wang et 
al. [37] 

 
99.06 

PRE = 98.89 
REC = 99.81 
F1 = 99.35 

PRE = 96.56 
REC = 77.07 
F1 = 85.72 

PRE = 97.09 
REC = 
95.37 

F1 = 96.22 

PRE = 91.02 
REC = 73.32 
F1 = 81.22 

 
- 

 
The average ACC, PRE, REC, and F1 of CAB based on the testing set are 99.48%, 98.81%, 
97.93%, and 98.27% respectively (see Fig. 7). The average ACC, PRE, REC, and F1 of No-
GAN based on the testing set are 98.52%, 73.95%, 72.81%, and 73.41% respectively. The 
average PRE, REC, and F1 of CAB are 15%, 15%, and 15% higher than those of No-GAN 
respectively.  

We compare CAB with five state-of-the-art arrhythmia classification models based on the 
MIT-BIH dataset: Li et al. [27], Chen et al. [56], Wang et al. [57], Acharya et al. [43], and 
Wang et al. [37]. The comparison results are shown in Table IV. The average ACC of CAB is 
higher than the ACCs of the other work. It is 7%, 6% and 6% higher than the average ACCs 
of [56], [57], and [43] respectively. For ’N’ classification, the F1 of CAB is around 10% higher 
than the F1’s of [56], [57] and [43] respectively. For ’S’ classification, the F1 of CAB is around 
60%, 30%, 10% and 15% higher than the F1’s of [56], [57] [43] and [37] respectively. For ’V’ 
classification, the F1 of CAB is around 30%, 10% and 6% higher than [56], [57] and [43] 
respectively. And for ’F’ classification, the F1 of CAB is around 25%, 6%, and 17% higher 
than [57] [43] and [37] respectively.  
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Overall, CAB performs better than No-GAN and the classification models in [27] [37] 
[43][56][57][59][60] on average. The experiment results show that it is efficient to use GAN 
to solve the data unbalance problem for heartbeat classifications. 

5.  Conclusion 
In this paper, we propose CAB, a heartbeat classification framework for arrhythmia 

detection based on the morphology of heartbeats. CAB solves the class imbalance problem by 
using a GAN to generate samples for the heartbeat categories with sparse samples. We design 
a heartbeat classification model based on Bi-LSTM to capture information between time series. 
Using the ECG data augmented by GAN to train the classification model can improve the 
accuracy of heartbeat classification. Experiment results show that CAB performs better than 
the state-of-the-art heartbeat classification models. The overall classification accuracy is 
99.71%. The F1-scores of classifying N, S, V, F and, Q heartbeats are 99.86%, 97.66%, 
99.05%, 98.57%, and 99.88%, respectively. CAB realizes the intelligent classification of a 
heartbeat. It automatically classifies the received ECG data and analyzes the type of 
arrhythmia in time. This can save the energy of cardiologists and effectively prevent the 
occurrence of various complications. CAB helps cardiologists make a timely diagnosis and 
promotes the development of telemedicine. It can bring convenience to patients and doctors, 
save time and medical resources. Besides, CAB can continuously monitor people’s heart 
health, reduce the prevalence of heart diseases, and vigorously promote physical health. In the 
future, we will further design a general classification model with more arrhythmia data sets 
for testing. And we plan to extract the information of the frequency domain and the time 
domain using the wavelet transform. The accurate classification of finer-grained arrhythmia 
heartbeats will be also explored. 
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