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Abstract 
 

With the widespread deployment of the fifth-generation (5G) communication networks, 

various real-time applications are rapidly increasing and generating massive traffic on 

backhaul network environments. In this scenario, network congestion will occur when the 

communication and computation resources exceed the maximum available capacity, which 

severely degrades the network performance. To alleviate this problem, this paper proposed an 

intelligent resource allocation (IRA) to integrate with the extant resource adjustment (ERA) 

approach mainly based on the convergence of support vector machine (SVM) algorithm, 

software-defined networking (SDN), and mobile edge computing (MEC) paradigms. The 

proposed scheme acquires predictable schedules to adapt the downlink (DL) transmission 

towards off-peak hour intervals as a predominant priority. Accordingly, the peak hour 

bandwidth resources for serving real-time uplink (UL) transmission enlarge its capacity for a 

variety of mission-critical applications. Furthermore, to advance and boost gateway 

computation resources, MEC servers are implemented and integrated with the proposed 

scheme in this study. In the conclusive simulation results, the performance evaluation analyzes 

and compares the proposed scheme with the conventional approach over a variety of QoS 

metrics including network delay, jitter, packet drop ratio, packet delivery ratio, and throughput. 
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1. Introduction 

In the perspective of future demands in real-time application services over the fifth-generation 

(5G) communication networks, the competence of intelligent resource allocation, control, and 

management is a significant characteristic to acquire for serving and reaching adequate Quality 

of Service (QoS) requirements [1, 2]. Fig. 1 illustrates the model environment in the future 

perspective which consists of massive multi-input and multi-output (MIMO), various types of 

communication technologies and devices, heterogeneous Internet of Things (HetIoT), 

diversified real-time 5G application scenarios, device-to-device (D2D) communication, and 

mobile edge computing (MEC) technology. Moreover, the extensive scale of cloud radio 

access networks (RAN) architecture allows centralized base-band units (BBU) pool 

deployment to process dynamic resource allocation for multiple distributed radio remote heads 

(RRHs), which reasonably generates sophisticated data flow for management and control 

purposes [3]. Therefore, due to these ultra-dense networks (UDN) scenario with massive 

multi-cell connectivity including macrocells, microcells, femtocells, and picocells, it makes 

the network resource management solution a challenging objective to accomplish. The real-

time communication traffic over uplink (UL) transmission in 5G backhaul network 

environment requires appropriate communication and computation capacities for stable 

serving, which necessitates being not weakened by the excessive downlink (DL) transmission, 

particularly, extravagant peak hour caching content placement and update traffic flows [4]. In 

the meantime, the insufficiency of computation resources is feasible to take place in case there 

are inadequate distributed computing capabilities. Furthermore, nowadays network resource 

management and orchestration still have not reached the satisfied control level in terms of 

global view monitoring functionality, self-management, flexibility, scalability, and 

intelligibility, which possibly degrades the network performances and Quality of Experience 

(QoE) expectations. 

 

 
Fig. 1.  Future perspective of model communication networks 
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decouple the control plane and data plane for sufficient content request patterns gathering and 
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UL and DL transmission, and deal with the stability of computation resource in 5G core 

networks and backhaul networks conditions [5-9]. To enable the global view of the network 
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orchestration with various available OpenFlow controllers (e.g., RYU, OpenDayLight, POX, 

NOX) [10-13]. Furthermore, as a major branch of artificial intelligence, machine learning 

algorithms feasibly overcome manifold challenges and provide significant end-goals such as 

content classification, prediction, user content request pattern analysis, continuous state/action 

improvement in caching scenarios, and particularly link bandwidth resource detection for 

handling real-time communication stability [14]. On top of that, MEC paradigm enables the 

extraction from mobile cloud computing (MCC) capacities to enhance the distributed network 

environment, which allows the edge network devices to obtain stable network resources, cache 

numerous contents with high hit probability, minimize the communication delay, and handle 

network congestion circumstances [15]. 

In this paper, intelligent resource allocation (IRA) and extant resource adjustment (ERA) 

schemes on UL and DL transmission approach with machine learning, SDN, and MEC 

paradigms for handling 5G real-time communications are proposed. The contributions of the 

paper are in the following three main procedures. Primarily, an SDN-oriented architecture for 

effective communication and computation network resource control is presented in the concept 

of multiple MEC servers to inspect and detect UL congestion statuses and DL resource usages, 

respectively. In the current network system, the main target is only on centralized control and 

consists of inadequate real-time solutions with complicated infrastructure between data and 

control flows [16]. Secondly, an intelligent SDN controller configuration is proposed in the 

concept of applying a machine learning algorithm, namely support vector machine (SVM), for 

detection and prediction purposes. The first function of the algorithm is to detect real-time UL 

traffic conditions and calculate the communication resource requirement. Additionally, the UL 

traffic can be detected as two conditions whether it requires extra serving resources or not. The 

second function of the algorithm is to predict the schedule of off-peak hour proactive caching 

for DL traffic recommendation. In the last procedure of contributions, MEC-driven framework 

is proposed at the bottleneck area of the backhaul network environment when the UL 

transmission reaches the conventional resource capacities limit. Moreover, to evaluate the 

proposed scheme, an end-to-end (E2E) simulation is conducted to illustrate the comparison 

with conventional schemes in terms of various QoS performances. 

The content of this paper is structured as follows. The related works are described in section 

2. The details of the proposed schemes on UL and DL transmission are given in section 3. In 

section 4, the simulation environment, performance metrics, and results are discussed. Finally, 

a summarizing conclusion is presented in section 5. 

2. Related Work 

This section describes the existing researches and complementary paradigms regarding our 

proposed topic. The related work is organized into four parts including studies on SDN, MEC, 

machine learning, and working process of multiple technologies convergence for 5G backhaul 

network scenario.  

SDN paradigm is a promising enabler technology towards a scalable and flexible solution 

for effective network management by decoupling data plane from control plane and providing 

a centralized control view of the network conditions [17]. With the complexity and 

heterogeneity of numerous smart devices, managing the communication and computation 

resources with traditional routing aspects in 5G backhaul network environment is utterly not 

satisfied [18]. Therefore, the emerging SDN will alleviate the drawback and presents the 

intelligent control system for adaptable routing optimization, cross-layer architecture, fault-

tolerance, and load balancing in the core network. SDN-based controllers in distributed 
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networks are proposed to handle manifold shortcoming in HetIoT circumstances with wide-

ranging area by optimizing path selection and developing Hybrid-Edge switches for the 

heterogeneity of end devices, and SDN controller capability is feasible to be configured 

adaptively for traffic flows offloading decision and selection among multiple controllers in a 

particular scenario to reduce the flow installation delay and provide optimal QoS performance 

[19, 20]. Moreover, the SDN-based technique has been applied to deal with network 

maintenance perspectives by detecting the deficiency possibility and rapidly utilizing the 

controller to update the optimal flow path installation without longer duration extensions in 

5G backhaul network environment [21]. The interfaces between the application plane, control 

plane, and data plane allow the resourceful programmability to manage and orchestrate the 

backhaul network resource circumstances which outperform the traditional architecture based 

on manual control in proprietary and standard network devices [22]. To reach the reliable 

scalability, optimal network throughput, and secure connectivity in SDN architecture, network 

function virtualization (NFV) is applicable to enable and modify multicasting functionality of 

diversified application services [23]. However, SDN paradigm still requires enhancing 

multiple directions to cope with the future perspective requirement including controller 

placement, high-quality data plane information gathering, and adaptable flow installation rules 

for mission-critical and non-mission-critical applications. 

The proficiency and plane separation techniques of SDN eases the implementation of 

machine learning algorithms which have been continuously applied to meet the 

communication and computation control in the backhaul network environment. Machine 

learning provides intelligent model construction and validation by using various algorithm 

options from supervised learning, semi-supervised learning, unsupervised learning, and 

reinforcement learning [24]. The model evolves into unified network adaption for problem 

formulation, data collection, and practical features extraction; therefore, the model can 

discover the hidden pattern of the historical network state environment towards specific 

requirement including massive traffic clustering, QoS and QoE classification, routing path 

recommendation, or resource allocation management [25]. To engage the network efficiency, 

machine learning is used to predict the MEC service allocation in 5G backhaul networks. 

Additionally, based on MEC paradigm, distributed caching storages are feasible to acquire for 

edge caching framework which alleviates the possible congestion in backhaul links by the 

duplication of numerous content requests. The convergence of these particular technologies 

activates plenty of functional supports to improve network QoE performance. Fig. 2 presents 

the working process of multiple technologies convergence including SDN, machine learning, 

and MEC. Every cluster node forwards the data to the other cluster node destination by D2D 

communication or to cluster heads (e.g., OpenFlow switch). When the controller gathers the 

information from end devices, OpenFlow, the first standard SDN communication protocol, 

queries the flow entries table of each cluster head by using PACKET_IN and PACKET_OUT 

messages [26]. Based on the requirement from application plane through the representational 

state transfer (RESTful) application programming interface (API) in terms of resource 

management, network monitoring, performance analysis, etc., SDN controller will collect the 

related data features to store in a virtualized database (e.g., hypervisor-based, virtual resource 

pool, or processing resource sharing entities) which are synchronously updated and processed 

[27]. By the existence of resourceful datasets, machine learning can output intelligent 

decisions in terms of prediction, recommendation, classification, detection, or inspection, for 

particular conditions. The tasks will be offloaded to MEC servers for computing purposes. 

When the computation is finished, SDN controller accordingly configures flow table rules, 

priority indication, and other data plane characteristics for optimal network performance. 



878                                         Tam et al.: Intelligent Massive Traffic Handling Scheme in 5G Bottleneck Backhaul Networks 

 

 
Fig. 2.  The working flow of SDN, MEC, and machine learning convergence 
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data network gateway (PGW) link characteristics in terms of bandwidth, queue size, delay, etc. 

By utilizing OpenFlow protocol, SDN-oriented architecture can adaptively manage the 

network environment and gather the information from end devices critically. In contrast with 

traditional architecture, the real-time traffic packets are not extracted by only just the header 

of packets but also various features including link bandwidth, delay, protocol data unit (PDU) 

sizes, congestion window, etc., by using the southbound interface (SBI) or control-data plane 

interface (C-DPI). Based on these features, the UL congestion level can be detected by the 

configured algorithm in SDN controller. Furthermore, the northbound interface (NBI) or 

control-application plane interface (C-API) also plays an essential role to import the 

congestion level characteristics as the class target using RESTful API. Fig. 3 illustrates the 

network scenario with SDN-oriented architecture. User devices are controlled and monitored 

by using reactive flow installation modes to set the traffic rules within SDN controller in terms 

of table id, idle timeout, hard timeout, priority numbers, match, and actions. By setting these 

attributes reactively, the controller can compute, detect, and predict the congestion possibility 

strictly. With the mobility of users, the DL caching transmission requires higher link 

bandwidth and throughput. Therefore, the caching servers are attached within the base stations 

for clustered contents storage. Next, the SGW and PGW transmissions perform significant 

roles for SDN controller to identify the bottleneck and congestion level in the backhaul 

network environment by control flow dispatch. On top of that, MEC server is allocated as a 

serving resource pool to handle high-level congestion purposes. 

 

  
Fig. 3.  SDN-oriented architecture 
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words, the DL transmission is in slight traffic flow. Level-1 expresses the overwhelmed and 

massive traffic flow of DL caching which severely degrades the real-time UL transmission, 

consequentially, it makes UL traffic requiring extra serving communication resources. In 

level-1 situations, SDN controller requires to proactively predict and recommend solutions to 

prevent further packet drop circumstances. For level-2, the entire network resources cannot 

handle the congestion statuses and necessitate to have an extraordinary computing entity.  

3.2 Controller Configuration 

To detect the level-𝑛 congestion statuses, a supervised machine learning algorithm, SVM, is 

applied to facilitate the SDN controller configuration. For each level, different actions are 

recommended to ensure that the proposed system can handle resource allocation in various 

circumstances. In level-0 condition, DL transmission is seldom endorsed to cache in off-peak 

hour schedule prediction for preventing future congestion. For level-1, DL transmission 

caused harmful consequences for real-time UL traffic, therefore, the resource adjustment and 

critical caching schedule, namely ERA approach, have to be well-configured as follows. 

3.2.1 Extant Resource Adjustment for Real-Time UL Traffic 

At this stage, based on real-time packet features captured by C-DPI and congestion targets 

captured by C-API, the labeled datasets were generated and synchronously updated in order 

to supervise the algorithm and improve the accuracy of resource adjustment procedures. 

Primarily, to inspect and classify the volume of real-time traffic, the model has to be 

intelligently trained, and the SVM kernel has to be accordingly selected to fit the non-linear 

data types. However, choosing the matching kernel is computationally discreet.  

 
Table 1. Optimal SVM kernels selection for SVC constructor 

Algorithm 01 

Require: Let 𝑋′ = {𝑥1, 𝑥2, 𝑥3, …, 𝑥𝑚} denotes 𝑚 featuring numbers of training datasets 

                     𝑌′ = {𝑦1 , 𝑦2, 𝑦3, …, 𝑦𝑛} denotes level-𝑛 congestion target values 

               and (𝑋,𝑌) are the testing datasets, respectively. 

Ensure: optimal kernel with satisfying precision 

1. Initialize One-Vs-All Classifier h𝜃
(𝑛)(𝑋′); 

2. Polynomial kernel with degree-d polynomials: K(𝑋′, 𝑌′)=(𝑋′𝑇
𝑌′ +c)

𝑑
 , 𝑐 ≥ 0 

3. Hyperbolic Tangent kernel with slope 𝛼 and intercept 𝛽, where 𝛼=1/n 

K(𝑋′, 𝑌′)= tanh(𝛼𝑋′𝑇
𝑌′ +𝛽)

𝑑
 , 𝛽 ≥ 0 

4. Gaussian kernel with adjustable sigma 𝜎: RFB Kernel of (𝑋′, 𝑌′)=𝑒
(−

‖𝑋′−𝑌′‖
2

2𝜎2 )

 

alternatively, K(𝑋′, 𝑌′)=𝑒(−𝛾‖𝑋′−𝑌′‖
2

), 𝛾 > 0 

5. For each kernel: applying on testing prediction K(𝑋,𝑌) and append  

h𝜃
(𝑛)(𝑥m) = 𝑃(𝑦 = 𝑛|𝑥m; 𝜃). 

6. Compute the max
n

h𝜃
(𝑛)(𝑋′); 

7. Select the optimal kernel to construct SVC 

 

Therefore, Table 1 illustrates the optimal SVM kernels selection for level-𝑛 congestion 

status identification. To train the support vector classifier (SVC), selecting an optimal kernel 

is highly significant to effectively fit the input data and output the highest possible precision. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021                          881 
 

 

Firstly, the total 𝑚 numbers of training traffic datasets are denoted as 𝑋′ (𝑥1, 𝑥2, 𝑥3, …, 𝑥𝑚), 

and the 𝑛 level congestion targets are denoted as 𝑌′ (𝑦1, 𝑦2, 𝑦3, …, 𝑦𝑛) into the algorithms. 

The algorithm is well replacing the null values, dummy variables, and outliers.  Next, the 

algorithm defined the class target to drop for the score calculation purpose. To construct an 

optimal One-Vs-All (OvA) classifier h𝜃
(𝑛)

(𝑋′), which considers on multiple target classes 𝑛 

estimation over the probability that 𝑦𝑛  belongs by the given 𝑋′  and parametrized 𝜃 , three 

selected SVM kernels including polynomial, hyperbolic tangent, and gaussian radial basis 

function (RFB) kernels, were looped through and formulated concurrently to correspond with 

the OvA. Each output was appended to accumulate for performance evaluation. In this context 

of SVC, the non-linear transformation is highly essential, which is executed by nonparametric 

method of modifying into 𝑇 maps based on the vector sets. For gaussian RBF kernel, the radial 

basis algorithm was used to enhance the transformation process, where 𝛾  represents the 

fraction of adjustable parameter 𝜎 with experimental estimation. Among each kernel output, 

only one function was selected to carry on the next stage by computing the maximum scaling 

of the OvA classifier on training datasets 𝑋′ , based on kernelized module K(𝑋′ , 𝑌′ ), as 

max
n

h𝜃
(𝑛)(𝑋′). At last, the optimal kernel with satisfying precision for the training model and 

well-classified SVC were ensured.  

 

 
𝑡𝑥𝑟𝑎𝑡𝑒 = ∑ 𝑅(𝑛)

𝑛

𝑖=0

− ∑ 𝑑𝑙(𝑚)

𝑚

𝑖=0

, ∀ 𝑅 ∈ 𝑁+ 𝑎𝑛𝑑 ∀ 𝑑𝑙 ∈ 𝑁 
 

(1) 

 

After the congestion level was labeled, the action structure has to be configured for 

inspecting the communication resource availability, 𝑅(𝑛), in the serving 𝑛 computing entities, 

and detecting the irrelevant and insignificant DL transmission, 𝑑𝑙(𝑚), with total 𝑚 amount. 

Therefore, the resource adjustment configuration, 𝑡𝑥𝑟𝑎𝑡𝑒 , for real-time UL traffic can be 

formulated as (1). 

3.2.2 Proactive Caching Schedules for Non-Real-Time DL Offloading 

Based on the previous stage formulation, the congestion level status in the backhaul network 

communication is detected, therefore, in this stage, we ensure the DL caching schedule to 

mismatch with level 1 and 2 circumstances. Thus, a proactive caching scheme is applied to 

enable off-peak hour transmission, maximize peak hour network throughput, and contribute 

spectrum and energy effectiveness. The content criteria have to specifically identify with cache 

hit probability for each cluster of users. However, the major drawback is the caching 

performances which relied utterly on prediction precision. Accordingly, based on optimal 

SVM kernels selection flow, SVC decently supports to implement in this scenario. By 

modifying the features of training datasets, 𝑋′, with content request patterns of the user within 

each base station including popular preferences, social networking, historical interests, 

timestamps, mobility pattern, etc., the caching efficiency with SVM can be improved and 

served the demands on peak hour intervals. Fig. 4 illustrates the flowchart of predictive SVM 

scheduling on DL proactive caching transmission. By cooperating with the resource 

adjustment scheme, the proactive caching can assign weight score on off-peak hour interval 

which identifies mainly based on congestion level circumstances. Consequently, the user 

request pattern captured by C-DPI and edge caching servers is applied to the training model 

of SVC. If the data does not fit, each capture feature of the datasets will be processed and 

analyzed again. If the data fits, the time-interval targets will be generated and appended to the 
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lists of DL traffic availability. Among the particular time-interval, the congestion level is 

differentiated from one another.  Therefore, the optimal time-interval is selected when the 

congestion values, namely 𝑡𝑎𝑟𝑔𝑒𝑡_𝑒𝑟𝑟𝑜𝑟, are satisfied with the C-API requirement which can 

be nonexistent or close to zero. At last, the proactive caching schedules are well-prepared and 

well-configured in the proposed scheme to recommend for non-real-time DL content 

offloading transmission. 

3.3 MEC-Driven Framework 

 
Fig. 4.  Flowchart of off-peak hour interval recommendation for DL caching 

 

To adapt and modify the ERA towards IRA scheme, MEC-driven framework is introduced. 

This approach is to handle the possible challenging drawback in 5G backhaul network 

environment where the bottleneck area is severely congested and requires absorbing extra 

serving communication and computation resources emergently from MEC entities. By 

converging with MEC paradigm, the approach detects the congestion levels and statuses in 

order to allocate the distributed entities where it predictively matters the most. Based on our 

SDN-oriented architecture, MEC entities are being placed with identical resource capacity, 
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𝐶(𝑘)
𝑅 , where k denotes the index of entity numbers. Equation (2) presents the formulation by 

taking the ERA to modify with overall equipped 𝐶(𝑘)
𝑅 . 

 

 

𝑡𝑥𝑟𝑎𝑡𝑒 = ∑ 𝐶(𝑘)
𝑅

𝑘

𝑖=0

+ ∑ 𝑅(𝑛)

𝑛

𝑖=0

− ∑ 𝑑𝑙(𝑚)

𝑚

𝑖=0

, ∀ 𝐶𝑅&𝑅 ∈ 𝑁+ 𝑎𝑛𝑑 ∀ 𝑑𝑙 ∈ 𝑁 

 

(2) 

4. Performance Evaluation 

This section discusses the mechanism to conduct the simulation results for the proposed 

schemes performance evaluation. Firstly, the simulation system is distinctly described. Next, 

performance metrics include the QoS parameters which we aim to compare with the 

conventional scheme. At last, the overall results are discussed in detail to anticipate the 

contribution of our proposed schemes. 

4.1 Simulation System 

The simulation system consists of three preeminent steps including real-time traffic generating, 

control system configuration, and performance metrics capture. To generate real-time traffics 

casually, a discrete-event network simulator for Internet systems, NS3, was used and simulated 

to 450 seconds (s). For control system configuration, an open-source machine learning library, 

Scikit-Learn, was utilized to perform overall SVM functions. The training datasets for user 

request pattern and UL detection levels are theoretically created by Python programming 

language. At last, controlled delay (CoDel) queue model was selected to apply in the 

simulation system for scheduling the network traffic, handling the buffer sizes, average queue 

length, packet drops probability, and capturing the potential QoS parameters. 

4.2 Performance Metrics 

In this section, the QoS metrics, which are used to evaluate the comparison between the 

proposed scheme and the conventional scheme, are introduced as follows: 

• 𝑑𝑒𝑙𝑎𝑦 refers to the sum of delaying time that postpones from the sending node to the 

receiving node including processing delay, propagation delay, queueing delay, 

transmission delay, and control delay, which are denoted as 𝐷(𝑛)
𝑝𝑟𝑜𝑐

, 𝐷(𝑛)
𝑝𝑟𝑜𝑝

, 𝐷(𝑛)
𝑞

, 𝐷(𝑛)
𝑡 , and 

𝐷(𝑛)
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 , respectively. And 𝑛 refers to the index number of queueing buffers that the 

packets pass. 

 

 
𝑑𝑒𝑙𝑎𝑦 = ∑(𝐷(𝑛)

𝑝𝑟𝑜𝑐
+ 𝐷(𝑛)

𝑝𝑟𝑜𝑝
+ 𝐷(𝑛)

𝑞
+ 𝐷(𝑛)

𝑡 + 𝐷(𝑛)
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑛

𝑘=1

) 
 

(3) 

 

 

• 𝑗𝑖𝑡𝑡𝑒𝑟 refers to the sum of deviation between each delay difference, 𝐷(𝑛)
𝑝𝑒𝑎𝑘

, which causes 

the instability of the network performance and mostly refers to the peak hour packet 

transmission in 𝑛 times. 

 

 
𝑗𝑖𝑡𝑡𝑒𝑟 = ∑ 𝐷(𝑛)

𝑝𝑒𝑎𝑘

𝑛

𝑘=1

 
 

(4) 
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• 𝑃𝐷𝑟𝑟𝑎𝑡𝑖𝑜 refers to the packet drop ratio, which is the percentage calculation between total 

packet lost, 𝑡𝑜𝑡𝑎𝑙𝑃𝐿, and total packet successfully transmitted, 𝑡𝑜𝑡𝑎𝑙𝑃𝑇. 

 

 
𝑃𝐷𝑟𝑟𝑎𝑡𝑖𝑜 =

𝑡𝑜𝑡𝑎𝑙𝑃𝐿

𝑡𝑜𝑡𝑎𝑙𝑃𝑇
 

 

(5) 

   

• 𝑃𝐷𝑒𝑟𝑎𝑡𝑖𝑜 refers to the packet delivery ratio which is calculated by the difference between 

the total ratio and 𝑃𝐷𝑟𝑟𝑎𝑡𝑖𝑜. 

 

 𝑃𝐷𝑒𝑟𝑎𝑡𝑖𝑜 = 1 −  𝑃𝐷𝑟𝑟𝑎𝑡𝑖𝑜 (6) 

   

• 𝑇𝑝 refers to the throughput rate at which the packets are being delivered successfully over 

a communication bandwidth channel, 𝑏𝑤. The success rate denotes the efficiency of the 

transmission which can be calculated as the split of transmission time and the overall 

latency including transmission time itself, propagation time or broadcasting time, control 

time for SDN computing, and processing time at various gateways, which are denoted as 

𝑇(𝑛)
𝑡 , 𝑇(𝑛)

𝑝𝑟𝑜𝑝
, 𝑇(𝑛)

𝑐𝑜𝑛𝑡𝑟𝑜𝑙 , and 𝑇(𝑛)
𝑝𝑟𝑜𝑐

, respectively. And 𝑛  refers to the index number of 

queueing entities in the virtualized network simulation infrastructure. 

 

 
𝑇𝑝 =

∑ (𝑇(𝑛)
𝑡 )𝑛

𝑖=0 × 𝑏𝑤

∑ (𝑇(𝑛)
𝑡 + 𝑇(𝑛)

𝑝𝑟𝑜𝑝
+ 𝑇(𝑛)

𝑐𝑜𝑛𝑡𝑟𝑜𝑙 + 𝑇(𝑛)
𝑝𝑟𝑜𝑐

)𝑛
𝑖=0

 
 

(7) 

   

4.3 Results and Discussion 

In this sub-section, the results of performance metrics and discussion about the conventional 

scheme, ERA, and IRA are described.  The conventional scheme refers to the traditional 

network system in which the transmission rate, 𝑡𝑥𝑟𝑎𝑡𝑒, is randomly given. In contrast with 

ERA and IRA, the resource handling is intelligently adjusted and allocated as the above-

mentioned sections. Table 2 illustrates the numerical comparison between each QoS metric 

including average delay, average jitter, packet drop ratio, packet delivery ratio, and throughput. 

 
Table 2. The comparison between the QoS metrics of each scheme  

Conventional ERA IRA 

Average delay (ms) 196.8832 140.2473 118.9146 

Average jitter (ms) 0.323 0.3067 0.3067 

Packet drop ratio 0.003229 (0.32%) 0.001289 (0.12%) 0.001089 (0.1%) 

Packet delivery ratio 0.9968 (99.68%) 0.9987 (99.87%) 0.9989 (99.89%) 

Throughput (Mbps) 799.5819 799.597 799.5987 
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Fig. 5.  Comparison of average delay 

 

In terms of the average delay in packet transmission, the conventional scheme reached 

196.8832 milliseconds (ms) which was 28.7662% and 39.6014% higher than ERA and IRA, 

respectively. It was proven that if the network resources were being allocated based on ERA 

and IRA procedures, the average E2E latency of a packet was reduced by 56.6359 ms and 

77.9686 ms, respectively, which can be beneficial to the overall network performances. Fig. 5 

presents the graphical line chart of each scheme based on simulation time, 0 to 450 s, and delay 

gaps in ms. Each scheme had a stable flow from time to time which is convenient to examine. 

In 5G backhaul networks, the congestion is feasible to occur and leads to numerous packet 

drops. It is caused by heterogeneous and massive traffics which is concurrently generated by 

various smart devices, therefore, a single ms of average packet transmission is highly crucial 

to the overall QoE. IRA achieved the smallest average delay and stable performance in this 

circumstance. 

 

 
Fig. 6.  Comparison of average jitter 



886                                         Tam et al.: Intelligent Massive Traffic Handling Scheme in 5G Bottleneck Backhaul Networks 

 

The average jitter comparison is illustrated in Fig. 6. A variation of each delay that occurs 

during the transmission is a potential metric to measure the scheme performance. Jitter is 

possibly caused by signal interference, weak hardware performance, invalid queueing, false 

configuration, collisions, or network congestion in backhaul networks. In another word, the 

higher jitter gets, the worse congestion happens. In the future perspective of communication 

networks, it is crucial to minimize the jitter due to the variety of real-time conversations, video 

conferences, streaming, or emergency system which the drop action leads to severe and critical 

loss. In jitter evaluation, ERA and IRA scheme were identical, which caused both lines 

overlaying with each other from 0 to 450 s simulation time. Comparing with the conventional 

scheme, ERA and IRA were 5.0464% or 0.0163 ms decreasing in one average traffic which is 

indeed significant to consider.  

The packet drop and packet delivery ratio detailed comparison of complete simulation 

duration are presented in Fig. 7 and Fig. 8, respectively. The great amount of packet drop 

counts severely degrades the overall network performance and generates dissatisfaction for 

the user demands. At the first 50 s of communication, the drop ratio of the conventional scheme 

reached 1.24% packet loss, which was an extremely high number. And, from 50 s to 450 s, the 

drop ratio was 0.093%. Otherwise, on average, ERA possibly alleviated 60%, from 0.003229 

to 0.001289, of the drop ratio in the conventional approach. Beyond that, the packet drop ratio 

of IRA averagely decreased by 66% and 15.52% of the conventional scheme and ERA, 

respectively. Namely, the IRA approach provided the minimal possibility of packet loss which 

is highly crucial for all communication protocols, particularly, user datagram protocol (UDP). 

For transmission control protocol (TCP), the great packet drop ratio will lead to throughput 

reduction and latency increment in terms of packet retransmission. As a consequence, for the 

packet delivery ratio, the success transmission rate had been illustrated accordingly. 

 

 
Fig. 7.  Comparison of packet drop ratio 
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Fig. 8.  Comparison of packet delivery ratio 

 

The performance of throughput is presented in Fig. 9. The network throughput of the 

conventional scheme, ERA, and IRA are 799.5819, 799.597, and 799.5987 Megabits per 

second (Mbps), respectively. In terms of throughput stability and improvement, IRA 

contributed the utmost efficiency which was followed by ERA and the conventional scheme. 

With higher network throughput achievement, the communication resource (e.g., link 

bandwidth) in 5G backhaul networks can be utilized thoroughly. 

 

 
Fig. 9.  Comparison of throughput 
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5. Conclusion 

In this article, we proposed a novel intelligent resource handling scheme for allocating the 

network resources and controlling massive communication traffic in backhaul scenarios. By 

emerging SDN-oriented architecture, ERA scheme preserved the extant communication and 

computation resources for primarily handling the real-time UL traffic. Simultaneously, for DL 

traffic, a machine learning algorithm, SVM, was converged with the proposed method to 

observe the user request pattern and recommend the off-peak hour interval for non-real-time 

proactive caching transmission.  With the MEC-driven framework, IRA scheme was modified 

on top of ERA in order to enlarge computing resources for dealing with severe network 

congestion statuses. To demonstrate the proposed scheme performance, a simulation system 

was conducted to capture various QoS metrics for comparison purposes. Finally, our finding 

contributes towards a key enabler approach to proactively cache the content with the highest 

hit probability, alleviate the high possibility of packet loss in UL transmission, increase 

communication throughput, and efficiently allocate the resource for mission-critical 

applications in 5G backhaul networks. This scheme mainly considered comprehensive real-

time applications; therefore, the deep packet inspection for resource awareness will conduct 

in the future study to integrate with the distinct QoS communication requirement. 
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