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Abstract 
 

Categorical range aggregation, which is conceptually equivalent to running a range 
aggregation query separately on multiple datasets, returns the query result on each dataset. The 
challenge is when the number of dataset is as large as hundreds or thousands, it takes a lot of 
computation time and I/O. In previous work, only a single dimension of the range restriction 
has been solved, and in practice, more applications are being used to calculate multiple range 
restriction statistics. We proposed MCRI-Tree, an index structure designed to solve 
multi-dimensional categorical range aggregation queries, which can utilize main memory to 
maximize the efficiency of CRA queries. Specifically, the MCRI-Tree answers any query in 
O(nkn-1) I/Os (where n is the number of dimensions, and k denotes the maximum number of 
pages covered in one dimension among all the n dimensions during a query). The practical 
efficiency of our technique is demonstrated with extensive experiments. 
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1. Introduction 

Categorical range aggregation (CRA) is a type of query which can be regarded as the 
simultaneous execution of a range aggregation query on multiple datasets, returning a result 
for each dataset. This requires a lot of computation time and I/O. Previous work only solved 
CRA with single range restriction. However, it is common to calculate statistical data with 
multiple range restrictions in modern business management. Let us consider the following 
query about empolyees from Table 1. 

Table 1. Data samples about empolyee 
ID Name Age Sex Status Entry_time Salary Position City 

121 Brandon 23 M single 2015/4 50k staff BJ 
129 Daphne 27 F single 2016/1 50k staff MH 
76 Jeremy 36 M married 2010/7 95k Engineer MH 

109 Emily 22 F single 2013/11 65k staff NYC 
56 Armand 38 F single 2011/6 90k Manager BJ 
43 Leona 46 M married 2010/8 120k Manager NYC 
87 Renata 34 F married 2013/5 70k Engineer BJ 

132 Norman 28 M married 2016/2 55k staff MH 
 
Now, we give a query: 
     : Find the number of employees whose entry_time is after Jun.2013 in each of the city. It 
can be expressed in SQL: 
 
     SELECT COUNT(*) FROM Table 1 
     WHERE Entry_time > ‘2013/6’ 
     GROUP BY City 
 

This is a Categorical Range Aggregation Query(CRA). Now, we formally define the 
problem. 

Definition 1 Categorical Range Aggregation Query(CRA): Given a dataset denoted by D, a 
query range , and an aggregation function . The result of CRA is defined as: 
 _ ( _ ) _{ ( ( ))}category column f aggregation column range column rresult Ģ Ds ∈=   (1) 

In the above query, the restriction has only one column, however, in a real system, the user 
does not satisfy the query under a single column restriction, and usually involves multiple 
columns. Let us continue to consider the following query about Table 1. 

: Find the number of employees whose entry_time is after June.2013, the salary is higher 
than 70k and the age less than 35 in each of the city. 

It can be expressed in SQL: 
 
SELECT  COUNT(*)  FROM  Table 1 
WHERE Entry_time > '2013/6' AND Salary > '70k' AND Age < '35' 
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GROUP BY  City 
 
Compared with the previous queries on categorical range aggregation,  has a key 

difference: This query needs to satisfy multiple range restrictions, not just one. We increase 
the number of constraints and make queries more flexible and useful. Meanwhile, calculate 
statistics according to the category of each data item. 

In this paper, we will define this query as Multidimensional Categorical Range Aggregation 
Query, which can be formally defined as follows: 

Definition 2 Multidimensional Categorical Range Aggregation Query (MCRA): Given a 
relation , a multidimensional query range , and an aggregation function , the 
result of MCRA query is defined as:  
 

1 1_ ( _ ){ ( ( ))}
n ncategory column f aggregation column RC r RC rresult Ģ Ds ∈ ∧ ∧ ∈=



  (2) 

It can be seen that CRA is a special case of MCRA in the case that the query range is 
single-dimension. In CRA and MCRA problems, the columns can be divided into three types: 
• Category column: The query results are grouped by these columns, which has a known 

limited range of values. For instance, the city in Table 1 is a category column. In [1], 
this column is also called a color column. 

• Range column: The result of the aggregation comes from the projections of the values 
of these columns, in other words, the columns will be indexed to speed up the query. 
Such as the age is the range column in Table 1. 

• Aggregation column: The values will be aggregated with a specific aggregation 
function. The aggregation functions are usually SUM, COUNT, AVERAGE, MAX, 
MIN (and so on). 

When create an index structure to solve the MCRA problems, we need to assign each field 
separately to one of these three columns. However, there is more than one type for each 
column in the table, which can be multiple. For example, the salary column can be either a 
range column or a category column, and so on. 

1.2 Application and Motivation 
Multidimensional Categorical Range Aggregation is motivated by the fact that, in applications 
where data is naturally divided into categories, a user can limit the attributes in multiple ranges 
based on their interests. 

Queries like  report statistics about employees in the business and are important for 
several reasons. First, the statistics provide valuable information for a company, especially for 
human resource management(HRM). For instance, HRM can develop a flexible pay and 
benefit framework based on the differences in regional development. Second, the statistics 
play an important role in HRM, especially for large multinationals in terms of staffing 
structure in different regions, as it allows the HR to conduct talented people in multiple 
dimensions screening. For this purpose, it does matter whether the collection of intersections 
return the answer effectively. The number of possible sets is huge, such as a group of 
candidates with special job skills or education levels, age, marital status, years of work, 
hobbies and so on. Third, the statistics also provide the factual basis for enterprises to establish 
a talent database, and the HR can establish a talent tracking mechanism through the results of 
the inquiry. 

Applications similar to the previous one are abundant in practice. For instance, consider a 
tax database, where each category is a city, an item is the amount of tax paid by an individual 
in that city between January 1, 2016 and December 31, 2016. Then we can use the 
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multi-dimensional categorical range count query to “find out how many people will pay at 
least 8000 RMB in Beijing, Shanghai, Guangzhou and Shenzhen for the period January 1, 
2016 to December 31, 2016, respectively.” 

In spite of its vast importance in reality and fundamental nature in database systems, 
surprisingly, the MCRA problem has not been studied before to our knowledge. Motivated by 
[2], we present the first work to address MCRA problem. It should be noted that the category 
range aggregation problems mentioned in this paper and the categorical data [3,4] are two 
different problems.  

1.3 Contributions and Organization 
Our main contributions can be summarized as follows: 
• We describe an internal and external memory hybrid index structure that addresses 

MCRA problem. This hybrid index structure makes it much easier to build complex 
indexes than the disk pages and the cache memory data structures. Compared to the 
memory index structure, it can maximize memory savings, and store more data. 

• We strictly certify the MCRI-tree's time and space complexity, and effectively answer 
any query even in the worst case. This feature is especially important in the environment 
where it is crucial to impose a hard bound on the maximum response. 

• We did extensive experiments using synthetic and practical datasets to demonstrate that 
MCRI-Tree is much more efficient at query than existing solutions. 

The rest of the paper is organized as follows. Section 2 describes the work that has been 
done to solve this problem in two special cases (One-dimensional and unclassified) and other 
related index techniques. In section 3, we proposed a data structure named MCRI-Tree, which 
can make more use of memory space to further improve I/O efficiency to solve MCRA 
problem. Section 4 validates the practical efficiency of our techniques with experiments. 
Finally, Section 5 concludes this paper. 

2. Related Work  
The earliest database index technology was B-Tree, which was an external memory data 
structure used to solve information index, such as file name in file system. After the B + tree 
proposed, all the data is stored in the leaf node, and the index structure is located at the 
non-leaf nodes. This technology used to accelerate range query [5]. Due to the superior 
randomness of  B + trees and the performance of range queries, it has become the technology 
of choice for all commercial databases, even for distributed databases [6]. There are many 
literatures on B + tree optimization, such as concurrency control [7], targeted optimization of 
new hardware like Solid State Drive (SSD) [8,9,10,11] and so on.  

Range aggregation query is an old problem. For example, this problem can be solved by 
aB-Tree [12] in the time of . Y.Tao et al[2] proposed the bundled range aggregation 
problem, which is also the problem of categorical range aggregation in this paper. And they 
proposed an aBB-Tree to solve this problem. It's core idea is to create an aggregation result 
index page on a non-leaf node for each category. The index page records each sub-node of this 
non-leaf node in each category for the result of the gathering. The results of each category 
corresponding to the same child node are stored in contiguous positions. In order to support 
categorical range aggregation query, the aBB-Tree is modified based on aB-Tree as follows. 
First, change the index result to be stored in a new page. In order to reduce the number of I/O, 
it is optimized to be arranged in the order of child nodes and incrementally stores the 
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aggregation result of each child node so that it can be read twice to calculate the aggregation 
result of the middle child nodes, then reduce to  I/Os. Second, in order to improve 
the uniform I/O of the update operation, one patch is added for each non-leaf node page so that 
the original  I/Os is reduced to   I/Os. 

In the case of multi-dimensional, Papadias et al. proposed aR-Tree [13] to solve the problem 
of multi-dimensional range aggregation (that is, the special case of multi-dimensional range 
categorical aggregation query proposed in this paper with only one category). The aR-Tree 
can be understood as an index structure for storing aggregated values in each node of the 
R-Tree. Since aggregation results only require O(1) space for storage without classification, 
the aR-Tree can answer the result of a multi-dimensional aggregation query within 

s.  
Although the aBB-Tree efficiently solves the CRA problem, there is still room for 

improvement. Initially, it is applied only to solving CRA problem, but can’t for MCRA 
problem. In practical systems, the scope of the query is often more than one dimension, 
compared with the Multi-dimensional categorical range aggregation query more meaningful. 
Furthermore, because its aggregation result pages are arranged according to the order of the 
first leaf nodes and then sorted according to the order of the first leaf node. If the new category 
is dynamically added during the update, the aggregation result page of the whole tree needs to 
be updated, which is luxurious. In addition, the aR-Tree can not be directly extended from 
multi-dimensional range query to support multi-dimensional categorical range query. 

As mentioned above, existing aggregation indexes currently have some problems, including 
the inability to efficiently solve MCRA problem, and inability to dynamically increase the 
categories, and the low utilization of space. In order to overcome these bottlenecks, the most 
intuitive and natural idea is to put the aggregation result page in memory. Driven by Moore's 
Law, the memory price is getting lower and lower, and now the PC usually has more than 4G 
of memory. Therefore, it is less costly for the aggregation results and non-leaf nodes stored in 
memory. When the scale of  data is within a certain range, it is possible to store non-leaf nodes 
in memory. In this case, the memory read and CPU processing time should be reduced as much 
as possible to prevent bottlenecks. In order to reduce the memory read time, we should make 
full use of the CPU internal cache[14]. In general, the size of a single node for B-Tree and 
R-Tree is about 4KB, and the total size of the cache is only a few MB. Without proper 
optimization, the efficiency of these index structures will be reduced at the cache level. 

Starting with B-Tree, people have already used cache to temporarily store pages in memory, 
which greatly reduces I/O. The Buffer-Tree[15,16] is the first index structure to have a 
separate cache on each node, which collecting small-scale written operation and the contents 
of cache will be written back to the node when the cache space of node is full. But doing this 
does not dynamic enough, it requires large cache space, and few other nodes are rarely written. 
Collecting the cache not only takes up memory but also has a negative impact on query 
performance. Therefore, some scholars have proposed LA-Tree[17], which can better adapt to 
different loads than Buffer-Tree. As mentioned earlier, this idea has also been adopted in the 
aBB-Tree to reduce the update overhead. In addition, the most representative work are 
CSS-Tree [14] and CSB+-Tree [18]. The idea of CSS-Tree is to maximize the cache hits as 
much as possible so that the nodes on the route traversing the B+-Tree are in the same or 
adjacent memory area. However, the CSS-Tree does not support the dynamic update of the 
data. In addition, lower space utilization is caused by stored pointers of child nodes. The 
CSB+-Tree reduces the number of pointers to one by placing the memory area of the child 
node of the same node in the same area. Due to the child nodes in a region, the cost of updating 
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operations greatly reduced. However, this design led to a decreace in search performance of 
CSB+-Tree relative to CSS-Tree. In short, the performance of CSS-Tree and CSB+-Tree 
relative to B+-Tree has greatly improved. However, their optimizations are for 
one-dimensional keys, and none of them can be directly extended to multidimensional. 

Many scholars have also studied the new index structure, such as LSM-Tree [19], Fraction 
Tree [20,21] and FD-Tree [22]. Their main idea is to place part of the index structure in high 
speed but expensive storage media, such as non-volatile memory, and other new hardware, 
and the other part is placed in slow speed but inexpensive storage media, such as a hard disk 
drive (HDD). Also worth mentioning is the bLSM-Tree[23], which uses Bloom Filter 
technology to make a preliminary determination of the existence of data. Using this technique, 
hot and cold separation can be achieved by storing the data with higher access frequency (ie, 
“hot” data) and the data with lower access frequency (ie, “cold” data) separately in different 
media. For each query, first of all, check the hot data area, and then check the cold data area. 
We can easily determine whether the data exists in the hot area, which greatly speeds up the 
query. However, neither Fractional Cascading nor Bloom Filter is suitable for 
multi-dimensional situations and  can not be used as multi-dimensional index. 

In recent years, with the popularity of solid state drives (SSDs), many scholars have done a 
great deal of researches to optimize the performance of index structures on these new 
hardware. Such as Bw-Tree [24], which sets the conventional node in memory. In addition, it 
sets aside a region used to cache the operation of the node. This kind of caching mechanism 
has two roles in Bw-Tree. The first is to reduce the number of memory written because the area 
can be cached without swapped. The second is to make sibling nodes in the memory area as 
adjacent as possible, in order to improve the cache hit rate. However, the Bw-Tree also does 
not apply to multidimensional. 

Multidimensional indexing has two main access models, one for point access and the other 
for spatial access [25]. In this paper, multi-dimensional refers to the point access, such as 
[26-28] , and other work are multidimensional query indexing problems, as well as in recent 
years[29-32]. However, these researches have nothing to do with this paper, we will not 
repeat. 

3. Indexing Structure Design 
Reviewing previous work, many scholars have made useful researches for the efficient index 
structure. However, there are few researches on multidimensional index structure. In this 
paper, we proposed a new index structure named Multidimensional Range Indexing-Tree 
(MRI-Tree), correspondingly its one-dimensional version named RI-Tree, and its version with 
categories indexing is named Multidimensional Categorical Range Aggregation Indexing 
-Tree (MCRI-Tree). The MRI-Tree can perform multidimensional query and update 
operations at O(1) I/Os. The MCRI-Tree adds an aggregation index to support MCRA query. 
In this section, we will first introduce MRI-Tree and then MCRI-Tree. 

3.1 MRI-Tree 
The MRI-Tree is a memory-disk hybrid index structure, whose memory layer to store the 
index structure, and the disk layer to store the leaf nodes. Fig. 1 has shown a two-dimensional 
MRI-Tree. The white color is a dimension, the gray color is another dimension, and the page 
stores specific data points. Wherein each data point satisfies an interval corresponding to a 
node whose value corresponds to all the corresponding dimensions on the path from its parent 
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node to the root node. Formally, suppose the total dimension be  represents a node with a 
label of  and a dimension of  , and the interval that is saved in the node is set to [ ]. 
Let  be the root node and  be the child nodes of .  is the page that  stores in 
external memory when  is a leaf node. It is a sequence of up to  mappings from a  

 
Fig. 1. An Example of the MRI-Tree 

 
d-dimensional vector to a value of any type. We define  as the key of 
the  mapping pair stored in the sequence , and  is corresponding value. The path 
from  to  is defined as the sequence . The definition operator 

 is the dimension segmented by the node , that is, . 
In addition, the left child node of  is denoted . If the left child of  does not exist, 

. The corresponding the right child node of  is denoted , then the MRI-Tree 
can be defined as follows: 
Definition 3 Properties of the MRI-Tree: In the MRI-Tree, for each value   of each vector 

 in each page  and the path sequence  corresponding to , satisfy the following 
equation: 
 ( )  . .   ( ) , [ , ]

k k

j
k i k ik c cc S s t Dim c j p s e∀ ∈ = ∈   (3) 

Furthermore, for all , the MRI-Tree also has the following properties: 
• If , then . 
• . Specifically, the minimum value of the range of the right child 

node is not less than the maximum value of the range of the left child node. This interval 
may be referred to as the middle interval of the node. 

• , In any case, . In other words, 
the left and right child nodes should be in different dimensions with the father node, and 
the dimensions of the left and right child nodes are the same. 

• , moreover, . That is, each page  must correspond to a page  in 
memory, and   must be located in a sub-Tree where  is the root node. 
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Fig. 1 illustrates an example, the data point (36,7) in the page corresponds to the first 
dimension of the interval [3, 155] and [36, 75], the second dimension of the interval [7, 122]. 
Obviously, the value 36 of the first dimension and the value 7 of the second dimension 
respectively fall within the three intervals, and other properties are also satisfied. 
Theorem 1 The number of nodes in the MRI-Tree: Let  be the total number of elements.  is 
the maximum number of elements that can be stored in a page, then the number of nodes in an 
MRI-Tree memory is . 
Proof  According to the properties of MRI-Tree, a page corresponds to a node, since the 
number of pages is , the number of leaf nodes is . It can be seen that the total 
number of nodes is   based on the binary-tree, that is .     ■ 

 
According to the properties of binary-tree and the Theorem 1, the average height of an 
MRI-Tree is . Assuming that the key of the data point to be operated is 

, the basic operation of the MRI-Tree is as follows: 
Query. According to the Definition 3, start from the root node . Suppose the current query 
node is , let the current node become , otherwise, if 

, the node becomes , if not, the return does not exist. Then loop 

Algorithm 1  MRIInsert 
Input:  
     iN  : The current node, q : The key to wait for the inserted element, V : The value of the element 

to be inserted, ( )iH N : The height of node iN . 
Output: 
      The node after the element is inserted. If the insertion fails,(due to the existence of the key, the 

lack of space, etc.) then return φ . 
1: if iN is the leaf node then 
2:      if | | 1+ >iP B then 
3:           MRISplit( iN ) 
4:          ( ) ( ) 1← +i iH N H N   
5:           return   MRISplit( iN , q ,V ) 
6:      else 
7:            ( )← →i ip p q V   
8:           return  iN  
9:      end if 

10: end if 
11: if ( ( )) ( ( )) ( ) ( )max ( ) ( [ , ] ( ( )) ( ( )))≤ ∨ ∈ ∧ >

i i i iDim L N i Dim L N L N R N i iq L N q e s H L N H R N  then 

12:  Re ( ( ), , )← isult MRIIsert L N q V   
13:      ( ) ( ( )) 1← +i iH N H L N   
14:       retrun   Re sult   
15: else 
16:       Re ( ( ), , )← isult MRIInsert R N q V   
17:        ( ) ( ( )) 1← +i iH N H R N   
18:        retrun   Re sult  
19: end if 
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executes the above steps until . Meanwhile, in the  to find whether the existence 
of ,  if there is, then return the corresponding value of , if not, return the corresponding flag. 
It can be seen that the operation is mainly carried out in memory, only need to read 1 page in 
external memory to find leaf node, so the time complexity of I/O is O(1). 
 
Insertion. Algorithm 1 describes this recursive operation. Let  be the value corresponding 
to . From the root node , the relationship between  and the intervals , 

 should be judged for each operation, which is similar to the query operation. If 
, recursively insert the element into the left sub-tree. If 

, the elements should be recursively inserted into the right sub-tree. If 
neither is true, we need to consider whether this node is placed in the left sub-tree or right 
sub-tree. If  or , that is not in the middle interval, 
then directly insert into the corresponding sub-tree. If the nodes are in the middle, we need the 
right approach to prevent sub-tree tilting. Here, we calculate and compare the heights of the 
left and right sub-tree, and put the node into the lower sub-tree, so as to achieve a balance-tree. 
If only one is true, it can be placed directly on the other side. 
Example. To illustrate, we assume that point P (34,118) is inserted into the MRI-Tree, which 
can be seen in Figure 1. According to Algorithm 1, first, determine whether the first dimension 
of point P (34,118) is within the root node N (3,155). If so, continue, and then determine 
which child node P belongs to, and the second dimension (34,118) of P is located at (7,122). 
Next, determine where P should be inserted into the page, and we find that 34 does not belong 
to any one but is located in the middle interval by comparison with the range of values of the 
left and right leaf nodes. In order to insert P into the page, we need to compare the size of the 
corresponding page of each leaf node to obtain a smaller one. In order to balance the tree, we 
insert P into Page2, and finally update the value range of the corresponding node of the page. 
Replace (36,75) with (34,75).  

 
 If the current node is a leaf node, insert the element into the page , that is, read the page 

and place the element at the end of the page, and then write the page. The time complexity of 

Algorithm 2: MRISplit 

Input:  iN : The current node 
1: begin 
2:      If id  has the same value, remove id  in the total dimension. 
3:      ( )←f id f N  

4:      Using the quick select algorithm, and select the median M  of all fd
ikp stored in iP   

5:      (( ) | )fd
left ik ik ikVP p p M→← <   

6:      (( ) | )>→← fd
right ik ik ikVP p p M  

7:      [min ,max ]← f fd d
left left leftN p p  

8:      [min ,max ]← f fd d
right right rightN p p  

9:      ( ) ←i leftL N N   
10:      ( ) ←i rightR N N   
11: end 
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reading and writing a page is O(B). If the size of the inserted page exceeds . First, we should 
split operation, and then insert into the corresponding sub-node. The split operation has shown 
in Algorithm 2. It is similar to a quick selection algorithm, to find the median of a dimension, 
and to place elements less than it to the left, larger than it to the right.  

In Algorithm 2, a dimension selection function   is introduced, which inputs the 
current node  and returns a dimension  and . This function for 
different scenarios can have different ways. However, we need to avoid the case that all the 
data points have the same value for the selected dimension.  If the dimension has the same 
value, the split operation will not be executed. Therefore, it is removed from the candidate 
dimension at the beginning of the algorithm. In general, the  can be taken as 

. Concretely speaking, take the current node's 
dimension number plus one and then take the remainder of , and the remainder plus one to 
ensure that it falls into the interval [1, d]. Thus it can be seen that this process only needs to be 
read once and written twice, and the most consuming is the quick selection operation, whose 
time complexity is O(B). Therefore, the time complexity of the entire split operation is O(B), 
the I/O complexity is O(1). 

Finally, no matter which sub-tree is placed, after the recursive insertion of this layer is 
completed, the current node's range needs to be updated to maintain that it still satisfies the 
properties of the MRI-Tree. Owing to at most one split operation, one read operation and one 
write operation, the I/O complexity of the entire insertion operation is O(1) and the time 
complexity is . 
Deletion. The delete operation of MRI-Tree is similar to the insertion operation, specifically, 
recursively find the page and the node where the element is located, then removing the element 
from the page. After deletion, if the number of elements in a sub-tree is less than a certain 
threshold, all the pages in the sub-tree are merged. The complexity of this operation is the 
same as the insertion operation. 

3.2 The MCRI-Tree 
The MRI-Tree introduced in the previous section is a special case of the MCRI-Tree that does 
not contain an aggregation index. However, the MCRI-Tree needs to provide an aggregation 
function . In this section, the aggregation function is defined as COUNT in the SQL. 

Formally, the MCRI-Tree is a -Tree with an aggregation result mapping sequence  on 
each node .  In addition, there is a bitmap  =  to hold the various 
categories in the grouping column. Assuming that the number of categories is C, and each 
element in the sequence  can be denoted by . i.e.,  represents the 
aggregation result of the  categories at the -th node, meanwhile, , .  

Example. To illustrate, a three-dimensional MRCI-tree is established based on Table 1, as 
shown in Fig. 2. The nodes of each layer correspond to different dimensions. (i.e., entry-time, 
age and salary from top to bottom).  Here, we assume that the dimension of grouping statistics 
is the city column. In other words, we need to group by the city column. From table 1, we can 
see that there are three categories of city columns, i.e., BJ, MH, NYC. To keep the names of the 
categories in order, we add the corresponding bitmap  at each node. For instance, BJ, 
MH and NYC at node 4N  are arranged and saved in the bitmap. In addition, there is an 
aggregation mapping sequence  on each node  for counting statistics of various 
categories, and the counting results correspond to the names of each category. e.g., for 2N , BJ, 
MH and NYC are counted as 2, 2, 1 respectively. 
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The basic operations of MCRI-Tree are similar to MRI-Tree. However, it involves the issue 
of updating the aggregation index. In addition, the most important is how to quickly respond to 
the range aggregation query and the category range aggregation query. The following two 
subsections will introduce the basic operations and aggregation queries, respectively. The last 
two subsections will analyze MCRI-Tree's I/O efficiency and internal and external memory 
space efficiency. 

 
Fig. 2. An Example of the MRCI-Tree 

3.2.1 The Basic Operations 
Compared to the MRI-Tree, only the update operation has changed, so we only describe how 
to update the aggregation index. 
Insertion. In MRI-Tree, the height of the node is updated after the insertion operation returns. 
At the same time, the aggregation result is updated, and add 1 to the count of the category 
corresponding to the newly inserted element. If the category of the newly inserted elements 
does not exist, the aggregation result is inserted into the category according to the category 
sequence number, and the count can be set to 1.  In addition, through the dimensional bitmap, 
do OR operation to the child node's bitmap, in any case,  the time complexity of updating for 
the aggregation result sequence is O(C). 
Deletion. Contrast to the insertion operation, the category counts of the deleted elements  
subtract 1. In the case of 0, it can be removed from the aggregation result sequence. In the case 
of merge, we only need to free up the memory space of the aggregation sequence of deleted 
nodes. 

3.2.2 The Aggregation Query 
Algorithm 3 describes range aggregation query. q is the interval to be queried, and satisfies 

 . In short, each dimension is an interval,  can also be called the query 
hypercube. First, the relationship between  and  should be determined. If there is 
no intersection, return directly to the empty set. If , return the corresponding to 
aggregation result of this node.  
Example. As can be seen from Fig. 2, the aggregation results of corresponding dimensions are 
saved at each node in MCRI-Tree. Suppose our query dimensions are restricted to Entry_time 
and Age. The grouping dimension selects the city column and executes the following SQL. 
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SELECT COUNT(*) FROM Table 1. 
WHERE Entry_time > '2010/6' AND Age =< '35' 
GROUP BY City 

We can get the answer in the aggregation result of node 2N . 
If  is a leaf node, gather together all the key  corresponding to the values  in , 

falling within  range, using the aggregation function  and then return; otherwise, 
recursively calculate the aggregation result in the left child and right child, and merge the two 
aggregation results, and generate a new sequence. 
 

3.2.3 I/O Complexity Analysis 
First of all, we analyzed the complexity of the MCRI-Tree update operation. From the 
perspective of   I/O efficiency, the complexity of the two update operations is still O(1) relative 
to the MRI-Tree. From the computational time perspective, the time complexity of the two 
operations is changed from   of MRI-Tree to . 
Theorem 2 The I/O complexity of MCRI-Tree is: 

 
1

( ( ) )
d
d

NO d
B

−

  (4) 

Proof   Intuitively, the I/O count is the number of the smallest hypercube of the hypercube to 
be queried "cut" around each point in the page. The condition for the two hypercubes to form a 
cut relationship is that the intersection of the intervals on each dimension is not null, and there 
is at least one dimension where the intersection of the cubes to be inquired and the 
corresponding cube interval of the page is not equal to the interval corresponding to the page. 
Formally, we make the assumption that the hypercube to be queried is 

, and the set of cubes intersecting with the hypercube to be 
queried are shown as follows: 
 ,{ | [1, ],[ , ] [ , ] [1, ],[ ] [ , ] [ , ]}i ij ij j j ij ij j j ij ijI P j d s e s e j d s e s e s eφ= ∀ ∈ ≠ ∧ ∃ ∈ ≠    (5) 

Algorithm 3 MCRIAggregate 
Input: 

iN : The current node, q : Interval to be inquired 
Output: 

        σ ( , )iN q : Aggergation result of q in sub-Tree of node iN  
1: Begin 
2:      if ( )iDim N iq N φ=  then 
3:            return φ   
4:      end if 
5:      if ( )ii Dim NN q⊆  then 
6:                return ( )iA N   
7:       end if 
8:       if  iN  is the leaf node then 
9:           return  σ ( | )ik ikV p q∈   

10:       end if 
11:      return ( ( ), ) ( ( ), )i iMCRIAgg L N q MCRIAgg R N q   
12:  End 
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This set is equivalent to the following set 
 1 2 dI I I    (6) 

Where      | [1, ],[ , ] [ , ] [ , ] [ , ] [ , ]k i ij ij j j ik ik k k ik ikI P j d s e s e s e s e s eφ= ∀ ∈ ≠ ∧ ≠    (7) 

It can be seen that every hypercube in each set of  must intersect the surface of the hypercube 
 in  dimension, otherwise it can not satisfy the condition: 

 [ , ] [ , ] [ , ]ik ik k k ik iks e s e s e≠   (8) 

Therefore, the upper bound of the total number of hypercubes intersecting is 
.  In order to compute , intuitively, it can be calculated from 

the maximum number of cubes in each dimension. The page number of external memory is , 
so the internal nodes split -1 times. Suppose the height of -Tree is uniform, the number of 

splits of each dimension is about , which is obtained the numbers of lines by hyperplane 
cutting the dimension when all other dimensions are fixed. The surface of a dimension of a 
hypercube is a (d-1)-dimensional hypercube. Therefore, the available number of hypercubes is 

. Each of these surfaces has these hypercubes, so the upper bound of the 
total number of hypercubes is .   ■ 

We use one-dimensional and two-dimensional cases to show the correctness of the results: 
• d = 1, the MCRI-Tree aggregation query only needs to read two pages from the external 

memory. Intuitively, each page in which the interval does not intersect, while the query 
range is only a starting and an ending point. In the worst case, the starting point falls 
within the range of a page, and the ending point falls within the interval of another page. 
Therefore, only the two pages can be read, and the results of the other pages are stored in 
the memory node. For , the I/O complexity of MCRI-Tree is O(1). 

• d = 2, each page falls within a two-dimensional interval, and these intervals do not 
intersect with each other. The query interval is a rectangle on   with four edges, each of 
which is a rectangular surface, which can be cut to obtain   rectangles. Intuitively, 
that is,  cut the most rectangular edge to meet eq. (5). 

3.2.4 Space Complexity Analysis 

Owning to the MCRI-tree is a memory-disk hybrid index structure, the memory stores an 
index structure, and the external memory mainly stores a specific data items N. Therefore, the 
size of the external memory occupied by MCRI-tree is O(N), and the index part is equal to the 
number of nodes in the memory.  According to the properties of MRCI-tree, one page 
corresponds to one node. The number of pages is O(N/B), where B is a page size. Therefore, 
the memory occupied by the index part is O(N/B). 

3.3 Summary 
This section mainly presents two new data structures which are MRI-Tree and MCRI-Tree. 
Among them, the MRI-Tree is used for pointing query and various update operations in O(1) 
I/Os. In addition to the features of MRI-Tree, the MCRI-Tree also supports   I/Os, 
and solves the categorical range aggregation query problem. The experimental results will be 
shown in the next section to prove this. 
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4. Experimental Design and Result 

4.1 Experimental Design 
This section will include a number of comparative and confirmatory experiments, which are 
listed below: 
• Compare the efficiency of MCRI-Tree aggregation query to prove its better performance. 

Since the problem of multi-dimensional categorical range aggregation query is a new 
problem in this paper, the categorical range aggregation has only one previous work, the 
contrast experiment is limited to a single-dimensional case. In multi-dimensional cases, 
the space required for aR-Tree index is too large and the query speed is too slow. The 
performance of MCRI-Tree and aR-Tree can not be directly compared in this experiment, 
so we choose MRI-Tree (also known as raw MCRI-Tree) and MCRI-Tree for 
comparison. 

• The memory occupancy of MCRI-Tree is recorded according to the change in the size of 
the dataset and the number of dimensions to verify the correctness of the space 
complexity. 

• The external memory occupancy of MCRI-Tree is recorded according to the change in 
the size of the dataset to verify the correctness of the space complexity. 

The above experiment was carried out on a server equipped with Intel Xeon E5620 @ 2.4GHz 
CPU, which memory size is 32GB, the external memory space uses a Western Digital 7200 
RPM hard drive, the operating system is Windows Server 2012. All experimental code is 
based on C ++ 11 standard, compiled with the Microsoft Visual C ++ 12.0 compiler, and turns 
on the -O2 optimization switch. 

4.1.1 Dataset 
The dataset used in the experiment is divided into two types. First of all, we generated datasets 
where items’ key and weight are uniformly distributed in  between the use of uniform 
distribution generated random positive integer. 

Secondly, we also made an experiment with a real dataset called , which contains 
the daily trading volumes of every stock in the  index from 16 Jan. 2002 to 13 Jan. 
2017. Each stock is a category (i.e., totally b = 500 categories), in which an item is of the form 
(date, open, high, low, close, volume), where date is the items key, and others is its weight. The 
total number N of items (of all stocks) is 1.89 million. The query mainly depends on a given 
parameter  is used to represent each dimension of the query interval accounted for 
the proportion of the size of the entire interval.  

4.1.2 Parameters Set 
 

Table 2. Parameter setting 
Parameter Symbol Range Default 

Category number  (10, 1000) 50 
Dimension number  (2, 10) 2 

Index size  (16, 1024) 512 
Page size  (4, 512) 4KB 

Generate query parameters  (0.1, 0.9) 0.25 
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In this experiment, each index structure consists of four parameters, which are category 
number , dimension number , index size  and page size . In addition, the query 
generation is controlled by the parameter . In particular, when b = 1, it degenerates into a 
general range aggregation query. When d = 1, it degrades to a one-dimensional range 
aggregation query. When  = 1, it degrades to find the global aggregation result. The above 
parameter settings are shown in Table 2. 

4.1.3 Experimental Content 
In summary, this section includes the following experiments: 
• The performance of the CRA query (d=1) is tested by synthetic dataset and the  

dataset. The evaluation indicator is the average elapsed time of each query, and the 
comparison between aBB-Tree and MCRI-Tree is done by adjusting the index size , the 
number of category , parameter , to observe the performance of the two changes. It is 
worth mentioning that, in order to eliminate the disadvantage of aBB-Tree as a data 
structure with only external memory index, the total memory footprint of MCRI-Tree was 
recorded in the comparison experiment, and allocated aBB-Tree equivalent cache to 
cache pages in the external memory. 

• Using synthetic dataset, we tested MCRA query (d>1) performance and compared 
MCRI-Tree  with MRI-Tree. The evaluation indicator is the I/O counts of each query, 
where the average time is not used because the page size is the same and each access unit 
is a page. We adjust , respectively, to observe the performance change of the 
both. 

• Using synthetic dataset, we adjust  to test MCRI-Tree occupancy of internal and 
external memory, and then fix , adjusting , to observe MCRI-Tree performance 
change of memory. 

4.2 Experimental Results 

4.2.1 The CRA Query Experimental Results 
Fig. 3 shows a comparison result of aBB-Tree and MCRI-Tree in CRA query. It can be seen 
that the result of MCRI-Tree is ahead of aBB-Tree in each test. Fig. 3(a) shows the change of 
the query average time with the size of index. It can be seen that the performance  change of 
aBB-Tree and MCRI-Tree is not obvious as the index size grows.  It is because of the scale of 
the experimental data, the height of aBB-Tree  is almost unchanged. However, the 
I/O efficiency of MCRI-Tree is constant O(1), so the performance change of the both are not 
large. Nevertheless, the I/O complexity of MCRI-Tree is lower, so the performance of 
MCRI-Tree nearly doubled than aBB-Tree. Fig. 3(b) shows the change of query time with the 
number of categories . It can be seen that MCRI-Tree always maintains a low level, not 
changing with the number of categories. However, aBB-Tree performance gradually 
deteriorates after the number of categories increases. Although the time complexity of 
aBB-Tree query aggregation result page is O(1), it is actually read an entry of length  
sequentially from the external memory, instead of a real random I/O. The larger the , the 
stronger the amplification effects. Because it is read sequentially, the bottleneck is the seeking 
time. Therefore,  is not a strictly multiple relationship when it increases to a larger size. Fig. 3 
(c) and Fig. 3 (d) show a performance change of . It can be seen that the performance of 
aBB-Tree and MCRI-Tree is obviously improved relative to MRI-Tree based on simple 
sequential scan. Meanwhile, MCRI -Tree continues to maintain a lead performance and the 
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performance of the both does not change with the interval size, which proves theoretically the 
correctness of the I/O efficiency. 
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Fig. 3. Categorical Range Aggregation Query (CRA) performance 
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(c)  Change with parameters                              (d) change with the size of page B                    

Fig. 4. Multi-dimensional Categorical Range Aggregation Query (MCRA) performance 
 

Fig. 4 shows the result of a MCRI-Tree test on a MCRA query, comparing it to MRI-Tree, in 
order to make a reference based on a simple sequential scan method. Here we compared the 
number of I/O directly. Since the index structure of MCRI-Tree and MRI-Tree is the same, we 
just compare I/O time. MCRI-Tree has a lot of superiority when the number of dimensions is 
less than 5, while the performance of MCRI-Tree and MRI-Tree is close at high dimensions. 
According to the I/O efficiency of MCRI-Tree demonstrated in the previous section, 
MCRI-Tree basically degenerates into a sequential scan when d is large, because almost every 
page needs to be read once. The experimental results of adjusting the size of the dataset are 
shown in Fig. 4(b). It can be seen that with the change of the dataset scale, the performance 
change of MCRI-Tree is not obvious. This is because the change in scale is just a slight 
increase in , which is very small when x = 2. 

Fig. 4(c) shows the efficiency change of . MCRI-Tree change is still not obvious, however, 
the change of MRI-Tree is obvious. This is because the performance of MCRI-Tree changes 
little with  when the number of dimensions is small, while the performance of MRI-Tree 
degrades because it is a linear scan. Finally, an experiment to adjust the page size is shown in 
Fig. 4(d), which the number of I/O decreases as the number of pages decreases, but the time of 
a single I/O will increase. 

 

4.2.3 The MCRA Space Efficiency 
Fig. 5 shows the space efficiency experiment of MCRI-Tree, and the memory space 
occupancy of MCRI-Tree is basically a linear function of the data scale. In the case of one 
billion data entries, the memory space occupancy is about 1.5GB. Considering index entries 
are on the order of magnitude, computers are often equipped with high memory capacity. In 
addition, it is also seen that the amount of space occupied by the counter portion is several 
times than the index portion, which also conforms to the spatial complexity analyzed above.  
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Fig. 5. Memory footprint of MCRI-Tree changed with dataset size 
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Fig. 6. External memory footprint of MCRI-Tree changed with dataset size 

 
The experiments of the number of fixed entries, the page occupancy space and the number of 
the change in the dimension are shown in Fig. 6. Due to no change in the page size, resulting in 
a reduction in the number of entries stored per page, the decrease of  leads to the increase of 
O( ), whose relationship is correctly reflected in the figure. Finally, the statistics and 
comparison of external memory space are shown in Fig. 7. It can be seen that MCRI-Tree 
further improves the space utilization of the whole system compared with aBB-Tree. 
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Fig. 7. Memory footprint of MCRI-Tree changed with the dimension 

5. Conclusion 

On the basis of the original aggregation query problem, the past work has proposed categorical 
aggregation query problem, and the corresponding aggregation index structure aBB-Tree is 
proposed to solve the query problem. However, categorical aggregation index has some 
limitations, which can’t execute range aggregation query for multi-dimensional constraints. In 
order to solve this problem, we proposed a new index structure called MCRI-Tree. 
MCRI-Tree is based on the internal and external memory hybrid mechanism, which can 
answer the categorical aggregation query problem in  I/Os, respectively while 
occupying  of memory space and O(N) of the external memory space, where d 
is the number of dimensions, N is the total number of elements, B is the number of elements 
which can be stored in a single disk page. In particular,  = 1, only O(1) I/Os is needed, and 

( )N
BO d  I/Os is only required for  = 2. The result of the experiment proved this conclusion, 

and at the same time proved that space occupied by its internal and external memory was 
acceptable for a system, and illustrated its feasibility. 
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