
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, Feb. 2019 597
Copyright ⓒ 2019 KSII

An Efficient Indexing Structure for
Multidimensional Categorical Range

Aggregation Query

Jian Yang1*, Chongchong Zhao1, Chao Li2, and Chunxiao Xing2
1 School of Computer and Communication Engineering, University of Science and Technology Beijing

Beijing, 100083 - China
2 Research Institute of Information Technology, Tsinghua University

Beijing, 100084 - China
[e-mail: yjian180@gmail.com]

 *Corresponding author: Jian Yang

Received February 15, 2018; revised April 26, 2018; revised July 14, 2018; accepted September 1, 2018;
published February 28, 2019

Abstract

Categorical range aggregation, which is conceptually equivalent to running a range
aggregation query separately on multiple datasets, returns the query result on each dataset. The
challenge is when the number of dataset is as large as hundreds or thousands, it takes a lot of
computation time and I/O. In previous work, only a single dimension of the range restriction
has been solved, and in practice, more applications are being used to calculate multiple range
restriction statistics. We proposed MCRI-Tree, an index structure designed to solve
multi-dimensional categorical range aggregation queries, which can utilize main memory to
maximize the efficiency of CRA queries. Specifically, the MCRI-Tree answers any query in
O(nkn-1) I/Os (where n is the number of dimensions, and k denotes the maximum number of
pages covered in one dimension among all the n dimensions during a query). The practical
efficiency of our technique is demonstrated with extensive experiments.

Keywords: Categorical, Multidimensional Indexing, Query, MCRI-Tree

http://doi.org/10.3837/tiis.2019.02.007 ISSN : 1976-7277

598 Yang et al.: An Efficient Indexing Structure for Multi-dimensional Categorical Range Aggregation Query

1. Introduction

Categorical range aggregation (CRA) is a type of query which can be regarded as the
simultaneous execution of a range aggregation query on multiple datasets, returning a result
for each dataset. This requires a lot of computation time and I/O. Previous work only solved
CRA with single range restriction. However, it is common to calculate statistical data with
multiple range restrictions in modern business management. Let us consider the following
query about empolyees from Table 1.

Table 1. Data samples about empolyee
ID Name Age Sex Status Entry_time Salary Position City

121 Brandon 23 M single 2015/4 50k staff BJ
129 Daphne 27 F single 2016/1 50k staff MH
76 Jeremy 36 M married 2010/7 95k Engineer MH

109 Emily 22 F single 2013/11 65k staff NYC
56 Armand 38 F single 2011/6 90k Manager BJ
43 Leona 46 M married 2010/8 120k Manager NYC
87 Renata 34 F married 2013/5 70k Engineer BJ

132 Norman 28 M married 2016/2 55k staff MH

Now, we give a query:
 : Find the number of employees whose entry_time is after Jun.2013 in each of the city. It
can be expressed in SQL:

 SELECT COUNT(*) FROM Table 1
 WHERE Entry_time > ‘2013/6’
 GROUP BY City

This is a Categorical Range Aggregation Query(CRA). Now, we formally define the
problem.

Definition 1 Categorical Range Aggregation Query(CRA): Given a dataset denoted by D, a
query range , and an aggregation function . The result of CRA is defined as:
 _ (_) _{ (())}category column f aggregation column range column rresult Ģ Ds ∈= (1)

In the above query, the restriction has only one column, however, in a real system, the user
does not satisfy the query under a single column restriction, and usually involves multiple
columns. Let us continue to consider the following query about Table 1.

: Find the number of employees whose entry_time is after June.2013, the salary is higher
than 70k and the age less than 35 in each of the city.

It can be expressed in SQL:

SELECT COUNT(*) FROM Table 1
WHERE Entry_time > '2013/6' AND Salary > '70k' AND Age < '35'

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 599

GROUP BY City

Compared with the previous queries on categorical range aggregation, has a key

difference: This query needs to satisfy multiple range restrictions, not just one. We increase
the number of constraints and make queries more flexible and useful. Meanwhile, calculate
statistics according to the category of each data item.

In this paper, we will define this query as Multidimensional Categorical Range Aggregation
Query, which can be formally defined as follows:

Definition 2 Multidimensional Categorical Range Aggregation Query (MCRA): Given a
relation , a multidimensional query range , and an aggregation function , the
result of MCRA query is defined as:

1 1_ (_){ (())}
n ncategory column f aggregation column RC r RC rresult Ģ Ds ∈ ∧ ∧ ∈=

 (2)

It can be seen that CRA is a special case of MCRA in the case that the query range is
single-dimension. In CRA and MCRA problems, the columns can be divided into three types:
• Category column: The query results are grouped by these columns, which has a known

limited range of values. For instance, the city in Table 1 is a category column. In [1],
this column is also called a color column.

• Range column: The result of the aggregation comes from the projections of the values
of these columns, in other words, the columns will be indexed to speed up the query.
Such as the age is the range column in Table 1.

• Aggregation column: The values will be aggregated with a specific aggregation
function. The aggregation functions are usually SUM, COUNT, AVERAGE, MAX,
MIN (and so on).

When create an index structure to solve the MCRA problems, we need to assign each field
separately to one of these three columns. However, there is more than one type for each
column in the table, which can be multiple. For example, the salary column can be either a
range column or a category column, and so on.

1.2 Application and Motivation
Multidimensional Categorical Range Aggregation is motivated by the fact that, in applications
where data is naturally divided into categories, a user can limit the attributes in multiple ranges
based on their interests.

Queries like report statistics about employees in the business and are important for
several reasons. First, the statistics provide valuable information for a company, especially for
human resource management(HRM). For instance, HRM can develop a flexible pay and
benefit framework based on the differences in regional development. Second, the statistics
play an important role in HRM, especially for large multinationals in terms of staffing
structure in different regions, as it allows the HR to conduct talented people in multiple
dimensions screening. For this purpose, it does matter whether the collection of intersections
return the answer effectively. The number of possible sets is huge, such as a group of
candidates with special job skills or education levels, age, marital status, years of work,
hobbies and so on. Third, the statistics also provide the factual basis for enterprises to establish
a talent database, and the HR can establish a talent tracking mechanism through the results of
the inquiry.

Applications similar to the previous one are abundant in practice. For instance, consider a
tax database, where each category is a city, an item is the amount of tax paid by an individual
in that city between January 1, 2016 and December 31, 2016. Then we can use the

600 Yang et al.: An Efficient Indexing Structure for Multi-dimensional Categorical Range Aggregation Query

multi-dimensional categorical range count query to “find out how many people will pay at
least 8000 RMB in Beijing, Shanghai, Guangzhou and Shenzhen for the period January 1,
2016 to December 31, 2016, respectively.”

In spite of its vast importance in reality and fundamental nature in database systems,
surprisingly, the MCRA problem has not been studied before to our knowledge. Motivated by
[2], we present the first work to address MCRA problem. It should be noted that the category
range aggregation problems mentioned in this paper and the categorical data [3,4] are two
different problems.

1.3 Contributions and Organization
Our main contributions can be summarized as follows:
• We describe an internal and external memory hybrid index structure that addresses

MCRA problem. This hybrid index structure makes it much easier to build complex
indexes than the disk pages and the cache memory data structures. Compared to the
memory index structure, it can maximize memory savings, and store more data.

• We strictly certify the MCRI-tree's time and space complexity, and effectively answer
any query even in the worst case. This feature is especially important in the environment
where it is crucial to impose a hard bound on the maximum response.

• We did extensive experiments using synthetic and practical datasets to demonstrate that
MCRI-Tree is much more efficient at query than existing solutions.

The rest of the paper is organized as follows. Section 2 describes the work that has been
done to solve this problem in two special cases (One-dimensional and unclassified) and other
related index techniques. In section 3, we proposed a data structure named MCRI-Tree, which
can make more use of memory space to further improve I/O efficiency to solve MCRA
problem. Section 4 validates the practical efficiency of our techniques with experiments.
Finally, Section 5 concludes this paper.

2. Related Work
The earliest database index technology was B-Tree, which was an external memory data
structure used to solve information index, such as file name in file system. After the B + tree
proposed, all the data is stored in the leaf node, and the index structure is located at the
non-leaf nodes. This technology used to accelerate range query [5]. Due to the superior
randomness of B + trees and the performance of range queries, it has become the technology
of choice for all commercial databases, even for distributed databases [6]. There are many
literatures on B + tree optimization, such as concurrency control [7], targeted optimization of
new hardware like Solid State Drive (SSD) [8,9,10,11] and so on.

Range aggregation query is an old problem. For example, this problem can be solved by
aB-Tree [12] in the time of . Y.Tao et al[2] proposed the bundled range aggregation
problem, which is also the problem of categorical range aggregation in this paper. And they
proposed an aBB-Tree to solve this problem. It's core idea is to create an aggregation result
index page on a non-leaf node for each category. The index page records each sub-node of this
non-leaf node in each category for the result of the gathering. The results of each category
corresponding to the same child node are stored in contiguous positions. In order to support
categorical range aggregation query, the aBB-Tree is modified based on aB-Tree as follows.
First, change the index result to be stored in a new page. In order to reduce the number of I/O,
it is optimized to be arranged in the order of child nodes and incrementally stores the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 601

aggregation result of each child node so that it can be read twice to calculate the aggregation
result of the middle child nodes, then reduce to I/Os. Second, in order to improve
the uniform I/O of the update operation, one patch is added for each non-leaf node page so that
the original I/Os is reduced to I/Os.

In the case of multi-dimensional, Papadias et al. proposed aR-Tree [13] to solve the problem
of multi-dimensional range aggregation (that is, the special case of multi-dimensional range
categorical aggregation query proposed in this paper with only one category). The aR-Tree
can be understood as an index structure for storing aggregated values in each node of the
R-Tree. Since aggregation results only require O(1) space for storage without classification,
the aR-Tree can answer the result of a multi-dimensional aggregation query within

s.
Although the aBB-Tree efficiently solves the CRA problem, there is still room for

improvement. Initially, it is applied only to solving CRA problem, but can’t for MCRA
problem. In practical systems, the scope of the query is often more than one dimension,
compared with the Multi-dimensional categorical range aggregation query more meaningful.
Furthermore, because its aggregation result pages are arranged according to the order of the
first leaf nodes and then sorted according to the order of the first leaf node. If the new category
is dynamically added during the update, the aggregation result page of the whole tree needs to
be updated, which is luxurious. In addition, the aR-Tree can not be directly extended from
multi-dimensional range query to support multi-dimensional categorical range query.

As mentioned above, existing aggregation indexes currently have some problems, including
the inability to efficiently solve MCRA problem, and inability to dynamically increase the
categories, and the low utilization of space. In order to overcome these bottlenecks, the most
intuitive and natural idea is to put the aggregation result page in memory. Driven by Moore's
Law, the memory price is getting lower and lower, and now the PC usually has more than 4G
of memory. Therefore, it is less costly for the aggregation results and non-leaf nodes stored in
memory. When the scale of data is within a certain range, it is possible to store non-leaf nodes
in memory. In this case, the memory read and CPU processing time should be reduced as much
as possible to prevent bottlenecks. In order to reduce the memory read time, we should make
full use of the CPU internal cache[14]. In general, the size of a single node for B-Tree and
R-Tree is about 4KB, and the total size of the cache is only a few MB. Without proper
optimization, the efficiency of these index structures will be reduced at the cache level.

Starting with B-Tree, people have already used cache to temporarily store pages in memory,
which greatly reduces I/O. The Buffer-Tree[15,16] is the first index structure to have a
separate cache on each node, which collecting small-scale written operation and the contents
of cache will be written back to the node when the cache space of node is full. But doing this
does not dynamic enough, it requires large cache space, and few other nodes are rarely written.
Collecting the cache not only takes up memory but also has a negative impact on query
performance. Therefore, some scholars have proposed LA-Tree[17], which can better adapt to
different loads than Buffer-Tree. As mentioned earlier, this idea has also been adopted in the
aBB-Tree to reduce the update overhead. In addition, the most representative work are
CSS-Tree [14] and CSB+-Tree [18]. The idea of CSS-Tree is to maximize the cache hits as
much as possible so that the nodes on the route traversing the B+-Tree are in the same or
adjacent memory area. However, the CSS-Tree does not support the dynamic update of the
data. In addition, lower space utilization is caused by stored pointers of child nodes. The
CSB+-Tree reduces the number of pointers to one by placing the memory area of the child
node of the same node in the same area. Due to the child nodes in a region, the cost of updating

602 Yang et al.: An Efficient Indexing Structure for Multi-dimensional Categorical Range Aggregation Query

operations greatly reduced. However, this design led to a decreace in search performance of
CSB+-Tree relative to CSS-Tree. In short, the performance of CSS-Tree and CSB+-Tree
relative to B+-Tree has greatly improved. However, their optimizations are for
one-dimensional keys, and none of them can be directly extended to multidimensional.

Many scholars have also studied the new index structure, such as LSM-Tree [19], Fraction
Tree [20,21] and FD-Tree [22]. Their main idea is to place part of the index structure in high
speed but expensive storage media, such as non-volatile memory, and other new hardware,
and the other part is placed in slow speed but inexpensive storage media, such as a hard disk
drive (HDD). Also worth mentioning is the bLSM-Tree[23], which uses Bloom Filter
technology to make a preliminary determination of the existence of data. Using this technique,
hot and cold separation can be achieved by storing the data with higher access frequency (ie,
“hot” data) and the data with lower access frequency (ie, “cold” data) separately in different
media. For each query, first of all, check the hot data area, and then check the cold data area.
We can easily determine whether the data exists in the hot area, which greatly speeds up the
query. However, neither Fractional Cascading nor Bloom Filter is suitable for
multi-dimensional situations and can not be used as multi-dimensional index.

In recent years, with the popularity of solid state drives (SSDs), many scholars have done a
great deal of researches to optimize the performance of index structures on these new
hardware. Such as Bw-Tree [24], which sets the conventional node in memory. In addition, it
sets aside a region used to cache the operation of the node. This kind of caching mechanism
has two roles in Bw-Tree. The first is to reduce the number of memory written because the area
can be cached without swapped. The second is to make sibling nodes in the memory area as
adjacent as possible, in order to improve the cache hit rate. However, the Bw-Tree also does
not apply to multidimensional.

Multidimensional indexing has two main access models, one for point access and the other
for spatial access [25]. In this paper, multi-dimensional refers to the point access, such as
[26-28] , and other work are multidimensional query indexing problems, as well as in recent
years[29-32]. However, these researches have nothing to do with this paper, we will not
repeat.

3. Indexing Structure Design
Reviewing previous work, many scholars have made useful researches for the efficient index
structure. However, there are few researches on multidimensional index structure. In this
paper, we proposed a new index structure named Multidimensional Range Indexing-Tree
(MRI-Tree), correspondingly its one-dimensional version named RI-Tree, and its version with
categories indexing is named Multidimensional Categorical Range Aggregation Indexing
-Tree (MCRI-Tree). The MRI-Tree can perform multidimensional query and update
operations at O(1) I/Os. The MCRI-Tree adds an aggregation index to support MCRA query.
In this section, we will first introduce MRI-Tree and then MCRI-Tree.

3.1 MRI-Tree
The MRI-Tree is a memory-disk hybrid index structure, whose memory layer to store the
index structure, and the disk layer to store the leaf nodes. Fig. 1 has shown a two-dimensional
MRI-Tree. The white color is a dimension, the gray color is another dimension, and the page
stores specific data points. Wherein each data point satisfies an interval corresponding to a
node whose value corresponds to all the corresponding dimensions on the path from its parent

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 603

node to the root node. Formally, suppose the total dimension be represents a node with a
label of and a dimension of , and the interval that is saved in the node is set to [].
Let be the root node and be the child nodes of . is the page that stores in
external memory when is a leaf node. It is a sequence of up to mappings from a

Fig. 1. An Example of the MRI-Tree

d-dimensional vector to a value of any type. We define as the key of
the mapping pair stored in the sequence , and is corresponding value. The path
from to is defined as the sequence . The definition operator

 is the dimension segmented by the node , that is, .
In addition, the left child node of is denoted . If the left child of does not exist,

. The corresponding the right child node of is denoted , then the MRI-Tree
can be defined as follows:
Definition 3 Properties of the MRI-Tree: In the MRI-Tree, for each value of each vector

 in each page and the path sequence corresponding to , satisfy the following
equation:
 () . . () , [,]

k k

j
k i k ik c cc S s t Dim c j p s e∀ ∈ = ∈ (3)

Furthermore, for all , the MRI-Tree also has the following properties:
• If , then .
• . Specifically, the minimum value of the range of the right child

node is not less than the maximum value of the range of the left child node. This interval
may be referred to as the middle interval of the node.

• , In any case, . In other words,
the left and right child nodes should be in different dimensions with the father node, and
the dimensions of the left and right child nodes are the same.

• , moreover, . That is, each page must correspond to a page in
memory, and must be located in a sub-Tree where is the root node.

604 Yang et al.: An Efficient Indexing Structure for Multi-dimensional Categorical Range Aggregation Query

Fig. 1 illustrates an example, the data point (36,7) in the page corresponds to the first
dimension of the interval [3, 155] and [36, 75], the second dimension of the interval [7, 122].
Obviously, the value 36 of the first dimension and the value 7 of the second dimension
respectively fall within the three intervals, and other properties are also satisfied.
Theorem 1 The number of nodes in the MRI-Tree: Let be the total number of elements. is
the maximum number of elements that can be stored in a page, then the number of nodes in an
MRI-Tree memory is .
Proof According to the properties of MRI-Tree, a page corresponds to a node, since the
number of pages is , the number of leaf nodes is . It can be seen that the total
number of nodes is based on the binary-tree, that is . ■

According to the properties of binary-tree and the Theorem 1, the average height of an
MRI-Tree is . Assuming that the key of the data point to be operated is

, the basic operation of the MRI-Tree is as follows:
Query. According to the Definition 3, start from the root node . Suppose the current query
node is , let the current node become , otherwise, if

, the node becomes , if not, the return does not exist. Then loop

Algorithm 1 MRIInsert
Input:
 iN : The current node, q : The key to wait for the inserted element, V : The value of the element

to be inserted, ()iH N : The height of node iN .
Output:
 The node after the element is inserted. If the insertion fails,(due to the existence of the key, the

lack of space, etc.) then return φ .
1: if iN is the leaf node then
2: if | | 1+ >iP B then
3: MRISplit(iN)
4: () () 1← +i iH N H N
5: return MRISplit(iN , q ,V)
6: else
7: ()← →i ip p q V
8: return iN
9: end if

10: end if
11: if (()) (()) () ()max () ([,] (()) (()))≤ ∨ ∈ ∧ >

i i i iDim L N i Dim L N L N R N i iq L N q e s H L N H R N then

12: Re ((), ,)← isult MRIIsert L N q V
13: () (()) 1← +i iH N H L N
14: retrun Re sult
15: else
16: Re ((), ,)← isult MRIInsert R N q V
17: () (()) 1← +i iH N H R N
18: retrun Re sult
19: end if

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 605

executes the above steps until . Meanwhile, in the to find whether the existence
of , if there is, then return the corresponding value of , if not, return the corresponding flag.
It can be seen that the operation is mainly carried out in memory, only need to read 1 page in
external memory to find leaf node, so the time complexity of I/O is O(1).

Insertion. Algorithm 1 describes this recursive operation. Let be the value corresponding
to . From the root node , the relationship between and the intervals ,

 should be judged for each operation, which is similar to the query operation. If
, recursively insert the element into the left sub-tree. If

, the elements should be recursively inserted into the right sub-tree. If
neither is true, we need to consider whether this node is placed in the left sub-tree or right
sub-tree. If or , that is not in the middle interval,
then directly insert into the corresponding sub-tree. If the nodes are in the middle, we need the
right approach to prevent sub-tree tilting. Here, we calculate and compare the heights of the
left and right sub-tree, and put the node into the lower sub-tree, so as to achieve a balance-tree.
If only one is true, it can be placed directly on the other side.
Example. To illustrate, we assume that point P (34,118) is inserted into the MRI-Tree, which
can be seen in Figure 1. According to Algorithm 1, first, determine whether the first dimension
of point P (34,118) is within the root node N (3,155). If so, continue, and then determine
which child node P belongs to, and the second dimension (34,118) of P is located at (7,122).
Next, determine where P should be inserted into the page, and we find that 34 does not belong
to any one but is located in the middle interval by comparison with the range of values of the
left and right leaf nodes. In order to insert P into the page, we need to compare the size of the
corresponding page of each leaf node to obtain a smaller one. In order to balance the tree, we
insert P into Page2, and finally update the value range of the corresponding node of the page.
Replace (36,75) with (34,75).

 If the current node is a leaf node, insert the element into the page , that is, read the page

and place the element at the end of the page, and then write the page. The time complexity of

Algorithm 2: MRISplit

Input: iN : The current node
1: begin
2: If id has the same value, remove id in the total dimension.
3: ()←f id f N

4: Using the quick select algorithm, and select the median M of all fd
ikp stored in iP

5: (() |)fd
left ik ik ikVP p p M→← <

6: (() |)>→← fd
right ik ik ikVP p p M

7: [min ,max]← f fd d
left left leftN p p

8: [min ,max]← f fd d
right right rightN p p

9: () ←i leftL N N
10: () ←i rightR N N
11: end

606 Yang et al.: An Efficient Indexing Structure for Multi-dimensional Categorical Range Aggregation Query

reading and writing a page is O(B). If the size of the inserted page exceeds . First, we should
split operation, and then insert into the corresponding sub-node. The split operation has shown
in Algorithm 2. It is similar to a quick selection algorithm, to find the median of a dimension,
and to place elements less than it to the left, larger than it to the right.

In Algorithm 2, a dimension selection function is introduced, which inputs the
current node and returns a dimension and . This function for
different scenarios can have different ways. However, we need to avoid the case that all the
data points have the same value for the selected dimension. If the dimension has the same
value, the split operation will not be executed. Therefore, it is removed from the candidate
dimension at the beginning of the algorithm. In general, the can be taken as

. Concretely speaking, take the current node's
dimension number plus one and then take the remainder of , and the remainder plus one to
ensure that it falls into the interval [1, d]. Thus it can be seen that this process only needs to be
read once and written twice, and the most consuming is the quick selection operation, whose
time complexity is O(B). Therefore, the time complexity of the entire split operation is O(B),
the I/O complexity is O(1).

Finally, no matter which sub-tree is placed, after the recursive insertion of this layer is
completed, the current node's range needs to be updated to maintain that it still satisfies the
properties of the MRI-Tree. Owing to at most one split operation, one read operation and one
write operation, the I/O complexity of the entire insertion operation is O(1) and the time
complexity is .
Deletion. The delete operation of MRI-Tree is similar to the insertion operation, specifically,
recursively find the page and the node where the element is located, then removing the element
from the page. After deletion, if the number of elements in a sub-tree is less than a certain
threshold, all the pages in the sub-tree are merged. The complexity of this operation is the
same as the insertion operation.

3.2 The MCRI-Tree
The MRI-Tree introduced in the previous section is a special case of the MCRI-Tree that does
not contain an aggregation index. However, the MCRI-Tree needs to provide an aggregation
function . In this section, the aggregation function is defined as COUNT in the SQL.

Formally, the MCRI-Tree is a -Tree with an aggregation result mapping sequence on
each node . In addition, there is a bitmap = to hold the various
categories in the grouping column. Assuming that the number of categories is C, and each
element in the sequence can be denoted by . i.e., represents the
aggregation result of the categories at the -th node, meanwhile, , .

Example. To illustrate, a three-dimensional MRCI-tree is established based on Table 1, as
shown in Fig. 2. The nodes of each layer correspond to different dimensions. (i.e., entry-time,
age and salary from top to bottom). Here, we assume that the dimension of grouping statistics
is the city column. In other words, we need to group by the city column. From table 1, we can
see that there are three categories of city columns, i.e., BJ, MH, NYC. To keep the names of the
categories in order, we add the corresponding bitmap at each node. For instance, BJ,
MH and NYC at node 4N are arranged and saved in the bitmap. In addition, there is an
aggregation mapping sequence on each node for counting statistics of various
categories, and the counting results correspond to the names of each category. e.g., for 2N , BJ,
MH and NYC are counted as 2, 2, 1 respectively.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 607

The basic operations of MCRI-Tree are similar to MRI-Tree. However, it involves the issue
of updating the aggregation index. In addition, the most important is how to quickly respond to
the range aggregation query and the category range aggregation query. The following two
subsections will introduce the basic operations and aggregation queries, respectively. The last
two subsections will analyze MCRI-Tree's I/O efficiency and internal and external memory
space efficiency.

Fig. 2. An Example of the MRCI-Tree

3.2.1 The Basic Operations
Compared to the MRI-Tree, only the update operation has changed, so we only describe how
to update the aggregation index.
Insertion. In MRI-Tree, the height of the node is updated after the insertion operation returns.
At the same time, the aggregation result is updated, and add 1 to the count of the category
corresponding to the newly inserted element. If the category of the newly inserted elements
does not exist, the aggregation result is inserted into the category according to the category
sequence number, and the count can be set to 1. In addition, through the dimensional bitmap,
do OR operation to the child node's bitmap, in any case, the time complexity of updating for
the aggregation result sequence is O(C).
Deletion. Contrast to the insertion operation, the category counts of the deleted elements
subtract 1. In the case of 0, it can be removed from the aggregation result sequence. In the case
of merge, we only need to free up the memory space of the aggregation sequence of deleted
nodes.

3.2.2 The Aggregation Query
Algorithm 3 describes range aggregation query. q is the interval to be queried, and satisfies

 . In short, each dimension is an interval, can also be called the query
hypercube. First, the relationship between and should be determined. If there is
no intersection, return directly to the empty set. If , return the corresponding to
aggregation result of this node.
Example. As can be seen from Fig. 2, the aggregation results of corresponding dimensions are
saved at each node in MCRI-Tree. Suppose our query dimensions are restricted to Entry_time
and Age. The grouping dimension selects the city column and executes the following SQL.

608 Yang et al.: An Efficient Indexing Structure for Multi-dimensional Categorical Range Aggregation Query

SELECT COUNT(*) FROM Table 1.
WHERE Entry_time > '2010/6' AND Age =< '35'
GROUP BY City

We can get the answer in the aggregation result of node 2N .
If is a leaf node, gather together all the key corresponding to the values in ,

falling within range, using the aggregation function and then return; otherwise,
recursively calculate the aggregation result in the left child and right child, and merge the two
aggregation results, and generate a new sequence.

3.2.3 I/O Complexity Analysis
First of all, we analyzed the complexity of the MCRI-Tree update operation. From the
perspective of I/O efficiency, the complexity of the two update operations is still O(1) relative
to the MRI-Tree. From the computational time perspective, the time complexity of the two
operations is changed from of MRI-Tree to .
Theorem 2 The I/O complexity of MCRI-Tree is:

1

(())
d
d

NO d
B

−

 (4)

Proof Intuitively, the I/O count is the number of the smallest hypercube of the hypercube to
be queried "cut" around each point in the page. The condition for the two hypercubes to form a
cut relationship is that the intersection of the intervals on each dimension is not null, and there
is at least one dimension where the intersection of the cubes to be inquired and the
corresponding cube interval of the page is not equal to the interval corresponding to the page.
Formally, we make the assumption that the hypercube to be queried is

, and the set of cubes intersecting with the hypercube to be
queried are shown as follows:
 ,{ | [1,],[,] [,] [1,],[] [,] [,]}i ij ij j j ij ij j j ij ijI P j d s e s e j d s e s e s eφ= ∀ ∈ ≠ ∧ ∃ ∈ ≠ (5)

Algorithm 3 MCRIAggregate
Input:

iN : The current node, q : Interval to be inquired
Output:

 σ (,)iN q : Aggergation result of q in sub-Tree of node iN
1: Begin
2: if ()iDim N iq N φ= then
3: return φ
4: end if
5: if ()ii Dim NN q⊆ then
6: return ()iA N
7: end if
8: if iN is the leaf node then
9: return σ (|)ik ikV p q∈

10: end if
11: return ((),) ((),)i iMCRIAgg L N q MCRIAgg R N q
12: End

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 609

This set is equivalent to the following set
 1 2 dI I I (6)

Where | [1,],[,] [,] [,] [,] [,]k i ij ij j j ik ik k k ik ikI P j d s e s e s e s e s eφ= ∀ ∈ ≠ ∧ ≠ (7)

It can be seen that every hypercube in each set of must intersect the surface of the hypercube
 in dimension, otherwise it can not satisfy the condition:

 [,] [,] [,]ik ik k k ik iks e s e s e≠ (8)

Therefore, the upper bound of the total number of hypercubes intersecting is
. In order to compute , intuitively, it can be calculated from

the maximum number of cubes in each dimension. The page number of external memory is ,
so the internal nodes split -1 times. Suppose the height of -Tree is uniform, the number of

splits of each dimension is about , which is obtained the numbers of lines by hyperplane
cutting the dimension when all other dimensions are fixed. The surface of a dimension of a
hypercube is a (d-1)-dimensional hypercube. Therefore, the available number of hypercubes is

. Each of these surfaces has these hypercubes, so the upper bound of the
total number of hypercubes is . ■

We use one-dimensional and two-dimensional cases to show the correctness of the results:
• d = 1, the MCRI-Tree aggregation query only needs to read two pages from the external

memory. Intuitively, each page in which the interval does not intersect, while the query
range is only a starting and an ending point. In the worst case, the starting point falls
within the range of a page, and the ending point falls within the interval of another page.
Therefore, only the two pages can be read, and the results of the other pages are stored in
the memory node. For , the I/O complexity of MCRI-Tree is O(1).

• d = 2, each page falls within a two-dimensional interval, and these intervals do not
intersect with each other. The query interval is a rectangle on with four edges, each of
which is a rectangular surface, which can be cut to obtain rectangles. Intuitively,
that is, cut the most rectangular edge to meet eq. (5).

3.2.4 Space Complexity Analysis

Owning to the MCRI-tree is a memory-disk hybrid index structure, the memory stores an
index structure, and the external memory mainly stores a specific data items N. Therefore, the
size of the external memory occupied by MCRI-tree is O(N), and the index part is equal to the
number of nodes in the memory. According to the properties of MRCI-tree, one page
corresponds to one node. The number of pages is O(N/B), where B is a page size. Therefore,
the memory occupied by the index part is O(N/B).

3.3 Summary
This section mainly presents two new data structures which are MRI-Tree and MCRI-Tree.
Among them, the MRI-Tree is used for pointing query and various update operations in O(1)
I/Os. In addition to the features of MRI-Tree, the MCRI-Tree also supports I/Os,
and solves the categorical range aggregation query problem. The experimental results will be
shown in the next section to prove this.

610 Yang et al.: An Efficient Indexing Structure for Multi-dimensional Categorical Range Aggregation Query

4. Experimental Design and Result

4.1 Experimental Design
This section will include a number of comparative and confirmatory experiments, which are
listed below:
• Compare the efficiency of MCRI-Tree aggregation query to prove its better performance.

Since the problem of multi-dimensional categorical range aggregation query is a new
problem in this paper, the categorical range aggregation has only one previous work, the
contrast experiment is limited to a single-dimensional case. In multi-dimensional cases,
the space required for aR-Tree index is too large and the query speed is too slow. The
performance of MCRI-Tree and aR-Tree can not be directly compared in this experiment,
so we choose MRI-Tree (also known as raw MCRI-Tree) and MCRI-Tree for
comparison.

• The memory occupancy of MCRI-Tree is recorded according to the change in the size of
the dataset and the number of dimensions to verify the correctness of the space
complexity.

• The external memory occupancy of MCRI-Tree is recorded according to the change in
the size of the dataset to verify the correctness of the space complexity.

The above experiment was carried out on a server equipped with Intel Xeon E5620 @ 2.4GHz
CPU, which memory size is 32GB, the external memory space uses a Western Digital 7200
RPM hard drive, the operating system is Windows Server 2012. All experimental code is
based on C ++ 11 standard, compiled with the Microsoft Visual C ++ 12.0 compiler, and turns
on the -O2 optimization switch.

4.1.1 Dataset
The dataset used in the experiment is divided into two types. First of all, we generated datasets
where items’ key and weight are uniformly distributed in between the use of uniform
distribution generated random positive integer.

Secondly, we also made an experiment with a real dataset called , which contains
the daily trading volumes of every stock in the index from 16 Jan. 2002 to 13 Jan.
2017. Each stock is a category (i.e., totally b = 500 categories), in which an item is of the form
(date, open, high, low, close, volume), where date is the items key, and others is its weight. The
total number N of items (of all stocks) is 1.89 million. The query mainly depends on a given
parameter is used to represent each dimension of the query interval accounted for
the proportion of the size of the entire interval.

4.1.2 Parameters Set

Table 2. Parameter setting
Parameter Symbol Range Default

Category number (10, 1000) 50
Dimension number (2, 10) 2

Index size (16, 1024) 512
Page size (4, 512) 4KB

Generate query parameters (0.1, 0.9) 0.25

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 611

In this experiment, each index structure consists of four parameters, which are category
number , dimension number , index size and page size . In addition, the query
generation is controlled by the parameter . In particular, when b = 1, it degenerates into a
general range aggregation query. When d = 1, it degrades to a one-dimensional range
aggregation query. When = 1, it degrades to find the global aggregation result. The above
parameter settings are shown in Table 2.

4.1.3 Experimental Content
In summary, this section includes the following experiments:
• The performance of the CRA query (d=1) is tested by synthetic dataset and the

dataset. The evaluation indicator is the average elapsed time of each query, and the
comparison between aBB-Tree and MCRI-Tree is done by adjusting the index size , the
number of category , parameter , to observe the performance of the two changes. It is
worth mentioning that, in order to eliminate the disadvantage of aBB-Tree as a data
structure with only external memory index, the total memory footprint of MCRI-Tree was
recorded in the comparison experiment, and allocated aBB-Tree equivalent cache to
cache pages in the external memory.

• Using synthetic dataset, we tested MCRA query (d>1) performance and compared
MCRI-Tree with MRI-Tree. The evaluation indicator is the I/O counts of each query,
where the average time is not used because the page size is the same and each access unit
is a page. We adjust , respectively, to observe the performance change of the
both.

• Using synthetic dataset, we adjust to test MCRI-Tree occupancy of internal and
external memory, and then fix , adjusting , to observe MCRI-Tree performance
change of memory.

4.2 Experimental Results

4.2.1 The CRA Query Experimental Results
Fig. 3 shows a comparison result of aBB-Tree and MCRI-Tree in CRA query. It can be seen
that the result of MCRI-Tree is ahead of aBB-Tree in each test. Fig. 3(a) shows the change of
the query average time with the size of index. It can be seen that the performance change of
aBB-Tree and MCRI-Tree is not obvious as the index size grows. It is because of the scale of
the experimental data, the height of aBB-Tree is almost unchanged. However, the
I/O efficiency of MCRI-Tree is constant O(1), so the performance change of the both are not
large. Nevertheless, the I/O complexity of MCRI-Tree is lower, so the performance of
MCRI-Tree nearly doubled than aBB-Tree. Fig. 3(b) shows the change of query time with the
number of categories . It can be seen that MCRI-Tree always maintains a low level, not
changing with the number of categories. However, aBB-Tree performance gradually
deteriorates after the number of categories increases. Although the time complexity of
aBB-Tree query aggregation result page is O(1), it is actually read an entry of length
sequentially from the external memory, instead of a real random I/O. The larger the , the
stronger the amplification effects. Because it is read sequentially, the bottleneck is the seeking
time. Therefore, is not a strictly multiple relationship when it increases to a larger size. Fig. 3
(c) and Fig. 3 (d) show a performance change of . It can be seen that the performance of
aBB-Tree and MCRI-Tree is obviously improved relative to MRI-Tree based on simple
sequential scan. Meanwhile, MCRI -Tree continues to maintain a lead performance and the

612 Yang et al.: An Efficient Indexing Structure for Multi-dimensional Categorical Range Aggregation Query

performance of the both does not change with the interval size, which proves theoretically the
correctness of the I/O efficiency.

16 32 64 128 256 512 1024
100

101

102

103

104

105

106

107

Ti
m

e
pe

r q
ue

ry
(m

s)

Index size(millions of entries)

 MCRI-Tree
 aBB-Tree
 raw MCRI-Tree

10 20 40 80 160 320 640 1280
0

100

200

300

400

500

Ti
m

e
pe

r q
ue

ry
(m

s)

 MCRI-Tree
 aBB-Tree

Number of groups

(a) change with the size of index N (b) change with b

10 20 30 40 50 60 70 80 90
100

101

102

103

104

105

106

107

Ti
m

e
pe

r q
ue

ry
(m

s)

Proportion of entries covered(%)

 MCRI-Tree
 aBB-Tree
 raw MCRI-Tree

10 20 30 40 50 60 70 80 90
0

200

400

600

800

1000
 MCRI-Tree
 aBB-Tree
 raw MCRI-Tree

Ti
m

e
pe

r q
ue

ry
(m

s)

Proportion of entries covered(%)

(c) change with parameters on synthetic datasets (d) change with parameters on S&P500 datasets
Fig. 3. Categorical Range Aggregation Query (CRA) performance

4.2.2 The MCRA Query Experimental Results

2 3 4 5 6 7 8 9 10
103

104

105

106

107

108

109

N
um

be
r o

f I
/O

s

Number of dimensions

 MRCI-Tree
 raw MCRI-Tree

16 32 64 128 256 512 1024
100

101

102

103

104

105

106

107

N
um

be
r o

f I
/O

s

Index size(millions of entries)

 MCRI-Tree
 raw MCRI-Tree

(a) Change with the number of dimension d (b) Change with the scale of dataset N

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 613

10 20 30 40 50 60 70 80 90
100

101

102

103

104

105

106

107

N
um

be
r o

f I
/O

s

Proportion of entries covered(%)

 MRCI-Tree
 raw MCRI-Tree

4 8 16 32 64 128 256 512
100

101

102

103

104

105

106

107

N
um

be
r o

f I
/O

s

Page size(KB)

 MRCI-Tree
 raw MCRI-Tree

(c) Change with parameters (d) change with the size of page B

Fig. 4. Multi-dimensional Categorical Range Aggregation Query (MCRA) performance

Fig. 4 shows the result of a MCRI-Tree test on a MCRA query, comparing it to MRI-Tree, in
order to make a reference based on a simple sequential scan method. Here we compared the
number of I/O directly. Since the index structure of MCRI-Tree and MRI-Tree is the same, we
just compare I/O time. MCRI-Tree has a lot of superiority when the number of dimensions is
less than 5, while the performance of MCRI-Tree and MRI-Tree is close at high dimensions.
According to the I/O efficiency of MCRI-Tree demonstrated in the previous section,
MCRI-Tree basically degenerates into a sequential scan when d is large, because almost every
page needs to be read once. The experimental results of adjusting the size of the dataset are
shown in Fig. 4(b). It can be seen that with the change of the dataset scale, the performance
change of MCRI-Tree is not obvious. This is because the change in scale is just a slight
increase in , which is very small when x = 2.

Fig. 4(c) shows the efficiency change of . MCRI-Tree change is still not obvious, however,
the change of MRI-Tree is obvious. This is because the performance of MCRI-Tree changes
little with when the number of dimensions is small, while the performance of MRI-Tree
degrades because it is a linear scan. Finally, an experiment to adjust the page size is shown in
Fig. 4(d), which the number of I/O decreases as the number of pages decreases, but the time of
a single I/O will increase.

4.2.3 The MCRA Space Efficiency
Fig. 5 shows the space efficiency experiment of MCRI-Tree, and the memory space
occupancy of MCRI-Tree is basically a linear function of the data scale. In the case of one
billion data entries, the memory space occupancy is about 1.5GB. Considering index entries
are on the order of magnitude, computers are often equipped with high memory capacity. In
addition, it is also seen that the amount of space occupied by the counter portion is several
times than the index portion, which also conforms to the spatial complexity analyzed above.

614 Yang et al.: An Efficient Indexing Structure for Multi-dimensional Categorical Range Aggregation Query

16 32 64 128 256 512 1024
0

500

1000

1500

2000
M

em
or

y
oc

cu
pi

ed
(M

B
)

Index size(millions of entries)

 Node Memory
 Counter Memory
 Total Memory

Fig. 5. Memory footprint of MCRI-Tree changed with dataset size

16 32 64 128 256 512 1024
0

10000

20000

30000

40000

50000

60000

D
is

k
sp

ac
e

oc
cu

pi
ed

(M
B

)

Index size(millions of entries)

 aBB-Tree Counters
 MCRI-Tree
 aBB-Tree
 aBB-Tree Total

Fig. 6. External memory footprint of MCRI-Tree changed with dataset size

The experiments of the number of fixed entries, the page occupancy space and the number of
the change in the dimension are shown in Fig. 6. Due to no change in the page size, resulting in
a reduction in the number of entries stored per page, the decrease of leads to the increase of
O(), whose relationship is correctly reflected in the figure. Finally, the statistics and
comparison of external memory space are shown in Fig. 7. It can be seen that MCRI-Tree
further improves the space utilization of the whole system compared with aBB-Tree.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 615

2 4 6 8 10
0

500

1000

1500

2000

2500

3000

3500

4000
M

em
or

y
O

cc
up

ie
d(

M
B

)

Number of dimensions

 MCRI-Tree
 MCRI-Tree Counter
 Total

Fig. 7. Memory footprint of MCRI-Tree changed with the dimension

5. Conclusion

On the basis of the original aggregation query problem, the past work has proposed categorical
aggregation query problem, and the corresponding aggregation index structure aBB-Tree is
proposed to solve the query problem. However, categorical aggregation index has some
limitations, which can’t execute range aggregation query for multi-dimensional constraints. In
order to solve this problem, we proposed a new index structure called MCRI-Tree.
MCRI-Tree is based on the internal and external memory hybrid mechanism, which can
answer the categorical aggregation query problem in I/Os, respectively while
occupying of memory space and O(N) of the external memory space, where d
is the number of dimensions, N is the total number of elements, B is the number of elements
which can be stored in a single disk page. In particular, = 1, only O(1) I/Os is needed, and

()N
BO d I/Os is only required for = 2. The result of the experiment proved this conclusion,

and at the same time proved that space occupied by its internal and external memory was
acceptable for a system, and illustrated its feasibility.

References
[1] Nekrich, Yakov, “Efficient range searching for categorical and plain data,” Acm Transactions on

Database Systems, vol. 39, no. 1, pp. 1-21, January, 2014. Article (CrossRef Link).
[2] Tao, Yufei, and C. Sheng, “I/O-Efficient Bundled Range Aggregation,” IEEE Transactions on

Knowledge & Data Engineering, vol. 26, no. 6, pp. 1521-1531, June, 2014.
Article (CrossRef Link).

https://doi.org/10.1145/2543924
https://doi.org/10.1109/TKDE.2013.152

616 Yang et al.: An Efficient Indexing Structure for Multi-dimensional Categorical Range Aggregation Query

[3] S. Singh, C. Mayfield, S. Prabhakar, R. Shah and S. Hambrusch, “Indexing Uncertain Categorical
Data,” in Proc. of IEEE Conf. on Data Engineering, pp. 616-625, April 15-20, 2007.
Article (CrossRef Link).

[4] N. Sarkas, G. Das, N. Koudas and A.K.H. Tung, “Categorical skylines for streaming data,” in
Proc. of the 27th ACM SIGMOD International Conference on Management of Data, SIGMOD’08,
Vancouver, Bc, Canada, pp. 239-250, June 9-12, 2008. Article (CrossRef Link).

[5] D. Comer, “Ubiquitous B-Tree,” Acm Computing Surveys vol. 11, no. 2 pp. 121-137, 1979.
Article (CrossRef Link).

[6] M.K. AguileraW. Golab and M.A. Shah, “A practical scalable distributed B-tree,” in Proceedings
of the Vldb Endowment, vol. 1, no. 1, pp. 598-609, August, 2008. Article (CrossRef Link).

[7] C. S. Ellis, “Concurrent Search and Insertion in AVL Trees,” in IEEE Transactions on Computers,
vol. C-29, no. 9, pp. 811-817, Sept, 1980. Article (CrossRef Link).

[8] C.H. WuT.W. Kuo and L.P. Chang, “An efficient B-tree layer implementation for flash-memory
storage systems,” Acm Transactions on Embedded Computing Systems, vol. 6, no. 3, Article 19,
July 2007. Article (CrossRef Link).

[9] H. Roh, S. Kim, D. Lee and S. Park, “As B-Tree: A Study of an Efficient B+-tree for SSDs,”
Journal of Information Science & Engineering, vol. 30, no. 1, pp. 85-106, January, 2014.
Article (CrossRef Link).

[10] H. Roh, S. Park, S. Kim, M. Shin and S.W. Lee, “B+-tree Index Optimization by Exploiting
Internal Parallelism of Flash-based Solid State Drives,” in Proceedings of the VLDB Endowment,
vol. 5, no. 4, pp. 286-297, 2012. Article (CrossRef Link).

[11] P. JinP. Yang and L. Yue, “Optimizing B+-tree for hybrid storage systems,” Distributed &
Parallel Databases vol. 33, no. 3, pp. 449-475, September, 2015. Article (CrossRef Link).

[12] J. Yang and J. Widom, “Incremental Computation and Maintenance of Temporal
Aggregates,” Vldb Journal, vol. 12, no. 3, pp. 262-283, October, 2003. Article (CrossRef Link).

[13] D. Papadias, P. Kalnis, J. Zhang and Y. Tao, “Efficient OLAP Operations in Spatial Data
Warehouses,” in Proc. of 7th Int. Symposium on Advances in Spatial and Temporal Databases ,
Redondo Beach, CA, USA,Berlin, pp. 443-459, July 12-15, 2001. Article (CrossRef Link).

[14] J. Rao and K.A. Ross, "Cache Conscious Indexing for Decision-Support in Main Memory," in
Proc. of 25th International Conference on Very Large Data Bases, VLDB’99, pp. 78-89,
September 07 - 10, 1999. Article (CrossRef Link).

[15] L. Arge, “The buffer tree: A new technique for optimal I/O-algorithms,” in Proc. of 4th Int.
Workshop on Algorithms and Data Structures(WADS’95). vol. 3, no.28, pp. 334-345, 1995.
Article (CrossRef Link).

[16] L. Arge, “The Buffer Tree: A Technique for Designing Batched External Data Structures,”
Algorithmica, vol. 37, no. 1,pp. 1-24, 2003. Article (CrossRef Link).

[17] D. Agrawal, D. Ganesan, R. Sitaraman, Y. Diao and S. Singh, “Lazy-Adaptive Tree: An
Optimized Index Structure for Flash Devices,” in Proc. of the Vldb Endowment, vol. 2, no. 1, pp.
361-372, January 2009. Article (CrossRef Link).

[18] J. Rao and K.A. Ross, “Making B+- trees cache conscious in main memory,” Acm Sigmod Record,
vol. 29, no. 2, pp. 475-486, June 2000. Article (CrossRef Link).

[19] P. O Neil, E. Cheng, D. Gawlick and E. O Neil, “The log-structured merge-tree (LSM-tree),” Acta
Informatica, vol. 33, no. 4, pp. 351-385, June 1996. Article (CrossRef Link).

[20] E.D. Demaine and M. Farach-Colton, “Cache-Oblivious B-Trees,” Siam Journal on Computing.
vol. 35, no. 2, pp. 341-358, 2005. Article (CrossRef Link).

[21] B.C. Kuszmaul, “A comparison of fractal trees to log-structured merge (LSM) trees,” Tokutek
White Paper, 2014. Article (CrossRef Link).

[22] Y. Li, B. He, R.J. Yang, Q. Luo and K. Yi, "Tree indexing on solid state drives," Proceedings of
the VLDB Endowment , vol. 3, no. 1-2, pp. 1195-1206, September 2010. Article (CrossRef Link).

[23] R. Sears and R. Ramakrishnan, "bLSM: a general purpose log structured merge tree," in Proc. of
the 31th ACM SIGMOD International Conference on Management of Data. SIGMOD’12.
Scottsdale, Arizona, USA, pp. 217-228, May 20 - 24, 2012 Article (CrossRef Link).

https://doi.org/10.1109/ICDE.2007.367907
https://doi.org/10.1145/1376616.1376643
https://doi.org/10.1145/356770.356776
https://doi.org/10.14778/1453856.1453922
https://doi.org/10.1109/TC.1980.1675680
https://doi.org/10.1145/1275986.1275991
http://delab.yonsei.ac.kr/files/paper/201401_05.pdf
https://doi.org/10.14778/2095686.2095688
https://doi.org/10.1007/s10619-014-7157-7
https://doi.org/10.1007/s00778-003-0107-z
https://doi.org/10.1007/3-540-47724-1_23
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.9150&rep=rep1&type=pdf
https://doi.org/10.1007/3-540-60220-8_74
https://doi.org/10.1007/s00453-003-1021-x
https://doi.org/10.14778/1687627.1687669
https://doi.org/10.1145/335191.335449
https://doi.org/10.1007/s002360050048
https://doi.org/10.1137/S0097539701389956
http://www.pandademo.com/wp-content/uploads/2017/12/A-Comparison-of-Fractal-Trees-to-Log-Structured-Merge-LSM-Trees.pdf
https://doi.org/10.14778/1920841.1920990
https://doi.org/10.1145/2213836.2213862

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, February 2019 617

[24] J.J. LevandoskiD.B. Lomet and S. Sengupta, “The Bw-Tree: A B-tree for new hardware
platforms,” in Proc. of IEEE Conf. on Data Engineering. pp. 302-313, April 8-12, 2013.
Article (CrossRef Link).

[25] V. Gaede, “Multidimensional access methods,” ACM Computing Surveys (CSUR). vol. 30, no. 2
pp. 170-231, 1998. Article (CrossRef Link).

[26] M. Freeston, “A general solution of the n-dimensional B-tree problem,” ACM SIGMOD Record.
vol. 24, no. 2, pp. 80-91, 1995. Article (CrossRef Link).

[27] S. Nishimura, H. Yokota, “QUILTS: Multidimensional Data Partitioning Framework Based on
Query-Aware and Skew-Tolerant Space-Filling Curves,” in Proc. of the 36th ACM International
Conference on Management of Data. SIGMOD’17. Chicago, Illinois, USA, pp. 1525-1537, May
14-19, 2017. Article (CrossRef Link).

[28] D.B. Lomet, “The hB-tree: A Multiattribute Indexing Method with Good Guaranteed
Performance,” Acm Transactions On Database Systems(TODS), vol. 15, no. 4, pp. 625-658, 1990.
Article (CrossRef Link).

[29] B. Wang, Y. Hou, M. Li, H. Wang and H. Li, “Maple: scalable multi-dimensional range search
over encrypted cloud data with tree-based index,” in Proc. of the 9th ACM symposium on
Information, computer and communications security, pp. 111-122, June 04-06, 2014.
Article (CrossRef Link).

[30] G. Li, P. Zhao, L. Yuan and S. Gao, “Efficient Implementation of a Multi-Dimensional Index
Structure Over Flash Memory Storage Systems,” Journal of Supercomputing, vol. 64, no. 3, pp.
1055-1074, June 2013. Article (CrossRef Link).

[31] T. ZäschkeC. Zimmerli and M.C. Norrie, “The PH-Tree - a Space-Efficient Storage Structure and
Multi-Dimensional Index,” in Proc. of the ACM SIGMOD international conference on
Management of data. SIGMOD’14, Snowbird, Utah, USA, pp. 397-408, June 22-27, 2014.
Article (CrossRef Link).

[32] A. Vlachou, “Efficient RDF Query Processing using Multidimensional Indexing,” in Proc. of the
21st Pan-Hellenic Conference on Informatics, Larissa, Greece, Article No. 44, September 28-30
2017. Article (CrossRef Link).

https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.1145/280277.280279
https://doi.org/10.1145/568271.223796
https://doi.org/10.1145/3035918.3035934
https://doi.org/10.1145/99935.99949
https://doi.org/10.1145/2590296.2590305
https://doi.org/10.1007/s11227-011-0679-0
https://doi.org/10.1145/2588555.2588564
https://doi.org/10.1145/3139367.3139408

618 Yang et al.: An Efficient Indexing Structure for Multi-dimensional Categorical Range Aggregation Query

Jian Yang received the M.S. degree from North Minzu University, China, in 2015. He is
currently as a PHD student in School of Computer and Communication Engineering,
University of Science and Technology Beijing (USTB). His research interest includes
massive data management, information retrieval and data quality management.

Chongchong Zhao is a professor and supervisor of PHD student. He received the Ph.D.
degree from Northwestern Polytechnical University, Xi’an, China, in 2003. He is currently
working at School of Computer and Communication Engineering, University of Science and
Technology Beijing (USTB). His research primarily focuses on software engineering, high
performance computing, data and knowledge engineering.

Chao Li is an associate professor. She received the Ph.D. degree from Tsinghua University,
Beijing, China, in 2006. She is currently working at Information Technology Research
Institute（RIIT）, Tsinghua University, Beijing, China. Her research interests are in the areas
of data and knowledge engineering, cloud computing and data management.

Chunxiao Xing is a professor and supervisor of PHD student. He received the Ph.D. degree
from Northwestern Polytechnical University, Xi’an, China, in 1999. He is currently working
at Information Technology Research Institute（RIIT）, Tsinghua University, Beijing, China.
His research primarily focuses on data and knowledge engineering, software engineering,
cloud computing, the internet of things, and digital library technology.

