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Abstract 
 

The main processes of a cognitive radio system include spectrum sensing, spectrum decision, 
spectrum sharing, and spectrum conversion. Experimental results show that these stages 
introduce a time delay that affects the spectrum sensing accuracy, reducing its efficiency. To 
reduce the time delay, the frequency spectrum prediction was proposed to alleviate the burden 
on the spectrum sensing. In this paper, the deep recurrent neural network (DRNN) was 
proposed to predict the spectrum of multiple time slots, since the existing methods only predict 
the spectrum of one time slot. The continuous state of a channel is divided into a many time 
slots, forming a time series of the channel state. Since there are more hidden layers in the 
DRNN than in the RNN, the DRNN has fading memory in its bottom layer as well as in the 
past input. In addition, the extended Kalman filter was used to train the DRNN, which 
overcomes the problem of slow convergence and the vanishing gradient of the gradient 
descent method. The spectrum prediction based on the DRNN was verified with a WiFi signal, 
and the error of the prediction was analyzed. The simulation results proved that the multiple 
slot spectrum prediction improved the spectrum efficiency and reduced the energy 
consumption of spectrum sensing. 
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1. Introduction 

The evolution of communication technology has resulted in growing data transmission rates. 
These increasing rates have impacted the spectrum resources for wireless communication, 
causing a bottleneck. According to statistics, there are different degrees of idle spectrum 
resources in time and space [1]. Fig. 1 shows the radio spectrum usage in 14 channels. In some 
channels, almost all slots are occupied by the primary users (PU), while the other channels 
have almost no users. The concept of a cognitive radio was proposed in order to use the radio 
spectrum more efficiently. In a cognitive radio network, when the spectrum assigned to a PU is 
not used, secondary users (SU) are allowed to use the spectrum, including the processes of 
spectrum sensing, spectrum decision, spectrum sharing, and spectrum conversion [2]. 
 

Time slot Channel

 
Fig. 1. The variation in the radio frequency spectrum resources over time. 

 
This process is known as perception, and Haykin pointed out that a perception-action cycle 

is the key to the cognitive radio system [3]. At present, there are two main local spectrum 
sensing methods. The first is based on energy detection and it compares the average energy 
and threshold of the signal sampling to determine which spectrum it is using [4]. The second is 
based on feature detection: it looks for a peak in the cyclic spectrum calculated by the Fourier 
transform of the cyclic autocorrelation function, which indicates the spectrum is occupied 
[5-6]. However, the spectrum energy cannot be effectively detected by the first method 
because of the uncertainty in the noise power when the signal-to-noise ratio (SNR) is lower 
than a certain level. The second method requires more complex signal processing algorithms. 
Both of these methods need more time for signal processing. Furthermore, some experiments 
have shown that the spectrum decision, spectrum sharing, and spectrum conversion introduce 
time delays that deteriorate the accuracy and utilization of the spectrum sensing [7]. 

In order to solve this problem, a method for spectrum prediction was proposed. It predicts 
whether the PU will use the channel or determines the probability of the channel’s use as it 
learns the history of the channel state, which allows SUs to skip sensing the busy channels to 
reduce the amount of time needed to find a channel [8]. 

The Neural Network (NN) and Hidden Markov Models (HMM) are the two main methods 
for spectrum prediction. In the NN methods, Multilayer Perceptron (MLP) can predict idle 
channels without any prior knowledge of the PU’s traffic characteristics; numerical 
simulations have shown that the spectrum prediction can reduce power consumption and 
improve the utilization of the spectrum [9-11]. Nicola, Bheemarjuna and Manoj B.S. [12] 
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noted that the Multilayer Feedforward Neural Network (MFNN) was used to predict the 
spectrum state under slowly varying channel conditions; this method had a low complexity 
and the ability to model nonlinear relationships. In a real WiFi network, the network traffic is 
improved by 13%-50% with this method. In practical application scenarios, neural network 
training needs more data samples, which is restricted in some fast mobile applications. 

In the HMM method, the spectrum predictor is trained by the historic channel state 
sequence at first, and then the maximum likelihood probability of the channel state at next time 
the channel is accessed is calculated with the current channel state [13-16]. Cognitive 
frequency hopping communication [14], high frequency (HF) cognitive communication [15], 
and time division multiple access (TDMA) communication [16] have all been validated on a 
WiFi network [13]. The researchers who developed these methods showed that the probability 
of a false alarm was increased with the length of the time slot. Good prediction results were 
obtained in good channel conditions while large prediction errors were produced at low SNRs. 
The shortcoming of HMM is that it needs to be trained repeatedly. 

In this paper, we propose a deep recurrent neural network (DRNN) to predict the multiple 
time slot spectrum. The existing methods only predict the spectrum of one time slot. If a 
multiple time slot spectrum can be predicted, the SU can choose the idlest channel and 
combine the spectrum resources from multiple channels, which increases the flexibility of the 
spectrum utilization. In spectrum sensing, the spectrum is divided into channelized, multiple 
time slots formed as shown in Fig. 1. The results of spectrum sensing form a time series, and 
the prediction of a multiple time slot spectrum appears as a multi-step prediction of a time 
series. It assumes that the time length of each time slot is sT  and the maximum number of time 
slots is maxN  We used the extended Kalman filter to overcome the slow convergence and 
vanishing gradient of the gradient descent method when the DRNN was trained. 

The rest of this paper is organized as follows. In Section 2, we give a description of the 
problem. Section 3 introduces some related works. Section 4 describes deep recurrent neural 
networks, the prediction strategy of multiple time slots with the DRNN, and its training 
method based on the extended Kalman filter. Our experiments and simulation results are given 
in Section 5, and we draw conclusions in Section 6. 

2. Problem description 
The recurrent neural network (RNN) is suitable for processing a time series, so the frequency 
spectrum needs to be channelized and slotted. When a frequency spectrum is channelized, the 
bandwidth of a channel is fixed to sB . For a particular channel, spectrum sensing is carried out 
in the unit form of the time slot, where the time length of each time slot is sT . The signal 
strength of a channel at different time slots is expressed as shown in Fig. 2 (a), where ( )nµ  
indicates the intensity of the signal in thn  time slot. By comparing the intensity of the sensing 
signal with the threshold of λ , we can determine whether the current sensing channel is used 
by the PU, and the decision rule is 
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( )

1      ( )
n

n
n

µ λ
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µ λ
<

=  ≥
                                                      (1) 

 
After the determination, a time series (such as that shown in Fig. 2(b)) formed by {0, 1} is 
produced, where “1” represents the channel that is occupied by the PU, and “0” represents that 
the channel is idle. For example, in Fig. 2(b), the channel state is represented by 
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( )=nγ ｛0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1. . . ｝. Assuming that the previous N  values in Fig. 2(a) are 
known, then the prediction gives the subsequent K  values, ( 1) ( 2) ( )N N N Kγ γ γ+ + +｛ , , . . . , ｝, 
which is a multi-step prediction for a time series. 
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Fig. 2. The spectrum sensing results of a channel expressed in the form of a time series:  

(a) The signal strength of a channel at different time slots and (b) the channel state represent 
by ( )nγ . 

3. Related works 
The multi-step prediction is more difficult than the spectrum prediction for a single time slot 
and a single-step time series prediction, [17]. First, we needed to build a regression model of 
the time series that was established with the HMM, NN, autoregressive integrated moving 
average model (ARIMA), supporting vector machine, nearest neighbor, lazy learning 
algorithm, and other regression methods [18]. In a single-step prediction, the following 
projection is implemented: 
 

( 1) [ ( ), ( 1),..., ( )]n f n n n p wµ µ µ µ+ = − − +                                        (2) 
 
where f  is the regression model and w  is the prediction error. 

Either NN or HMM is generally used for the one slot spectrum prediction. Compared to 
HMM, NN has a more powerful representation ability and the parameters of the prediction 
model only need to be trained once, while the HMM needs repeated training. Any prior 
statistical distribution knowledge of the PU’s channel state, which is one of the difficulties in 
the cognitive radio network, is not required when the NN is operating as a spectrum predictor. 
Once NN training is complete, its computing complexity is greatly reduced. The NNs 
currently used for spectrum prediction include the MLP [10,19] and MFNN [12,20]. In the NN, 
neurons in different layers are connected by adaptive weights, and these weights need to be 
trained in the initial stage. When training, the spectrum sensing samples are constructed as 
vector input into the NN, and the weight values are obtained through the back propagation 
(BP) algorithm, which uses the channel state of the next time slot as the expected value [21]. In 
practical applications, this kind of NN lacks the dynamic time characteristics similar to the 
HMM, and it is difficult to adapt to the change of the channel. However, the predictor based on 
the RNN has a similar structure to that found in the HMM. 

The RNN is a transforming form of the deep neural network (DNN). It inherits the model 
structure of the DNN's linear transformation and nonlinear activation function and absorbs the 
idea of the finite series correlation of the HMM model. As shown in Fig. 3(a), the hidden layer 
has an edge connected with itself, which is the key to realizing the recurrent property. In Fig. 3, 
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t  represents the time of the series. The self-connecting edge of the hidden layer is actually 
connected to h  at the last time t. At each t , th  is the function of the current input tx  and th of 
the last time slot: 
 

1( , )t t th F h xθ −=                                                             (3) 
 
When the self-connection of the hidden layer is unfolded, an architecture similar to that of the 
HMM is obtained, as shown in Fig. 3(b). The main difference between the two is that the 
parameters of the RNN are shared across time. That is, for any t , the network parameters from 

-1th  to th  and tx  to th  are the same, which greatly reduces the complexity of the model. 
Sharing parameters allows the RNN to be adapted to a series of any length and no special 
adjustment is required for training and prediction. These are the advantages to using the RNN 
to predict a time series. However, many time series in practical applications have different 
time scales, so the RNN is not suitable for the prediction of the time series with such 
characteristics.  
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Fig. 3. When the hidden layer is unfolded in time, RNN has a similar structure to that of HMM:  
(a) the hidden layer has an edge connected with itself and (b) the architecture unfolded in time. 

4. Proposed Method 

4.1 Deep recurrent neural network (DRNN) 
In this paper, we used the DRNN to model the time series of the channel spectrum state. For 
spectrum sensing, the smaller  time slots result in higher  time resolutions. Measurements of 
the PU’s activity indicate that the idle or busy duration of the channel is related to the previous 
state [22, 23]. At different time scales, the spectrum of the PU exhibits different characteristics. 
Those time series of the different slot lengths have different time scale characteristics. The 
weakness of the common RNN lies in that the information of the output layer is only through 
one processing layer, so the input of the current time step  lacks hierarchical processing. In 
addition, the RNN is not able to process a time series on multiple time scales. Hermans and 
Schrauwen have used the DRNN to provide the time hierarchy information through multiple 
scales [24]. The differences between the RNN and DRNN are shown in Fig. 4. The RNN has 
only one hidden layer, while the DRNN has L  hidden layers, each layer contains N  neurons, 
and all of the hidden layers are connected in time. According to equation (2), the transfer 
function of the thi  element in the thl  hidden layer at t  is defined as shown in the following 
equation: 
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where l
th  is the hidden state of the thl  layer at time t , ( )lΦ 

 is a nonlinear function by unit of 
the thl  layer, lW  is the weight matrix of the thl  layer, lU  is the weight matrix of the 
recurrent connection of the thl  layer, 

1

-1 -1 -1 -1
1, 2, ,=[   ... ]

L

L L L L
t t t N th h h

−
h , and -1LN  is the number of 

elements in the thL  layer. When =1l , the hidden activation 1
th  can be computed by 0 =t th x . In 

considering how to choose the activation function in the neural network, lW  obeyed the 
empirical rule after initializing; almost half of the neurons using the traditional Sigmoid 
function were activated simultaneously, which created difficulties in training the deep network. 
Therefore, we chose to use the rectified linear unit = max(0, )l xΦ [25], which had a better 
performance than the Sigmoid or tanh function. Fig. 4(b) shows that the network structure 
inherently has different time scales. The bottom layer of the network has a fading memory for 
the input, and each additional remaining layer has a fading memory for the underlying hidden 
state and input from the past. 
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Fig. 4. Structure of the RNN and DRNN: (a)RNN and (b)DRNN. 

 
The computation complexity of the DRNN depends on its structure. Relative to the DNN, 

the DRNN adds storage and computational power for temporal matrix lU . Given the same 
input during the forward propagation stage,  a DRNN with L  hidden layers, N  hidden units, 
and a temporal connection at the thl  layer requires extra 2( )Nθ  buffers to save the 
floating-point matrix lU  and extra 2( )Nθ multiply-add operations to compute the hidden 
activations in equation (4). Back-propagation through time (BPTT) is usually used to update 
the network parameters during the backward propagation stage. Given a time series with 
T time steps in length, the DRNN with a thl  time connection requires an extra ( )TNθ  space to 
keep the activations in memory, as well as extra 2( )TNθ  operations to update the parameters. It 
should be noted that the gradients of the DRNN parameters are updated in time and space, 
unlike the DNN. The input cannot have a time series that is too long, since the length affects 
the efficiency of the calculation. 

4.2 Multiple time slot frequency spectrum prediction 
There are 5 kinds of multiple time slot prediction strategies: Iterative, Direct, Direct and the 
Recursive (DirRec), Multi-Input Multi-Output (MIMO), and Direct and MIMO (DirMO) [26]. 
Among them, the DirRec strategy integrates the principle and structure of the Direct [27] and 
Iterative [28] strategies, and the input of each prediction model includes the current state and 
prediction state. In the multiple time slot prediction, the state of the -thk  prediction needs to be 
estimated after obtaining the ( -1)-thk  prediction. If we assume that the time for each prediction 
is PT , then it is necessary to wait for time PKT  in order to predict K  time slots. The time delay 
of the prediction reduces the time available to the spectrum in order to measure the sensitive 
radio frequency spectrum utilization. Every time slot prediction needs a module, which 
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increases the complexity of the system training. 
Using the above analysis, we adopted the MIMO strategy based on the structure of the 

DRNN. It is first necessary to establish a prediction model F which is input to the 
channel state of the known I  time slots and outputs the channel state of the predicted 
J  time slots for the future. Here, we use DRNN to achieve the prediction model. Fig. 5 
is the space and time structure of a DRNN with L  hidden layers and (1 )lN l L≤ ≤  units at each 
layer. The visible layer of the DRNN has I  units to receive the known spectrum sending 
samples, and the number of units in the output layer corresponding to the number of time slots 
for the output is J . Assuming the network input is ,1 ,2 ,=[   ... ]t t t t Px x xx , the number of the known 
channel state slots is P . Equation (4) then gives the output of the -thi  unit in the input layer at 
time t  as 
 

1 1
, 1( )i t i th = Φ W x                                                             (5) 

 
The result generated by the output layer is the prediction of the next time channel state. The 
output of the thj  unit(s) at time t  is 
 

1
,ˆ ( )L L

j t o j ty += Φ W h                                                          (6) 
 
where 1, 2, ,=[   ... ]

L
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t t t N th h hh  is the output of the thL  hidden layer, which can be calculated by 

equation (4). 
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Fig. 5. The space and time structure of a DRNN with L  hidden layers and (1 )lN l L≤ ≤  units 
at each layer, which has I  units in the input layer and J  units in the output layer. 

 
Fig. 5 shows that the J  timeslot channel states predicted in the future are related to the 

parameters of the network and the internal state at time t . Due to the memory characteristics 
of the structure, the internal state at time t  is dependent on the weight matrix and the internal 
state of the past time slots. Once the weight is updated at time t , the current J  outputs can be 
calculated. If the relationship between the input and output of the network is constant, the 
weight matrix at each time is the same. The weight is determined according to the prediction 
error. The error at time t is partly related to the error of the weight and partly related to the state 
estimation error at time t , which is also related to the prediction error at time -1t . Therefore, 
the error is actually affected by the weight matrix.Therefore, the prediction model F first need 
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to use a certain number of samples for training.The method for reducing the errors is to 
improve the training quality of the DRNN for the weight matrix with lW  and lU . 

4.3 Training through space and time based on the extended Kalman filter (EKF) 
Back propagation (BP) is a classical method of neural network training. The BP for the DRNN 
training is not only through space, but also time. Usually, the gradient descent method is used 
for back-propagation training, but this method suffers from a slow convergence, gradient 
disappearance, and other issues [26]. The EKF is better able to avoid these problems [27], so 
we used it for the estimation of the weights in space and time. 

The EKF is a state estimation technique for nonlinear systems. Suppose a discrete system 
with additive input and no observation noise is 
 

( 1) ( ( 1)) ( )
( ) ( ( ))n

n n n
n n
+ = + +

 =

x f x q
d o x

                                             (7) 

 
where ( )nx  is the state vector of the system, f  is a system status update function, ( )nq  is the 
external input to the system, ( )nd  is the output of the system, and no  is a time-dependent 
observation function. At time 0n = , the system state (0)x  is estimated by a multidimensional 
normal distribution with a mean ˆ(0)x  and covariance (0)P . The task of the EKF is to give an 
estimation ˆ ( +1)nx  of the true state ( +1)nx , given the initial state and all the previous output 
values. For this purpose, the following two time update and three measurement update 
computations were used in this research: 
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where ( )nF  and ( )nO  are Jacobians of f  and no with respect to the state variables, 
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ˆ( )= ( ) ( ( ))nn n n−ξ d o x  is the difference between the observed output and the estimated output; 

( )nP  is an estimate of the conditional error covariance matrix [ | (0),..., ( )]E nξ d d ; ( )nQ  is the 
diagonal covariance matrix of the process noise, and the time updates ˆ ( )n∗x , ( )n∗P  of the state 
estimate and state error covariance estimate are obtained from extrapolating the previous 
estimates with the known dynamics f . The basic idea of the EKF is to update ˆ ( )nx , ( )nP based 
on equation (8) to generate a preliminary guess for ˆ ( )n∗x , ( )n∗P . Then, the information 
contained in ( )nd , which enters the measurement update in the form of ( )nξ  and is 
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accumulated in the Kalman gain ( )nK , is integrated to adjust these preliminary estimates. The 
initialization of the system demands (0)=δP I , (0) λ=Q I , where I  is the unit matrix. 

Spectrum predictions were based on the DRNN’s estimated future J  time-slot channel 
states ˆ ty  through the past P  time-slot channel states tx . In order to obtain accurate prediction 
results, it was necessary to have a good estimate of the weight matrix of U  and W , which are 
all represented as V  in the following equations. In order to use the EKF for the DRNN to 
estimate the optimal weights, V was regarded as the state of a dynamic system. Then, the 
output ˆ ty  of the DRNN can be seen as a function of V  and tx : 
 

ˆ ( , )t t=y o v x                                                            (11) 
 
which assumes that the transient effects of the initial state of the network are eliminated. The 
inputs can be integrated into the output function o , rendering it the time-dependent function 

no . Further, we assumed that the network update contained process noises, which were added 
to the weight in the form of Gauss uncorrelated noise ( )tq . The dynamic equations of (7) for 
the perfect DRNN are 
 

( 1) ( ) ( )
ˆ ( ( ))t n

t t t
t

+ = +
 =

v v q
y o v

                                                    (12) 

 
The training of the DRNN was carried out from the initial guess ˆ (0)v to estimate the steady 
state ( )tv  and the output ˆ ty . The error covariance matrix was initialized to the large diagonal 
matrix (0)P  and the diagonal elements were set to large values. 

5. Experiment and discussion 

5.1 Experiment of the spectrum prediction for the WiFi channel 
We carried out the experiment for the WiFi channel in order to validate the spectrum 
prediction based on the DRNN. Because a sufficient quantity of spectrum sending samples are 
required for training the DRNN, we used a software defined radio (SDR) system to sense the 
signal intensity and record it. 
 

HackRF ONE

Notebook  
Fig. 6. SDR hardware system composed of a notebook computer and the HackRF One. 

 
The SDR system was made up of hardware and software. The hardware included the 

HackRF One, an open source hardware + software project and a notebook computer. The 
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HackRF One’s main purpose was to provide a cheap SDR program. HackRF One can run on 
Mac OS X, Linux, Windows, and other platforms. It was connected to the PC through the USB 
interface. Through the GNU Radio framework or other SDR software, the HackRF One can be 
configured to different modes of the transmitter or receiver with an operating frequency range 
of 30 MHz~6 GHz, with a maximum bandwidth of 20 MHz. The notebook and HackRF One 
are shown in Fig. 6. 

The software used was the spectrum sensing and recording system built by GNU Radio [. 
We designed a down converter, filter, and other modules using the GNU Radio framework. 
These modules were connected to the system as shown in Fig. 7.  The modules controlled the 
central working frequency and the intermediate frequency (IF) of the HackRF One. These 
samples were stored on the hard disk after the IF signal was filtered and sampled. Finally, we 
calculated the energy strength of the sampled signal and obtained the channel state. 

 

 
Fig. 7. Spectrum sensing and recording system designed within the framework of Radio GNU. 

 
There are 13 channels available in the 2.412-2.472 GHz range for WiFi. We recorded the 

WiFi signal between 8 a.m. and 12 a.m., and estimated the state of a single channel. The 
training for our spectrum predictor used 1,000 time-slot samples, and the rest of the samples 
were used to validate the prediction results. The comparison between the predicted results and 
the actual channel state was based on the normalized mean square error (NMSE): 
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The WiFi spectrum is shown in Fig. 8, and it contains the state of all the channels. Fig. 8 

shows that the 1st , 6th , and 11st  channels are very crowded, and there are many idle time slots 
for the 2nd , 3rd , 4th , 5th , 7th , 12th , and 14th  channels. We let -3=10δ  and -8=10λ , and Fig. 9 
gives the relationship between the NMSE and training times in the training process. Given the 
different numbers of the hidden layers and prediction time-slot length separately, the NMSE 
was obtained; these values are shown in Fig. 10. 
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Fig. 8. WiFi spectrum in a certain period of time obtained by our spectrum sensing and 
recording system. 

 

0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

M
ea

n 
N

M
S

E

numbers of training times
0 100 200 300 400 500

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
ea

n 
N

M
S

E

numbers of training times  
(a)                                                            (b) 

Fig. 9. The relationship between the NMSE and numbers of training times during the process 
of training the spectrum predictor with the EKF and random gradient descent method,  

the (a) Extended Kalman Filter and (b) Random Gradient Descent. 
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Fig. 10. The variation in the NMSE with different numbers of hidden layers and the 
prediction of the time-slot length. 

5.2 Effects of the spectrum prediction on network performance 
The effects of the spectrum prediction on the network performance were verified by 
simulation. In the simulation of a cognitive radio network, the spectrum occupied by the user's 
traffic was associated with the assumption that the PU's traffic follows the Poisson process. 
The simulation scenario was a wireless network with 20 nodes and cM  available channels. 
The traffic intensity of the network ε  was defined as the ratio of traffict , the average channel 
holding time , and intert , the average inter-arrival time of the traffic packet: 
 

traffic

inter
= t

t
ε                                                                (14) 

 
By changing ε , different traffic conditions were obtained. Each channel was divided into slots, 
and the slot length of all the channels was fixed. We assumed that each SU could only sense 
one channel at a slot, and stored the spectrum sensing samples for a period of time. 

In order to compare the performance of the DRNN’s spectrum sensing and spectrum 
prediction, we used three types of nodes in the simulation; we assumed that these nodes had 
the same spectrum sensing ability and precision. The first node, SUsense , randomly selected 
idle channels through spectrum sensing. The second  node, SUpredictor-1 , predicted the next time 
slot spectrum with the HMM method and randomly selected an idle channel. The third  node, 
SUpredictor-2 , predicted the multiple time slot spectrum with the DRNN and selected the channel 
with the largest number of idle slots. We defined an index for evaluating the channel 
utilization as 
 

= S

T

N
N

η                                                                (15) 
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where SN  is the number of idle channels sensed by the nodes and TN  is the total number of 
idle channels. The performance improvement of SUpredictor-1 and SUpredictor-2 relative to SUsense is 
expressed as 
 

predictor-x sense

sense

predictor-x sense

sense

= 100%

( ) ( )
    = 100%

( )

L

S S

S

N N
N

η η
η

η
−

×

−
×

                                         (16) 

 
where senseη   belongs to SUsense and predictor-xη   belongs to SUpredictor-1 or SUpredictor-2. Under the 
conditions of a certain ε , the performance of the spectrum utilization of both the spectrum 
prediction and the pure spectrum sensing were found by changing the number of channels cM  
for different scenarios, and these results are shown in Table 1. 
 

Table 1. The performance of the spectrum utilization of the spectrum prediction and 
spectrum sensing. 

cM  sense( )SN  predictor-1( )SN  predictor-2( )SN  ( Lη )predictor-1(%) ( Lη )predictor-2(%) 
3 15825 24524 28425 54.97 79.62 
4 15763 24925 29154 58.12 84.95 
5 16254 25472 31023 56.71 90.86 
6 16342 25869 31872 58.29 95.03 
7 15836 26331 32531 66.27 105.42 
8 16173 26792 33324 65.65 106.05 
9 16481 27538 34056 67.09 106.63 
10 16533 28137 34873 70.19 110.93 

 
The other simulation task was to evaluate the savings in the energy consumption using the 

spectrum prediction. In a single channel scenario, SUsense sensed the spectrum at all the time 
slots, while SUpredictor-1 or SUpredictor-2 sensed the spectrum only at the idle time slot. Similarly, 
we assumed that these nodes had the same spectrum sensing capability and accuracy. 
Assuming that the energy consumed in a time slot is ∆ , the total energy required for SUsense is 
 

sense =E α∆                                                                (17) 
 
where α  is the number of time slots for spectrum sensing. The total energy required by 
SUpredictor-1 or SUpredictor-2 is 
 

predictor x sense=E E β− − ∆                                                       (18) 
 
where β  is the number of idle slots predicted by SUpredictor-1 or SUpredictor-2. Therefore, 
according to equations (17) and (18), the ratio of the reduced energy required for spectrum 
sensing is 
 

sense predictor x
E

sense
= 100%

    = 100%

E E
E

η

β
α

−−
×

×

                                             (19) 
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The simulation results are shown in Table 2. 
 

Table 2. The ratio of the reduced energy required for spectrum sensing. 
ε  intert  β predictor-1 β predictor-2 ( Eη )predictor-1(%) ( Eη )predictor-2(%) 
0.5 6 15524 17539 44.35 50.25 
0.8 6 24537 28923 70.10 82.63 
0.5 8 15382 17364 43.95 49.61 
0.8 8 23349 28657 66.71 81.88 
0.5 10 15396 17278 43.99 49.37 
0.8 10 23453 28865 67.01 82.47 
0.5 12 15334 17296 43.81 49.41 
0.8 12 23388 28792 66.82 82.26 

5.3 Discussion 
The experiments in section 5.1 showed that the convergence speed of the training spectrum 
predictor with the EKF is faster than that with the stochastic gradient descent method, and the 
time consumed by the former is about 1/10 of the latter. After the training was completed, the 
NMSE with the EKF was smaller than that with the stochastic gradient descent method. This 
means that in the application of cognitive radio, when the electromagnetic environment 
changes, the training method using the EKF can quickly adapt to the new environment and 
achieve a better prediction accuracy. Increasing the number of hidden layers of the DRNN 
reduces the prediction error. However, the increase of the number of hidden layers increases 
the complexity, and the training time is longer. In addition, the error increases gradually with 
the increase of the predicted number of time slots. 

The simulation in section 5.2 shows that the improvement of the spectrum utilization and 
the reduction of the energy consumption in cognitive radio communication can be obtained by 
using the spectrum prediction method. When compared to the indexes of the channel 
utilization in Table 1, it shows that the spectrum prediction can improve the channel utilization. 
The increase in the number of channels improves the spectrum utilization, and the spectrum 
prediction of the multiple time slot spectrum is higher than that found with one time slot. The 
energy consumption of the cognitive radio system is reduced because the spectrum prediction 
avoids the sensing spectrum when the channel is occupied, which is verified by the data in 
Table 2. The energy consumption of SUpredictor-1 and SUpredictor-2  varied with different traffic 
intensities, and the energy saving ratio is higher with the increase in the traffic. 

6. Conclusion 
In this paper, we investigated the structure of the spectrum predictor based on the DRNN, and 
used it to predict the channel state. We adopted the MIMO strategy to realize the multiple time 
slot spectrum prediction, which is different from the previous prediction methods. In order to 
facilitate the multiple slot spectrum prediction, the continuous channel state was divided into 
multiple time slots, and only the maximum value of the signal energy in each time slot was 
selected to form the time series of the channel state. We adopted the EKF to improve the 
training speed of the spectrum predictor. The spectrum sensing and recording system was set 
up to acquire the historical spectrum sending samples. We carried out the training and 
spectrum prediction experiments with these samples, and the results show that the EKF has a 
shorter training time and smaller MNSE than the stochastic gradient descent method. We 
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analyzed the effects of the multiple slot spectrum prediction on the performance of cognitive 
radio networks. The simulation results show that the cognitive radio system with our method 
increases the channel utilization by 79%~110%, and reduces the energy consumption by 
50%~80%. 
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