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Abstract 

 
Reconfigurable Intelligent Surface (RIS) is an innovative technique to precisely control the 
phase of incident signals with the help of low-cost passive reflective elements. It shows 
excellent potential in the sixth generation of mobile communication systems, which not only 
extends wireless coverage but also boosts channel capacity. Considering that multipath 
propagation and a high number of antennas are involved in RIS in assisted mega multiple-
input multiple-output (MIMO) systems, it suffers from severe channel fading and multipath 
effects, which in turn lead to signal instability and degradation of transmission performance. 
To overcome this obstacle, this essay suggests an improved gradient optimization algorithm 
to dynamically and optimally adjust the phase of the reflective elements to counteract channel 
fading and multipath effects as a strategy. In order to overcome the optimization problem of 
falling into local minima, this paper proposes an adaptive learning rate algorithm based on 
Adagrad improvement, which searches for the global optimal solution more efficiently and 
improves the robustness of the optimization algorithm. The suggested technique helps to 
enhance the estimate of channel efficiency of RIS-assisted large MIMO systems, according to 
simulation results. 
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1. Introduction 

With 5G networks developing so quickly, there are increasing demands on the performance 
and capacity of wireless communication systems. Massive MIMO systems have attracted 
extensive research interest as a technique for spatial multiplexing through the application of 
several antennas, which significantly improves communication system performance, such as 
signal transmission efficiency and reliability [2,3]. Compared to 5G networks, 6G networks 
have higher requirements for performance metrics such as system saving energy, speed of 
transmission, dependability, and lag [1].  

Reconfigurable Intelligent Surface (RIS) has emerged as a revolutionary concept in the past 
few years of wireless communication technology [4-11]. It is made up of several controllable 
inert tiny reflective elements. The values of the reflection coefficients of the reflective 
elements can be intelligently adjusted by programmable controllers, allowing the reflected 
signals to be propagated in a desired manner to the intended receivers. This makes the wireless 
environment controllable and programmable, enabling effective adjustment of the signal's 
transmission direction and enhancement of the signal's coverage, thus improving the 
functionality of the communication system. RIS is a more energy-efficient and cost-effective 
technology compared to existing amplify-and-forward relay-assisted communications [12-15]. 

Since RIS has the characteristics of low power consumption, flexible installation, can meet 
the requirements of future green communication, and has the sustainable development ability 
to cope with the growing number of users and applications, numerous academics both 
domestically and internationally have paid much attention to its development and conducted 
research in many aspects. In the research of channels estimate in mobile communications 
supported by RIS: 

The authors in [16] propose a least squares-based algorithm for channel estimation for 
single RIS and dual RIS-assisted MIMO systems, and the outcomes of the simulation indicate 
that the dual RIS system enhances the channel estimation accuracy while reducing the training 
overhead. The authors in [17] used triangular inequality and successive convex approximation 
(SCA) methods to jointly optimize the phase shift of RIS elements in a multiple-input single-
output (MISO) system, and the simulation results showed that the joint optimization resulted 
in a significant improvement in energy efficiency. The proposed optimized method 
demonstrates a 10.3% enhancement over the conventional Statistical Channel State 
Information (SCSI) algorithm. A technique based on least squares and alternating least squares 
decomposition was presented by the authors in [18] for RIS-assisted multiuser MISO systems' 
channel estimation, and the outcomes of the simulation indicate that the performance of the 
provided approach is improved in terms of initialization of the random channel matrix. The 
authors in [19] compared the performance of the minimum variance unbiased and minimum 
mean square error estimators in a MISO system with a RIS-assisted single user, and the 
numerical results showed that the minimum mean square error provided an improvement of 
more than 10 dB compared to the minimum variance unbiased estimator. The authors in [20] 
formulated a model of an RIS-assisted multiuser communication system considering blocking 
RIS and proposed a variational bayesian-based channel estimation algorithm that improves the 
robustness of the RIS blocking system while estimating the channel information and RIS 
assistance. The authors in [21] deployed a machine learning algorithm with three fully 
connected hidden layers for active and passive RIS elements to provide RIS-assisted channel 
estimation. The authors in [22] proposed a coverage maximization algorithm to solve the RIS 
placement optimization problem and finally obtained the optimal RIS direction. In literature 
[24], a hybrid solution for computing relatively small channel dimensions is suggested, and it 
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is illustrated using simulation that the proposed hybrid channel estimation method is 
significantly lower than other methods in terms of guide frequency overhead. Two sparse-
aware RIS channel estimation schemes based on compressed sensing algorithms have been 
proposed in the literature [25], and experiments have shown that the schemes can adaptively 
form a beam toward the receiver to improve communication quality. The authors in [27] used 
a maximum likelihood estimator combined with a maximum correlation estimator to achieve 
an energy-efficient and computationally efficient beamforming alternative. The authors in [28] 
derive the downlink and reachable rates for multiuser massive MIMO systems in the Riel 
channel model and propose a particle swarm optimisation approach to solve the rate 
maximisation problem under RIS continuous and discrete phase shifts. The authors in [29] 
considered the effect of phase shift optimisation on maximisation and rate in RIS-assisted 
massive MIMO systems in the presence of transceiver hardware defects in the direct link. 

With the release of the 6th generation mobile communications white paper, the problem of 
phase shift optimization for huge MIMO systems supported by RIS has received increasing 
attention [23]. In this piece of work, a phase optimization algorithm based on the combination 
of gradient descent method and adaptive learning rate is proposed for the RIS-assisted large-
scale MIMO system with adaptive change of phase parameters to improve transmission 
efficiency and coverage area, and good experimental results are obtained. The following is a 
summary of this paper's primary contributions: 

 

  In this work, based on the randomly generated transmit angle and signal arrival angle, 
by simulating the channel transmission process, the difference with the traditional method 
is that the fixed setting of parameters such as fading coefficients is discarded, and a 
random transmission channel model that is more in line with the practical needs is chosen. 
A rigorous mathematical framework and advanced probability distribution theory are 
used to ensure that the simulation results reflect the real signal transmission complexity 
in a highly controlled scenario. This innovative approach not only deepens the 
understanding of channel characteristics but also provides an accurate and reliable 
reference for future communication system design. 

  In this paper, an approach based on an adaptive gradient optimization algorithm is 
proposed to provide support for performance optimization of large-scale systems with 
multiple inputs and multiple outputs (MIMO). The algorithm uses the gradient descent 
method to dynamically adjust the phase of the reflective elements to effectively attenuate 
interference factors such as channel fading and multipath effects. In addition, the 
introduction of the mechanism of adaptive learning rate aims to solve the problem that 
the gradient descent technique frequently encounters local minima when solving non-
convex optimization issues, thus improving the accuracy of channel estimation. 

The remainder of the document is explained below: The system model is described in 
Section 2. Section 3 explains the RIS phase shift optimization problem and leads to the method 
suggested in this article. Section 4 evaluates the performance of this paper's algorithm through 
convergence, computational complexity, normalized mean square error, BER, RIS size, and 
guide frequency overhead. Section 5 summarises the paper and indicates future directions. 

2. System Models 
In this study, we examine a transmission model for a massive MIMO system with RIS 

assistance in the downlink. It is comprised of k Users, an RIS with NL passive reflective 
elements, and a BS with NM antennas, as seen in Fig. 1. 
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Fig. 1. Transmission scenario of RIS-assisted massive MIMO system 

 
If the transmission scenario encounters the obstacle situation shown in Fig. 1, resulting in 

the BS side not being able to reach the Users side directly, only a cascade channel exists in the 
transmission scenario for the BS side to reflect to the Users side via the RIS. Let the antenna 
response vector AoAi ∈CNL×Nf corresponding to each incidence angle and AoDi∈CNM×Nf 
corresponding to each outgoing angle, from the BS end to the RIS end, where NL denotes the 
RIS's number of reflecting elements, NM indicates how many antennas are there at the BS end, 
and Nf indicates the quantity of channels from the BS end to the RIS end, 
 AoAi = e(-jπ sin (θnmAOAi )*[0:NL - 1])T

 (1) 
 AoDi = e(-jπ sin (θnmAODi )*[0:NM - 1])T   (2) 
where, θnmAOAi  ~ U(- π

2
, π

2
),  θnmAODi ~ U(- π

2
, π

2
), denotes the BS end to the RIS end in using the 

probability distribution theory to generate a random incidence angle, and similarly, denotes 
the BS end to the RIS end in using the probability distribution theory to generate a random 
outgoing angle; the superscript T denotes the transpose operator. 

Denote by F the channel's matrices between the BS and RIS sides, 
 F = ∑ αi (AoAi ⨂ AoDi )

Nf
i = 1  (3) 

where, Nf denotes the number of channels from the BS end to the RIS end; αi denotes the 
fading coefficient of the i-th path; AoAi denotes the antenna response vector corresponding 
to the i-th incidence angle from the BS end to the RIS end; AoDi  denotes the antenna 
response vector corresponding to the i-th outgoing angle from the BS end to the RIS end; and 
⨂ denotes the tensor product. 

Similarly, denoting the channel matrix from the RIS side to the Users side by Hk, 
 Hk = ∑ αi

Nhk
i = 1  AoDk

(i) (4) 
where, Nhk denotes the number of channels from the RIS end to the Users end; αi denotes 
the fading coefficient of the i -th path; AoDk

(i)  denotes the antenna response vector 
AoDk∈CNL×Nhk corresponding to the signal outgoing angle of the i-th user from the RIS end 
to the Users end, 
 AoDk =  e(-jπ sin (θUsers )*[0:NL - 1])T     (5) 
where, θUsers  ~ U(- π

2
, π

2
) , θUsers denotes that the RIS end to the Users end at （- π

2
，
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π
2
）generates a random angle of incidence for each user using probability distribution theory; 

the operator for transposing is indicated by the superscript T. 
The channel matrix for user k is denoted Gk and consists of the channels matrices F 

connecting the RIS and BS sides and the channels matrices Hk from the RIS side to the Users 
side, denoted as, 
 Gk = diag((Hk)H) *F  (6) 
where diag((Hk)H) is denoted as being a diagonal matrices whose diagonal elements are 
components of (Hk)H ; the superscript H is denoted as the conjugate transpose operator. 

The noise matrix during channel transmission is NkϵCNM×Nbpilot,  

 N: , b , k = 
U: , (Nnpilot * (b - 1)+1) :(Nnpilot * b) *Userpilot: , k

√SNR * Nnpilot
 (7) 

where, N: , b , k∈CNM * 1  represents the noise received by the BS antenna from User k 
symbolised out at the b-th lead frequency;  U: , (Nnpilot * (b - 1)+1) :(Nnpilot * b)  represents the 
extraction of the noise submatrix associated with the current leading frequency symbol b；
Nnpilot denotes the number of guided frequencies sent by each User；Userpilot: , k denotes the 

pilot sequence sent by User k； SNR = S
N

, S denotes the signal power, N denotes the noise 
power, and SNR denotes the signal-to-noise ratio; the √SNR  ∗  Nnpilot is to ensure that the 
variance of the noise matches a given sign-to-noise proportion; Nnpilot is the length of the 
training sequence for each user. The U-matrix is denoted by, 
 U = 1

√2
(Nr+ j*Ni) (8) 

where, U∈CNM *(Nnpilot*Nbpilot)  denotes the complex Gaussian noise matrix with mean 0 
variance 1；Nr and Ni denote the real and imaginary parts of the complex Gaussian noise 
matrix, respectively；Each element in Nr  and Ni  is a random variable generated 
independently from a normal distribution with mean 0 variance 1； 1

√2
 is to ensure that both 

the real and imaginary parts of each complex noise element have a variance of 0.5 so that the 
entire complex noise element has a variance of 1. 

Joining Eq. (6) and Eq. (7) yields the received signal Yk, denoted as, 
 Yk  = Gk

H * V + Nk (9) 
where, Yk  represents the Users k 's received signal matrix; Gk is the channel matrix of 
Users k, which consists of the matrix of channels F from the BS side to the RIS side and the 
channel matrix Hk from the RIS side to the Users side; the combination of the coefficients 
for reflection at the RIS end is indicated by V ; Nk is the noise matrix; V denotes the matrix 
of reflection coefficients at the RIS end, 
 V = 1

√2
(N(0,1) + j*N(0,1))  (10) 

where, N(0,1) denotes the generation of an independently and identically distributed standard 
normal random variable with mean 0 and variance 1; j denotes an imaginary unit; and 1

√2
 is 

to ensure that the variance of the elements of V is 1 so that it is a standard complex Gaussian 
random variable. 

3. Phase-shift Optimization Problems 
In this research, we examine how accurate channel state data is in multiuser MIMO systems 
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with RIS assistance, and express the precision of the channel state data in terms of the 
Normalised Mean Square Error (NMSE), which is able to be stated as, 

 NMSE = Trace((G�-G)H(G�-G))
Trace(GH-G)

 (11) 

where, G� denotes the estimated channel matrix; G denotes the theoretical channel matrix. 

3.1 Optimization Algorithms 
In order to focus the signal energy in a specific direction and improve the energy 

efficiency and quality of signal reception. In this paper, we consider the introduction of 
optimization algorithms to change the phase of the reflective elements of the RIS, the common 
optimization algorithms are exhaustive, Newton's method, Lagrange multiplier, and gradient 
descent, the comparison Table 1 of these optimization algorithms is given as follows, 

 
Table 1. Comparison of optimization algorithms 

Algorithms Advantages Disadvantages 

Exhaustive indexing algorithm Simple and easy to implement 
High computational complexity, 

growing exponentially with 
coefficient size 

Newton's method Applicable to secondary 
optimization issues 

High computational complexity, 
especially in large-scale 

problems 

Lagrange multiplication 
For RIS phase-shift 

optimization problems with 
constraints 

Need to introduce Lagrange 
multipliers to deal with 

constraints, increasing the 
complexity of the problem; 

solving some errors 

gradient descent method Easy to implement, faster 
convergence 

For non-convex optimization 
problems, it is easy to fall into 

local minima 
 

The method used in this paper for the gradient descent approach is used to solve the RIS 
phase-shift problem of optimization, which is a very versatile optimization algorithm that 
makes the objective function gradually converge to a minimum by repeatedly adjusting the 
values of the parameters [30, 33]. Searching in the direction of the goal function's gradient is 
the fundamental idea behind this approach. 

The specific steps for the implementation of the gradient descent method are as follows: 
 

 Determine the objective function: suppose there is an objective function J(θ), 
where θ is a vector of parameters waiting to be optimized. 

 Determine the gradient vector: the gradient (or derivative) of the objective 
function ∇J(θ) is a vector that holds the goal function's partial derivatives with 
regard to each parameter. The direction of the gradient is the direction in which 
the function rises fastest at the current point. 

 Parameter update: The rule for parameter update is usually θ = θ - α*∇J(θ). 
In this paper, when using the gradient descent method for optimization, the aim is 

to compute the correlation when the leading frequency sequence is "LISpilot", so the 
intended purpose is the correlation value of J(LISpilot). The gradient algorithm, on the 
other hand, is a partial derivative of the objective function, and for each derivative 
sequence element LISpiloti , the gradient is computed as, 
 ∂J

∂LISpiloti
 = -LISpiloti + Dr*(Dr

H *LISpiloti) (12) 
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where, Dr
H  is the conjugate transpose of the transfer matrix Dr . Dr  is a matrix of 

NL×Gr; LISpilot refers to the lead frequency sequence. 
The gradient update is expressed as follows, 

 LISpiloti = LISpiloti - α* ∂J
∂LISpiloti

 (13) 

where α is a random parameter, specifically represented as model parameters for adaptive 
learning rate. 

3.2 Adaptive Learning Rates 
The adaptive learning rate used in this paper is capable of dynamically adjusting 

the size of the learning rate for different parameter updates based on their historical 
gradients [31]. This algorithm's fundamental concept is to utilize a higher learning rate 
for parameters that occur seldom and a lower learning rate for parameters that occur 
frequently. This adaptivity helps to better handle sparse features and frequently 
occurring features during training. 

The specific steps for the implementation of the adaptive learning rate are as 
follows: 

 

  Cumulative gradient squared term: the core idea of adaptive learning rate is to 
maintain a cumulative gradient squared term for each parameter. For each 
parameter wi, the algorithm maintains a cumulative squared gradient term Gi 
with an initial value of 0. Denoted as, 

 Gi = Gi +(∇J(wi))2 (14) 
where ∇J(wi) denotes the gradient of the loss function with respect to the parameter 
wi. 
  Modification of the learning rate: The rules for updating the learning rate are as 

follows: 
 learning rate = Initial learning rate

�Gi + ϵ
 (15) 

where, ϵ is a minuscule constant, mostly to prevent division by zero mistakes. 
 Parameter update: The final parameter update rule is: 
 wi = wi - learning rate ×∇J(wi) (16) 
where ∇J(wi) denotes the gradient of the loss function concerning the parameter wi. 

In this paper, during phase-shift optimization using adaptive learning rate-assisted 
gradient descent, the square of the gradient is accumulated in each iteration, denoted 
as,  
 Gt = Gt-1 + gt

2 (17) 
where Gt is the cumulative sum of squares of the gradients up to the tth iteration; 
similarly, Gt-1 is the cumulative sum of squares of the gradients up to the t − 1st 
iteration; and gt denotes the gradient vector of the tth iteration. 

Adjustment of the learning rate can be performed using equation (17), which can 
be expressed as, 
 ηt = η0

�Gt + ∈
 (18) 

where, ηt denotes the value of the learning rate after the tth iteration; η0 denotes 
the initial learning rate; and ϵ is a very small constant, mainly to avoid division by 
zero errors. 

The parameter update based on the results obtained from Eq. (18) can be expressed 
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as, 
 θ = θ- ηt × gt (19) 
where, θ is the model parameter to be updated, refers to the unknown number α in 
the gradient descent method. 

3.3 Improved Gradient Descent 
It can be seen through Eq. (12) and Eq. (13) that the issue at hand pertains to non-

convex optimization, and the gradient descent method is easy to fall into the local 
minima for solving the non-convex issue, and it is not possible to get the global 
minimum, so an improved gradient descent method is proposed as gradient descent 
method and adaptive learning rate (GDALR). the GDALR algorithm is to introduce 
the result of Eq. (19) into Eq. (13) instead of α. It can adaptively modify the parameter 
values according to the gradient values, which can better solve the present convex 
optimization problem, so that the probability of falling into the local minima is reduced, 
and the channel state information's correctness has increased. 

The GDALR algorithm is implemented in the following specific flow: 

 

 The first step is to initialize the LISpilot and ensure that the generated LISpilot is 
full rank. 

 The second step is to update the iterative optimization process in which the phase 
is optimized using a modified gradient descent method, i.e., the GDALR algorithm, 
and then the correlation of the new lead frequency sequence generated after the 
GDALR algorithm is calculated based on the Muturalance_correlance work. 

 The subsequent action is to judge the size of the newly generated correlation value 
new_cur and the original correlation value cur, and if new_cur > cur, then the 
assignment is made; otherwise, the calculation is repeated. 

 Repeat steps 2, 3, 4, 5, 6, 7, and 8 in the above table until the conditions of step 8 

Algorithm: GDALR algorithm 
Input: Get parameters such as receive matrix, transmit matrix, length, 

etc. from the structure system. 
Parameters such as num_iterations, initial_learning_rate, etc. 

Output: LISpilot0 
1：  If rank(LISpilot)≥N_bpilot 

then 
2：  for iter = 1:num_iterations 

3：  Calculate LISpilot correlation 

4：  Calculate the gradient according to equation (12) 

5：  Adaptive learning rate adjustment according to Eqs. (17) and 
(18) 

6：  Updating the guide frequency sequence 

7：  Recalculating correlations 

8：  if new_cur > cur 
 LISpilot = LISpilot0; 
            break; 
        end 

9：  Output LISpilot0 
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are met, then the loop will be jumped out, the assignment will be made and 
LISpilot0 will be output. 

4. Simulation Results Analysis 
To ensure that validation of the effectiveness of the improved gradient descent 

algorithm (GDALR algorithm) in enhancing the accuracy of the acquired channel state 
information in the system simulation of channel estimation for RIS-assisted massive 
MIMO systems. This paper further validates the ability of phase shift optimization 
without RIS and with sequence optimization about the precision of the channel status 
data collected for this system. Simulations are carried out using Matlab software to 
acquire the information about the channel status and the estimation effect is evaluated 
by convergence, computational complexity, normalized mean square error, bit error 
rate, pilot overhead ratio, and RIS size. 

4.1 Simulation Settings 
In this paper, we assume that the quantity of transmitting antennas at the BS is NM 

= 4, the quantity of passive reflective elements at the RIS is NL = 256, and the quantity 
of antennas at the service Users's end is k = 4. Number of each subframe ParameterB 
= 8, 16, 24, 40, 72, 128, 256. The guide sequence is a discrete fourier transform (DFT) 
matrix, the angle of incidence from the BS end to the RIS end is θnmAOAi , as well as 
the angle of departure between the Users end and the RIS end is θnmAODi . The 
incidence angle and the departure angle are random values of an angle in (- π

2
，

π
2

). 
Unless otherwise stated, the number of conduction subcarriers at the end of each user 
is fixed at 16, i.e., the conduction overhead is Np/ParameterBmax = 6.25%. For LS, LS-
Sequence, and LS-GDALR, the maximum number of iterations T = 100. In addition, 
for fairness, newer pilot modes, such as the uniform pilot scheme and the random pilot 
scheme, for RIS-assisted orthogonal frequency division multiplexing (OFDM) systems 
in [26], are considered as a baseline for comparison tests. All illustrations shown are 
obtained by averaging over 500 Monte Carlo experiments. The algorithms in this paper 
are described as follows, along with the comparison algorithms in the simulation 
results. 

 

 EWOA-CCS:The WOA algorithm refers to the whale algorithm, EWOA is an 
enhanced whale algorithm proposed based on the whale algorithm, which combines 
the press coding scheme (CCS) in the enhanced whale algorithm, called EWOA-
CCS. 

 CS-EWOA: Since the pilot allocation in the framework of compressed sensing (CS) 
has a significant impact on the channel estimation performance, it is proposed to 
combine the enhanced whale algorithm (EWOA) with compressed sensing (CS), 
called CS-EWOA. 

 EWOA-SOCP: In order to solve the non-convex optimization problem, the use of 
second-order cone programming with the augmented whale algorithm, called 
EWOA-SOCP, is proposed.  

 Uniform Scheme: represents the uniform pilot scheme (i.e., uniform position and 
average power) from the literature [26]. 

 Random Scheme: represents the random pilot scheme (i.e., random position and 
average power) from the literature [26]. 
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 LS: The sparse signal is first compressed by compressed sensing (CS), and then the 
channel estimation is solved using the LS estimator. 

 LS-Seqence: a sequence optimization algorithm is added to the LS algorithm 
solution, followed by a channel estimation solution. 

 LS-GDALR: The proposed GDALR optimization algorithm is added to the LS 
algorithm solution and finally the channel estimation solution is performed. 

4.2 Comparison of Convergence 
This subsection looks into how the number of iterations with various algorithms 

changes in relation to the change in the fitness value. From Fig. 2, it is evident that 
when there are more than 50 iterations, the fitness values of EWOA-CCS, CS-EWOA, 
and EWOA-SOCP are much greater than those of LS-GDALR, LS, and LS-Seqence 
[34]. In contrast, the three LS-based algorithms have better fitness values when the 
number of iterations is larger, but the fitness values obtained by LS-Seqence oscillate 
between [0.1,0.9] with larger fluctuations; the fluctuations of the fitness values of LS 
range between [0.05,0.42], which is more stable than that of the LS-Seqence method 
that can obtain a more stable fitness value, but in the case of the number of iterations 
less than 20 the fitness value obtained by LS algorithm is larger than the fitness value 
of the three EWOA-based methods; the fitness value obtained by LS-GDALR 
algorithm oscillates between [0.04,0.2], compared with less fluctuation, and the fitness 
value obtained is the most stable, and it can also be seen from the figure that LS-
GDALR algorithm outperforms the other algorithms in terms of convergence accuracy 
of fitness value. 

 

 
Fig. 2. Algorithm convergence comparison 
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4.3 Comparison of Computational Complexity 
To be fair, the method's computational complexity as presented in this paper is 

analyzed by considering the same amount of transmitting antennas NM at the BS end, 
the number of subframes, and the quantity of antennas k at the serving Users end. From 
Fig. 3, It is evident that when there are more than or equal to 40 subframes, the 
computational complexity of the three LS-based methods remains consistent and lies 
between [10^4,10^5]. From the subgraphs in Fig. 3, observations show that when there 
are fewer than forty subframes, the complexity obtained from the computation of the 
LS method and the LS-Seqence method remains the same, while the complexity 
obtained by the LS-GDALR algorithm is about 0.1 smaller than that of the other two 
methods. Overall, the LS-GDALR algorithm is considered to have low computational 
complexity and reduces the cost of computation. 

 

 
Fig. 3. Comparison of computational complexity 
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4.4 Performance Comparison of NMSE and BER 
Since this paper investigates RIS-assisted massive MIMO systems, only the bit 

error rate (BER) versus the cascaded channel's signal-to-noise ratio (SNR) and the 
normalized mean square error (NMSE) versus that ratio are taken into consideration. 
For cascaded channels, Fig. 4 shows the normalized mean square error (NMSE) vs 
signal-to-noise ratio (SNR). From the figure, it is evident that the normalized mean 
square error of each algorithm decreases as the SNR increases. However, it can be seen 
that the three LS-based algorithms mentioned in this paper perform superior to the 
three CS-based algorithms proposed in the literature [8], the uniformly inserted 
frequency-guided algorithm in [26], and the stochastic algorithms, which yield lower 
values of the normalized mean square error. For example, at 30 dB, the LS algorithm's 
normalized mean square error is reduced by 2.019*10-4 compared to the inaccuracy of 
the normalized mean square obtained by the EWOA-CCS algorithm; The normalized 
mean square error of the LS-Sequence algorithm is reduced by 2.022*10-4 compared 
to the inaccuracy of the normalized mean square obtained by the EWOA-CCS 
algorithm; The inaccuracy of the normalized mean square of the LS-GDALR algorithm 
is reduced by 2.022*10-4 compared to the error value obtained by the EWOA-CCS 
algorithm [34]. Although, at 30 dB, the LS-Sequence algorithm and LS-GDALR 
algorithm have the same difference in normalized mean square error reduction as the 
EWOA-CCS algorithm, the values of normalized mean square error for the LS-
Sequence algorithm and the LS-GDALR algorithm at this SNR are 1.47*10-7  and 
1.2*10-7  respectively. So, the LS-GDALR algorithm has better channel estimation 
performance.  

The link between signal noise ratio (SNR) and bit error rate (BER) in a cascaded 
channel is shown in Fig. 5(a). From the figure, it is evident that the BER value of each 
algorithm decreases as the SNR increases. However, it can be seen from the figure that 
the LS-based algorithm proposed in this paper has a smaller value of BER when the 
SNR rises, indicating the better performance of the LS-based algorithm, which is in 
line with the normalized mean square error performance in Fig. 4. For example, at 30 
dB, the BER value of the LS algorithm is 1.089*10-4 less than the Prefect CSI's BER 
value; the BER value of the LS-Sequence algorithm is 1.094*10-4 smaller than the 
BER value of Prefect CSI; the BER value of the LS-GDALR algorithm is 1.104*10-4 
smaller than the BER value of Prefect CSI. That is challenging to distinguish the BER 
output of the three LS-based algorithms from Fig. 5(a), so the BER effectiveness of 
the LS algorithm, LS-Seqence algorithm, and LS-GDALR algorithm is represented in 
Fig. 5(b), and It's evident from the graph in (b) as well as the sub-graphs of the graph 
in (b), that the BER performance of the three LS-based algorithms is the same only 
when the SNR is equal to 20 dB, and the BER values obtained from the LS-GDALR 
algorithm is less than that obtained from the LS-Seqence algorithm and LS algorithm 
for the other values of the SNR and the LS algorithm gives better performance. 
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Fig. 4. Normalised mean square error results for different signal-to-noise ratios 

 

 
Fig. 5(a). Results of BER with SNR 
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Fig. 5(b). Results of LS-based algorithm with BER for SNR variation 

 

4.5 NMSE and BER Performance Comparison for Various RIS 
This subsection examines how the normalized mean square error and BER 

performance of compressed channel estimation are affected by varying the amount of 
RIS reflection elements. The settings for the simulation are as follows: 
Pmax = 60dBm，N = 128,Np = 16，NL = 8，64，256, respectively. As shown in Fig. 6 
the resultant plots of normalized mean square error obtained for a different number of 
RIS reflection elements with increasing SNR, as the quantity of RIS reflection 
elements M increases from 8 to M=64, most of the algorithms show a gradual decrease 
in normalized mean square error with increasing SNR, only the LS algorithm shows a 
gradual increase in the normalized mean square error or keeps it unchanged with the 
increase in the SNR, so based on which LS-Seqence algorithm and LS-GDALR 
algorithm have been proposed. From the figure, it can be observed that both LS-
Seqence algorithm and LS-GDALR algorithm get better results as the SNR increases, 
e.g., at M=8, SNR=30dB, LS-Seqence algorithm and LS-GDALR algorithm reduce by 
0.1881 and 0.1883 compared to EWOA-CCS algorithm; at M=64, the SNR=30dB, the 
LS-GDALR algorithm reduces 0.0008 than the EWOA-CCS algorithm [34]. The 
estimation performance of most algorithms decreases when M is increased from 64 to 
256. This effect is due to the fact that, in real life, when the value of M is large, the 
resulting channel becomes more complex, so the accuracy of the channel estimation 
decreases. Based on the illustration, one can see that the LS-GDALR algorithm is 
gradually improving the channel estimation accuracy as the normalized mean square 
error value is decreasing with increasing M and SNR. 
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As shown in Fig. 7 the resultant graphs of BER obtained for varying quantities of 

RIS reflection elements with increasing SNR, the BER of all the algorithms decreases 
gradually with increasing SNR as the reflection elements of RIS go from 8 to 64 and 
one can see that the LS-based method suggested in this work performs better than 
EWOA based algorithm for channel estimation, e.g., the LS algorithm reduces the BER 
than EWOA-CCS algorithm by 1.839*10-4 for M=64,SNR=30dB; The LS-Sequence 
algorithm is 1.851*10-4  less than the EWOA-CCS algorithm; The LS-GDALR 
algorithm is 1.865*10-4 less than the EWOA-CCS algorithm. By the time M grows to 
256 from 64, the performance of the channel estimation of the EWOA-based algorithm 
decreases, while the channel estimation performance of the LS-based algorithm 
proposed in this paper improves, and the graphic shows that the LS-GDALR algorithm 
performs better in channel estimation than the other two techniques. 

 
 

 
Fig. 6. Normalised mean square error results with different RIS reflection elements 
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Fig. 7. BER results with different RIS reflection elements 

 
 

4.6 Performance Comparison of Pilot Overhead Ratio 
It is evident from Fig. 4 and Fig. 5 that the LS-based algorithm proposed in this 

paper obtains better results in relation to normalized mean square error and BER when 
the same number of leads Np = 16 is used. This subsection builds on this foundation 
and Fig. 8 compares the effect on the normalized mean square error values for different 
lead frequency overhead ratios. As shown in the figure, the normalized mean square 
error of all the algorithms decreases accordingly as the lead frequency overhead ratio 
increases. The algorithm proposed in this paper requires fewer guide frequencies than 
the EWOA-based algorithm to achieve the same normalized mean square error. For 
example, when the normalized mean square error is between [10−4,10−3], the EWOA-
CCS algorithm requires a lead ratio of 12.5%, while the three LS-based algorithms 
proposed in this paper require lead ratios between [4%,5%] [34]. These results 
demonstrate that the suggested technique may successfully lower the frequency 
conduction overhead and further minimize computing costs, improving spectral 
efficiency. 

0 5 10 15 20 25 30
1E-7

1E-6

1E-5

1E-4

0.001

0.01

0.1

1

BE
R

SNR

 Proposed EWOA-SOCP Scheme(M=8)  Proposed EWOA-CCS Scheme(M=8)
 Proposed EWOA-SOCP Scheme(M=256)  Proposed EWOA-CCS Scheme(M=256)
 Proposed EWOA-SOCP Scheme(M=64)  Proposed EWOA-CCS Scheme(M=64)
 LS(M=8)  LS-Squence(M=8)  LS-Gradient(M=8)
 LS(M=64)  LS-Squence(M=64)  LS-Gradient(M=64)
 LS(M=256)  LS-Squence(M=256)  LS-Gradient(M=256)



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024                  2043 

 
Fig. 8. Pilot overhead ratio results 

5. Conclusions and Future Work 
In this paper, an optimization method for RIS-assisted massive MIMO systems is 

investigated and an adaptive gradient-based optimization algorithm (GDALR 
algorithm) is proposed to bolster the channel estimation's correctness. Firstly, the 
results of channel estimation without the optimization method are presented; based on 
this, the RIS phase-shift optimization method with sequence optimization is suggested 
for the estimate of channels, and the results of the normalized mean square error at 
different signal-to-noise ratios show that the results of channel estimation without the 
addition of the optimization method are improved by 3.08*10-7 compared to the results 
of channel estimation with sequence optimization; Based on this, an adaptive gradient-
based optimization algorithm (GDALR algorithm) is proposed for channel estimation, 
and the GDALR algorithm improves the channel estimation results over the sequence 
optimization algorithm by 2.7*10-8. According to simulation results, the suggested 
approach performs better than the current schemes in terms of computational 
complexity, BER, RIS size, convergence, normalized mean square error, and pilot 
overhead ratio, all of which can obtain more accurate channel state information. 

Future directions for research: 
 

 When studying RIS-assisted massive MIMO systems, the computational 
complexity can be reduced while ensuring accurate channel state information; 

 Study of the dual RIS-assisted massive MIMO system problem. 
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