
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, Jul. 2019 3756
Copyright ⓒ 2019 KSII

A Cross-Platform Malware Variant
Classification based on Image

Representation

Hamad Naeem1, Bing Guo1*, Farhan Ullah1,2 and Muhammad Rashid Naeem1

1 College of Computer Science, Sichuan University, Chengdu, 610065, P.R. China
2Department of Computer Science, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan

[E-mail : hamadnaeemh@yahoo.com, guobing@scu.edu.cn, farhankhan.cs@yahoo.com,
rashidnaeem717@yahoo.com]

*Corresponding author: Bing Guo

Received November 24, 2017; revised November 14, 2018; accepted January 17, 2019;
published July 31, 2019

Abstract

Recent internet development is helping malware researchers to generate malicious code
variants through automated tools. Due to this reason, the number of malicious variants is
increasing day by day. Consequently, the performance improvement in malware analysis is the
critical requirement to stop the rapid expansion of malware. The existing research proved that
the similarities among malware variants could be used for detection and family classification.
In this paper, a Cross-Platform Malware Variant Classification System (CP-MVCS) proposed
that converted malware binary into a grayscale image. Further, malicious features extracted
from the grayscale image through Combined SIFT-GIST Malware (CSGM) description. Later,
these features used to identify the relevant family of malware variant. CP-MVCS reduced
computational time and improved classification accuracy by using CSGM feature description
along machine learning classification. The experiment performed on four publically available
datasets of Windows OS and Android OS. The experimental results showed that the
computation time and malware classification accuracy of CP-MVCS was higher than
traditional methods. The evaluation also showed that CP-MVCS was not only differentiated
families of malware variants but also identified both malware and benign samples in mix
fashion efficiently.

Keywords: CSGM, Internet security, Grayscale image, CP-MVCS, Malware Detection,
Machine Learning

The authors thank Dr. Bing Guo for many valuable comments that have improved the quality of this manuscript.
This work was supported in part by the State Key Program of National Natural Science Foundation of China under
Grant No.61332001；The National Natural Science Foundation of China under Grant No. 61772352, 61472050;
the Science and Technology Planning Project of Sichuan Province under Grant No. 2019GZDZX0045,
2018GZDZX0031, 2018GZDZX0004, 2017GZDZX0003, 2018JY0182.

http://doi.org/10.3837/tiis.2019.07.023 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019 3757

1. Introduction
Rapid growth in malicious code variants has posed a serious threat to internet security.
Symantec antivirus exposed more than 401 malicious code variants in a recent technical report
(2016) [31]. Besides this, the presence of malware in mobile phones also increased. In the
2016 year, Kaspersky Lab reported that the majority of mobile phones were insecure insense
of unpatched vulnerabilities. In the 2017 year, the cyber financial threat report showed that
banking malware attacked most of the users in Brazil, Vietnam, India, Russia, Germany, and
the US. The report exposed 767072 trojans’ attacks in banks [32]. In the 2014 year, the
Android technical reported 3.26 million malicious attacks. The number of users that
encountered Android malware attacks was 767,072 [1].

.

Fig. 1. Naming Scheme used by Microsoft Antivirus [30]

Malware not only divided into various classes but also identified by platforms, families and
variants. In this paper, we considered the naming convention used by Microsoft antivirus [30].
According to that naming convention, the first field indicated the platform on which the
malware designed to execute such as Windows, MacOS and Android etc. The second field
signified the family of malware that was determined by the structural similarity between
different malware. The third field was variant which used to distinguish between different
versions of the same family. The Fig. 1 showed the naming scheme used by Microsoft
antivirus. Malware variants belonging to the same family must have a similar structure, and it
is challenging to classify them into their relevant family.

Most of the scanning methods use specific signatures to detect malware. These scanning
methods are based on various techniques such as static and dynamic analysis. Static analysis
works by disassembling and executing the code without a virtual environment. On the other
hand, dynamic analysis works by running the code in a virtual environment. The dynamic
study is time intensive and resource consuming as each malware executable must be executed
for a specific time duration [3].

Most of the static analysis techniques used signatures for malware identification. These
methods showed low computational cost and high true positive rate. However, these
techniques could easily expose by ordinary code obfuscation. Currently, instead of straight
malicious code obfuscation, malware authors rely on packing tools. A packing tool is an
application that converts one binary executable by using different compression techniques,

3758 Naeem et al.:A Cross-Platform Malware Variant Classification based on Image Representation

that appears in different file size than the original file size. Besides this, the signatures of these
variants are also different from the actual one. Consequently, the Signature based techniques
need to store new signatures of these variants. It leads to an exponential growth in the
signature size and makes signature-based static analysis techniques less effective [33].

The expansion of malware is not only towards Windows OS but also towards also other
platforms such as Android, Linux and OS X. According to an Android report of the year 2014,
they detected 1.5 million Android malware applications. Likewise, Android malware, an
exponential increase in Linux and OS X malware are also analysed. Hence, the focus of
conventional malware detection methods such as static and dynamic code analysis is on a
specific platform. Moreover, the static code analysis works by disassembling an executable
file to analyse its control flow structure, and the dynamic code analysis works by real-time
execution of binary in a virtual environment to examine its behavioural characteristics.

Consequently, these methods are consuming too many resources due to the third party
decompile tools.

To target these challenges, this paper presented the following contributions:

1) We proposed a method that could detect malware of multiple operating systems such as
Windows OS and Android OS without knowing the difference between each operating
system.

2) We converted malware detection into an image classification problem by transforming
malware binary into a grayscale image. The method was capable of differentiating both
packed and unpacked malware binaries.

3) We extracted CSGM features that were more suitable for malware variant detection and
classification. The CSGM features consisted of local and global features of the malware
image.

4) Experimental outcomes indicated that CP-MVCS not only increased the classification rate
up to 98.40% for 25 malware families but also achieved 97.29% classification accuracy
for two classes(malware or benign).

The remaining sections of the paper are arranged as follows. Section 2 states related works for
malware detection, section 3 introduces a comprehensive methodology of CP-MVCS, section
4 shows experimental results and discussion. Finally, section 5 presents the conclusion and
future directions.

2. Related Works

One of the most emerging issues in the scientific community is malware variants detection and
family classification, which has drawn the significant attention of security analysts. Currently,
several works have been proposed such as graph-based methodologies [4] and [5],
sequence-based instruction methods [6] and [7], API based monitoring methods [8] and [9]

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019 3759

and behavioural methods [10] etc. Even though these works are helpful to detect both malware
and benign samples, but still, they have some problems such as they are unable to deal with
new malware variants. For example, Naqqash Aman et al. [11] proposed a technique that used
an enhanced and scalable version of the Cuckoo sandbox to generate behaviour reports. Later,
these behaviour reports extracted features for training a machine learning classifier. Although
their work could detect both pack and unpack malware executable still they were slow due to
the usage of third party tool for example Cuckoo sandbox.

Recently, several works have been proposed to analyse malware through visualization, for
instance, Kyoung Soo Han et al. [12] suggested a method that used entropy graphs to detect
and classify new malware and their variants. Similarly, Jae Hyun Lim et al. [2] proposed a way
that transformed malware binary information into image matrices to classify new malware
variants. Even though these works were useful to classify un-packed malware binaries, but
still they were unable to deal with packed malware binaries.

Various texture based visualization methods have been introduced to study new malicious
code variants such as Nataraj et al. proposed that an image texture analysis be more suitable to
classify the families of malware variants as compared to other existing malware analysis
techniques. Nataraj converted malware binaries into images and then classified GIST based
texture features with the nearest neighbour classifier. Parallel to Nataraj technique, kesav et al.
[14] also proposed a low-level texture feature extraction technique for malware analysis.
Kesay converted malware binaries into images and then extracted discrete wavelets transform
based texture features for classification. Aziz et al. [15] extracted wavelet transform based
texture features to identify new malware and their variants, and then supplied to feed forward
artificial neural network for classification. Next, Konstantinos Kosmidis [16] described a
two-step malware variant detection and classification method. In the first step, binary texture
analysis applied through GIST. In the second step, these texture features classified by using
machine-learning techniques such as classification and clustering to identify malware.
Subsequently, Ban Xiao Fang et al. [17] proposed a malware detection method that extracted
local binary features using SURF and then did fast fingerprint matching with LSH schemes.

Although works mentioned above [13], [14], [15], [16] and [17] are helpful to detect and
classify new malware and their variants, still they have some limitations. For instance, on the
one hand, global texture features lose local information needed for classification. On another
hand, they have significant computation overheads to process a vast amount of malware.

 3. Methodology

CP-MVCS designed to identify the families of known or unknown malware variants of
Windows OS and Android OS. The entire architecture of the proposed method was shown in
Fig. 2. There are sixth phases in proposed malware detection architecture. First, the user scans
the applications on a computer or mobile applications such as antivirus tools etc. Second, if the
application is recognised, then the scan results are sent to the user’s computer or mobile phone.

3760 Naeem et al.:A Cross-Platform Malware Variant Classification based on Image Representation

Third, if the application is unrecognised, then the system transforms the classes. Dex file (in
case of Android OS) or executable file (in case of Windows OS) into a grayscale image, as
discussed in section 3.1. Fourth, these grayscale images further store on a database of
back-end server. Fifth, these grayscale images feed into GPU computing pool of Matlab for
identification with the trained CSGM features, as discussed in section 3.2. Sixth, the results are
sent to the user’s computer or mobile phone.

Fig. 2. The entire architecture of CP-MVCS

3.1 Malware Binary Preprocessing

In this paper, there was a need to unzip apk file for Android code visualization. Each apk file
contained Dalvik Executable (DEX). We obtained byte code from apk file in three steps. First,
we decompressed the apk file and received the class. Dex file. Second, we converted the class.
Dex file into Java.Class file using the dex2jar tool. Finally, we used JD-GUI decompiler to
extract byte code from Java.class file. The entire process is shown in Fig. 3. In the case of
Windows code visualization, we took an executable file as an input data directly. Hence, there
was no need to decompile code for Windows OS.

APK FileAPK File Class.Dex FileClass.Dex File Java.Class FileJava.Class FileDex2Jar toolDex2Jar tool JD-GUI DecompilerJD-GUI Decompiler Byte codeByte code

Fig. 3. Android APK decompilation

The concept of CP-MVCS is purely based on the construction of malware information from
binary to an image. Our method for malware binary file to grayscale image transformation
consisted of three significant steps. Firstly, the malware binary bit string separated into
substrings. Each of substring was 8 bits in length and denoted as a pixel. Each eight-bit
deliberated as an unsigned integer (0-255). Secondly, the malware binary bit string converted
into a 1-D vector of decimal numbers. Thirdly, the 8-bit vector of decimal numbers

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019 3761

transformed into a two-dimensional matrix of the specified width. Finally, the two-dimension
array directly converted a grayscale image. The entire process is shown in Fig. 2. Furthermore,
the algorithm 1 described above steps briefly.

(a) Malware. C2LOPP (b) Malware. C2LOPgen!g

(c) Malware.Tesla (d) Malware.Zbot
Fig. 4. Demonstration of benign and malware images

Fig. 4 showed visualization results of proposed methods. From Fig. 4, it observed that
malware variants belonging to the same family were similar in texture and layout. The
malware variants belonging to the related family were different from each other in texture and
design. Beside this, we also observed that malware image size is not fixed and the reason
behind that it depended on the size of a malicious software program.

Algorithm 1: Malware Binary to Grayscale Image Transformation

Input: Malware Binary File MB
 1: File_Size get_file_size(MB)

2: Width get_width(File_Size)
3: Row size(MB)/Width
4: Column Width/8
5: Initialize arr[Row][Column]
6: for i=0 to Row do do
7: for j=0 to Column do do
8: arr[i][j]=convert 8-bit to unsigned integer (0-255)
9: end for
10: end for
11: Grayscale Image convert 8-bit vector to grayscale image

Output: Grayscale Image

3762 Naeem et al.:A Cross-Platform Malware Variant Classification based on Image Representation

3.2 CSGM Features Extraction

CSGM features extraction of CP-MVCS purely based on an image level, as both Dense SIFT
and GIST descriptors extracted independent features from malware image. There are three
steps to complete CSGM features extraction. The local features of malware image extracted by
using Dense SIFT descriptor in the first step, which described the edges and corners of an
image. The dimension of Dense SIFT descriptor reduced through Bag of Feature (BOF) [19]
paradigm. There are four phases to reduce the dimension of Dense SIFT descriptor through
BOF method. In the first phase, key features of malware image extracted from a dense grid
with the help of Dense SIFT detector. In the second phase, Dense SIFT descriptor selected to
compute 128-dimensional local features’ vector from the rectangular area where each key
feature expressed by a function as shown in Eq. (1).

FV dsift I s size boundsDSIFT = f (M , R , S , B) (1)

Where MI represented a binary image of dimension Dh×Dw; RS denoted resizing parameter; SSize
denoted the size of Dense SIFT descriptor; Bbounds represented the rectangular area around each
key point of a binary image. In our case, MI = (256,256) pixels; RS= (200,200) pixels; SSize =16
and Bbounds was by default complete malware image respectively.

In the third phase; the most illustrative patches of DSIFTFV needed to be identified, which
clustered into a pre-defined number of clusters using K-means [20] clustering technique,
whereas the whole process known as dictionary learning as shown in Eq. (2).

 L kmeans FV sizeDictionary = f (DSIFT , D) (2)

Where Dsize denoted dictionary size, whose value was 256 in our case.

 At the end; DSIFTFV assigned to closest visual features of pre-defined DictionaryL, whereas
the entire process known as descriptor quantisation. Once the whole dictionaryL learnt, each
quantised descriptor visualized in the form of a histogram. The value of histogram occurrences
varied between [0-1] scale and then generated BOF based Dense SIFT description by
calculating minimum Euclidean distance between DSIFTFV and DictionaryL, as shown in Eq.
(3).

MFD histogram FV LDSIFT = f (DSIFT , Dictionary) (3)

In our case, the total dimensionality of DSIFTMFD was 256. The complete sequence of reducing
the dimension of Dense SIFT descriptor through BOF method is shown in Fig. 5.

 The global features of malware image computed by using GIST descriptor [21] in the second
step, which provided texture and spatial layout of an image. There were three phases to
describe malware images through GIST descriptor. In the first and second phase of GIST
description, malware image filtered through a filter of various scales and locations and then

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019 3763

separated into blocks. In the last step, the average value of each block computed by GIST
descriptor. GIST description for malware image calculated by using Eq. (4).

 (4)

Where MI represented a malware image of dimension Dh*Dw; RS denoted resizing parameter;
Nb= (bx,by) represented a standard block size to divide malware image into horizontal and
vertical locations;

Fig. 5. BOF based on Dense SIFT description for malware image

Boverlap denoted overlap parameter to separate binary image in overlap or non-overlap blocks;
Fn represented a number of filters used to filter binary image, and Nsq denoted the number of
statistical quantities, i.e. mean and deviation used while computing the features description.
For our case, MI = (256,256) pixels; RS = (200,200) pixels; Nb = (4, 4); Boverlap =0; Fn =16;
Nsq=1 and dimensionality of GISTMFD was 256 (Fn ×Nb ×Nsq =16×16×1=256) respectively.
The sequence of steps to compute GIST description for malware image was shown in Fig. 6.

Fig. 6. GIST description for malware image

Finally, the combination of BOF based Dense SIFT descriptor with GIST descriptor obtained
by integration, and dimensionality of resulting CSGM features was 512. The CSGM features
description expressed by Eq. (5).

3764 Naeem et al.:A Cross-Platform Malware Variant Classification based on Image Representation

FD MFD MFDCSGM = wDSIFT +(1-w)GIST (5)

Here, w represented weighting parameter whose value depended on feature contribution in
malware classification. According to Hamad et al. [22], a small-scale feature point has more
considerable similarity to local information but requiring a broader range of global
information. Formula computed the Gaussian weighted [22] value for each pixel of the binary
image in Eq. (6).The brief explanation on CSGM features description is shown in algorithm 2.

2 2(() ())

22(,) 1

x x y yfeature feature

w x y e σ

− − − −

= −

 (6)

Algorithm 2: CSGM Features Extraction

Input: DictionaryL Dictionary Learning
 DSIFTFV DSIFT Feature Vector
 DSIFTMFD DSIFT Malware Feature Description
 GISTMFD GIST Malware Feature Description
 W Weight Parameter

1: if DictionaryL!= exist then
2: Compute DSIFTFV by using equation in (1)
3: Construct DictionaryL for DSIFTFV by using K-means clustering equation (2)
4: elseif DictionaryL= exist AND DSIFTMFD ! = exist then
5: Compute DSIFTFV by using equation (1)
6: Compute minimum Euclidean distance between DSIFTFV and DictionaryL
7: Construct histogram for DSIFTFV quantization by using equation (3)
8: Save 256-dimensional BOF based DSIFTMFD for each image
9: Compute and save 256-dimensional GISTMFD for each image by using equation (4)
10: Both DSIFTMFD and GISTMFD are concatenated to form CSGMFD using equation(5)
11: Calculate by using Gaussian weight formula in equation (6)
12: Save 512-dimensional CSGMFD for each image
13: else Initialize both DictionaryL and CSGMFD for Classification phase
14: end

Output: CSGM Feature Description

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019 3765

4. Experiments

4.1 Experimental Setup and Setting

The tests performed on CPU version Intel i5-4258U @ 240 GHz, the RAM was 4.0 GB, the
operating system was Windows 10, and Matlab version R2017a developed the proposed
method. The classifications and detections of CP-MVCS performed by Matlab [23] and Weka
[24], which are open source data mining tools. Previously, several works [13, 14, 15, 16, 17]
used machine-learning classification for malware detection with Naïve Bayes (NB), Nearest
Neighbor (KNN) and Support Vector Machine (SVM). To obtain the best suitable classifier
for experimentation, these classifiers compared with each other on Malimg dataset, as shown
in Table 1. Due to the imbalanced dataset, the F-measure considered for comparison of all
classifiers. The F-measure of KNN was 1.7% higher than that of NB and 6.4% higher than that
of SVM. Using KNN classification algorithm of CP-MVCS, most of the performance
indicators attained better results. For final classification of CP-MVCS, KNN was best suitable
classifier between SVM and NB.

Table 1. The comparison of the performance of CP-MVCS on different classification algorithms
Classification Method TPR FPR F-measure Accuracy

SVM 0.902 0.0017 0.907 0.902
NB 0.965 0.001 0.954 0.967

KNN=3 0.982 0.0007 0.971 0.984

Zhihua et al. [36] indicated that texture features were lost in a smaller size image. While
texture features were more apparent in larger size image, they also mentioned that bigger
image required high computational time for training. From Table 2, CP-MVCS took more
time to train larger image size. Therefore, we reshaped malware image into 256*256 size, as
CP-MVCS performed better on that image size.

Table 2. The comparison of the performance of CP-MVCS on different image ratios
Image Ratio Accuracy (%) Prediction Time (sec)

156*156 95.57 9.43
256*256 98.40 9.62
356*356 98.87 16.39

Finally, three kinds of matrices such as True positive ratio, False positive ratio, F-measure and
accuracy used for performance evaluation. Here, True positive and False positive represented
the number of malware samples false and true classified. Similarly, the True negative and
False negative represented the number of benign samples false and true classified.

True PositiveTrue Positive Ratio =
True Positive+False Negative

 (7)

3766 Naeem et al.:A Cross-Platform Malware Variant Classification based on Image Representation

False PositiveFalse Positive Ratio =
False Positive+True Negative

 (8)

2*True PositiveF-measure =
2*True Positive+FalsePositive+False Negative

 (9)

True Positive+True NegativeAccuracy =
True Positive+True Negative+FalsePositive+False Negative

 (10)

4.2 Malware Datasets Collection
Four public datasets: Malimg dataset, Malheur dataset, Virus share dataset and Android
dataset used for evaluating CP-MVCS. Malimg dataset consisted of 9339 samples belonging
to 25 Windows malware families and contained 617 benign samples. The dataset is the
mixture of both packed and unpacked malware samples obtained from vision research lab of
University California [25]. Malheur database obtained from a security research group of the
University of Erlangen [26], which consisted of 3131 unpacked samples from 24 malware
families. For experimental purpose, we selected only 17 malware families who had at least 13
samples. Virus share dataset [27] obtained from Virus share portal, which comprised over
unpacked 2630 samples belonging to 14 Windows malware families. To assure that all those
samples were malware, we scanned them using Virus Total [34]. We selected only those
samples, which were reported as malicious. For labelling these samples, we used the label
provided by Microsoft antivirus, as listed in Table 3. Beside this, we collected 4000 Android
malware samples and 2000 benign Android samples from IKM Laboratory National Cheng
Kung University, Taiwan [28].

Table 3. Information on malware samples
Dataset Malware Families

Malimg [25]

Adialer.C, AgentFY.I, Allaple.A, Allaple.L, Aluerongen!.J, Autorun.K,
C2LOPgen!g, C2LOP.P, Dialplatform.B, Dontovo.A, Fakerean, Instantaccess,
Lolyda.AA1, Lolyda.AA2, Lolyda.AA3, Lolyda.AT, Malexgen!.J,
Obfuscator.AD, Rbot!gen, Skintrim.N, Swizzorgen!E, Swizzorgen!
I,VB.AT,Wintrim.BX,Yuner.A

Virus share [27]

Adnel, Ardamax, Bartallex, Conficker, Cutwail, IRCBOT, Locky, Rbot, Sirefef,
Tesla, Zbot, Phobi, Rootkit, Agent

Malheur [26]

Adult Browser, Allapl.E, Bancos, Casino, Fly studio, Looper, Porndialer,
Rotator, Salty, Spygames, Swizzor, Vapsup, Viking Dll, VikingDz, Virut,
Woikoiner, Zhelatin

4.3. Experimental Results

4.3.1 Effect of Different sizes of Training Sets on Classification Rate of CSGM
features

Several experiments conducted to compare the performance of CSGM features over
traditional features, i.e. GIST features and Dense SIFT features. GIST is the global descriptor
whose dimensionality is 512, whereas dimensionality of Dense SIFT descriptor is 512. Apart
from these, CSGM features are the combination of both Dense SIFT and GIST features whose

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019 3767

dimensionality is 512. In this experiment, CP-MVCS evaluated with a compressed training set.
The experimental samples took from Malheur dataset [26]. The research conducted on three
types of features named Dense SIFT features (shape, edge), GIST features (texture) and CSGM
features (edge, Shape, and texture). By comparing classification results of different feature
extraction techniques in Fig. 7, it concluded that the CSGM features were superior to individual
GIST features or Dense SIFT features. The comparison of feature extraction techniques
measured by overall accuracy. The lowest classification rate on CSGM features was 62.33%
when the size of the training set reduced to 10% of the total dataset. When the training set was
about 80 % of the entire dataset, the maximum classification rate on CSGM features was
94.13%. Besides this, the accuracy of Dense SIFT features 4.89% was higher than GIST
features. Even though GIST features achieved the lowest efficiency, but it increased the
efficiency of Dense SIFT features by 12.01%. Hence, it concluded that the addition of GIST
features naturally enhanced the effect of the overall classification. The overall result also
showed that the classification accuracy of CP-MVCS was not over-reliant on the training set.
To reduce the risk of misclassification, we selected 80% training and 20% test data for further
experimentation.

 Fig. 7. Classification rate for different sizes of training sets

4.3.2. Effect of CSGM features on Classification Rate and Run Time Cost

Three cases considered for evaluating classification performance and run time cost between
CSGM features and traditional features. The classification stability of CSGM features
identified by examining the classification performance of each family with overall run time
improvement in case I. The detection performance with betterment in running time of CSGM
features evaluated by unknown malware detection in case II and case III respectively. The
detail experimental results of three cases discussed one by one in this section.

The case I: The critical section of the experimental repository was malware samples, collected
from Malimg dataset [25]. Malimg dataset randomly separated into a training set, and the
resemblance between families of the training set computed through three different types of

3768 Naeem et al.:A Cross-Platform Malware Variant Classification based on Image Representation

features in this case. The comparison of the overall classification rate among CSGM features
and traditional features was shown in Table 4. As shown in Table 4, CSGM features
outclassed the conventional features in the terms overall classification accuracy. The
maximum accuracy obtained on CSGM features was 98.40%, whereas it provided the highest
TP rate (98.20%) and lowest FP rate (0.07%) among traditional features.

Table 4. Comparison of classification rate among CSGM features and former features in Case I
Features Type Feature-length TPR (%) FPR (%) Classification Accuracy (%)

Dense SIFT 512 89 0.19 89.29
GIST 512 93.10 0.13 93.44

CSGM 512 98.20 0.07 98.40

The classification accuracy results for three different types of features were shown in Fig. 8.
The experimental outcomes also showed that the CSGM features achieved better
classification accuracy than former features among most malware families. The The
entire classification of CSGM features between each malware family was shown with various
evaluation matrices in Fig. 9.

Fig. 8. Comparison of classification accuracy among CSGM features, Dense SIFT features and GIST

features.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019 3769

Fig. 9. Classification of CSGM features among each malware family with various performance
matrices

The experimental results showed that average classification accuracy of CSGM features
ranged from 0.98-1. The results showed that the CSGM features classified most of the malware
families with better accuracy, TP rate, F-measure and lowest FP rate. The range of TP rate was
0.84-1 and FP rate was 0-0.0129. The classification accuracy of CSGM features among each
malware family also presented with confusion matrix in Fig. 10.

Fig. 10. Confusion matrix among each malware family for CSGM features

The confusion matrix indicated that CSGM features separated most of the malware families
efficiently. However, there was confusion among families Allaple .A, Allaple .L,
Aluerongen! .J, C2LOP.P, C2LOPgen!.g, Lolyda.AA1, Lolyda.AA2, Lolyda.AT,

3770 Naeem et al.:A Cross-Platform Malware Variant Classification based on Image Representation

Lolyda.AA3, Obfuscator.AD, Rbot! gen, Swizzorgen! .E and Swizzorgen! .I. Most of these
were variants of Allaple, C2LOP, Lolyda and Swizzorgen families, which meant that image
visualization of variants of these families appears similar in structure.

Case II: The entire families of Malimg dataset [25] combined as a malware set. The dataset
consisted of 9339 malware samples and 617 benign samples. The samples include in test data
were unknown as they were not used in the training phase. The overall detection accuracy of
three diverse types of features was shown in Table 5.

Table 5. Comparison of classification rate between CSGM features and former features in Case II
Features Type Feature-length TPR (%) FPR (%) Classification Accuracy (%)

Dense SIFT 512 88.46 0.20 88.68
GIST 512 90.84 0.19 91.16

CSGM 512 97.20 0.09 97.29

CSGM features outperformed conventional features regarding overall detection accuracy. The
overall detection accuracy (97.29 %) with highest TP rate (97.20 %) and lowest FP rate
(0.09 %) achieved on CSGM features. Hence, in the case of maximum training samples, it
concluded that the CSGM features were more suitable to deal with unknown malware
detection than the previous features.

Case III: To minimise the effect of unbalance data in Malimg dataset [25], the ratio of data
kept same to ensure that the proportion of each family of training and test sets remained the
same. After picking 617 malware and 617 benign samples, three different types of features
used to evaluate the detection performance of unknown malware. The dimension of features
minimized to 256. The results for the detection accuracy of each kind of features were shown
in Table 6. The accuracy of GIST features 8.9% was higher than that of the Dense SIFT
features. Though the accuracy of the Dense SIFT features was lowest, it considerably
enhanced the overall efficiency of GIST features by 1%. It showed that the addition of local
feature always increased the effect of detection.

Table 6. Comparison of classification rate between CSGM features and former features in Case III
Features Type Feature-length TPR (%) FPR (%) Classification Accuracy (%)

Dense SIFT 256 89.00 10.57 89.43
GIST 256 97.97 3.07 97.40

CSGM 256 98.00 2.04 97.96

Run time cost: The prediction time of different features recorded on Malimg dataset [25]. The
dimension of each feature was 512. In Fig. 11, the prediction time of GIST features was 0.4
seconds longer than Dense SIFT features. While the prediction time of GIST features was 0.2
seconds longer than CSGM features. Although the extraction time of CSGM features was
slightly shorter than GIST features, still it was more accurate to process small-scale and
large-scale malware features, as discussed in the above experimentation.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019 3771

Fig. 11. Prediction time cost for CSGM, GIST and Dense SIFT features

4.3.3. Effect of Packed Malware on CP-MVCS Classification Rate

There was a misunderstanding that if two malware binaries belonging to different families
were packed (code obfuscation) using the same packer, then they had similar characteristics.
Unfortunately, the conventional static code analysis techniques did not capture the structural
features of a malware binary. After packing with the same packer, the images of malware
variants belonging to different families were indeed different [33]. In our malware
visualization results, the visual similarity among packed variants of a family maintained as
shown in Fig. 12 (a-b). We also observed that unpacked variants of both families were
completely different from their packed variants in Fig. 12 (c-d).

(a) Packed Agent.FUPX (b) Packed Phobi.FUPX

(c) Unpacked Agent (d) Unpacked Phobi
Fig. 12. Unpacked and packed variants of Agent and Phobia families

3772 Naeem et al.:A Cross-Platform Malware Variant Classification based on Image Representation

For our case, we collected 181 unpacked binary executables from Virus share [27] portal. As
we performed supervised learning of classification, we labelled these binary executables using
Virus total [34] search engine. To evaluate the performance of CP-MVCS over packed
malware, we selected 48 unpacked binary executables and packed them using FUPX packing
tool [35]. We performed dataset mixing using two different ways. First, we prepared eight
families dataset by mixing unpacked and the packed malware families. We treated packed
families as new families as shown in Fig. 13 (a). We attained 87.86% classification accuracy
while took only 181 samples (133 unpacked samples and 48 packed samples) of 8 malware
families. Second, we prepared five families dataset by mixing packed and unpacked malware
families. We treated packed and unpacked families as a single family as shown in Fig. 13 (b).
We obtained 78.26% classification accuracy while took only 181 samples (133 unpacked
samples and 48 packed samples) of 5 malware families. For both experiments in CP-MVCS,
the packed variants did not misclassify with their unpacked variants. The results showed that
similarity was preserved in the dataset, which contained both unpacked and packed malware
variants.

(a) 8 Families Dataset (Acc=87.86%) (b) 5 Families Dataset (Acc=78.26%)

Fig. 13. Confusion matrix for both Unpacked and Packed malware families

4.3.4 Effect of Datasets from Different Operating Systems on CP-MVCS
Classification Rate

The classification accuracy of CP-MVCS verified on malware samples of Windows OS and
Android OS. The experiment performed on five popular malware datasets of Windows OS and
Android OS. In each dataset, the number of malware families described in Table 3. The
performance of CP-MVCS over Windows OS and Android OS was shown in Table 7.

Table 7. Effect of datasets from different operating systems on CP-MVCS classification rate
Dataset Operating System TPR FPR Classification Accuracy

Virusshare [27] Window OS 0.962 0.005 0.962
Malheur [26] Window OS 0.975 0.0005 0.975
IKM Laboratory [28] Android OS 0.975 0.03 0.963
Virusshare + IKM Lab Window OS + Android OS 0.909 0.09 0.909

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019 3773

To verify the performance of CP-MVCS on combine dataset of Android OS and window OS,
we collected 1191 Windows malware samples,1999 Android malware samples and 1000
benign Android samples for the experiment. We observed that performance of CP-MVCS was
less accurate as compared to individual datasets of window OS and Android OS, but still, it
was acceptable. For combine datasets of Android OS and window OS, CP-MVCS obtained
maximum classification accuracy, as shown in Table 7. Hence, it proved that the classification
accuracy of CP-MVCS was not over-reliant on malware samples of the specific operating
system.

4.3.5 Comparison of CP-MVCS with Existing Previous Methods

CP-MVCS compared with texture-based visual analysis and bigram based static analysis to
evaluate the overall performance regarding classification accuracy. The texture based
visualization approaches proposed in [13], [15] and [16] compared with CP-MVCS were
shown in Table 8. The comparison conducted within Malimg dataset [25]. CP-MVCS showed
highest classification rate (99.21%) by processing 5288 samples from 8 malware families in
Malimg dataset. Similar to that, CP-MVCS also showed better classification rate (98.40%) by
taking 9339 samples from 25 malware families in Malimg dataset. Hence, it proved that
CP-MVCS was more appropriate for processing the massive amount of malware samples as
compared to other proposed works in [13], [15] and [16].

Table 8. Comparison of CP-MVCS with proposed malware visualization approaches

Method Feature Types
No. of Malware

Families

No. of Malware
Samples

Classification
Accuracy (%)

Nataraj et al [13] GIST 8 1713 99.93

Aziz et al [15] Gabor Wavelet,
DWT, GIST 8 3320 98.88

Our method CSGM 8 5288 99.21
Nataraj et al [13] GIST 25 9339 97.18
Konstantinos etal [16] GIST 25 9339 91.60

Our method CSGM 25 9339 98.40

Further, CP-MVCS compared with bigram based static analysis approach proposed in [29].
The complete comparison of both techniques with Malimg dataset [25] was shown in Table 9.

Table 9. Comparison of CP-MVCS with traditional n-gram static analysis approach

Method Feature Types No. of Families No. of Malware
Samples

Classification
Accuracy (%)

 Karim et al [29] Bigram 8 1713 98
Our method CSGM 8 5288 99.21

The overall classification time of CP-MVCS was 3.7 seconds; whereas the total classification
time of proposed bigram based static analysis in [29] was 5 seconds. From Table 9, it

3774 Naeem et al.:A Cross-Platform Malware Variant Classification based on Image Representation

observed that overall classification accuracy of CP-MVCS was much better as compared to
bigram based static analysis approach proposed in [29].

5. Conclusion and Future work

In this paper, a CP-MVCS has been proposed to analyze malware by processing malware
binaries as images visually. Our proposed CP-MVCS showed that variants belonging to same
malware family appear similar when they are converted to images. To get an ideal
performance of CP-MVCS, the visual similarities among malware variants are computed
through CSGM features description, and they are classified with various machine-learning
methods. Experimental outcomes showed that CP-MVCS detects malware variants and
organize families with a small false positive and a high true positive rate. It is not only
differentiated families of malware variants but also identifies mix malware and clean samples
efficiently. Although proposed CP-MVCS approach for malware variant detection and
classification is novel, still it is unable to detect section relocation. Due to this shortcoming, we
need to explore more localized feature extraction schemes such as LBP (Local Binary Pattern).
Even though in CP-MVCS, the classification time cost is better as compared to traditional
methods but still it needs to be more improved. We will use the PCA (Principal Component
Analysis) to target this issue. Moreover, in CP-MVCS, we used BOF model for local features
description, and local feature description is computed through K-means clustering algorithm
that is much slower. Hence, instead of K-means clustering algorithm, in future, we can use
other clustering algorithms such as GMM (Gaussian Mixture Model) for local features
description in BOF model.

References

[1] Thuy Yilin Ye, Lifa Wu, Zheng Hong and Kangyu Huang, “A Risk Classification Based Approach

for Android Malware Detection,” KSII TRANSACTIONS ON INTERNET AND INFORMATION
SYSTEMS, vol. 11, no. 2, pp. 959-981, February 2017. Article (CrossRef Link).

[2] KyoungSoo Han, Jae Hyun Lim and Eul Gyu Im, “Malware Analysis Method using Visualization
of Binary Files,” in Proc. of 2013 ACM Conf. on Research in Adaptive and Convergent Systems, pp.
317-321, October 1-4, 2013. Article (CrossRef Link).

[3] Asaf Shabtai, Robert Moskovitch, Yuval Elovici and Chanan Glezer, “Detection of malicious code
by applying machine learning classifiers on static features: A state-of-the-art survey,” Information
Security Technical Report, vol. 14, no. 1, pp. 16-29, February 2009. Article (CrossRef Link).

[4] S. Cesare,Y. Xiang and W. Zhou, “Control Flow-Based Malware Variant Detection,” IEEE
Transaction Dependable and Secure Computing, vol. 11, no. 4, pp. 307-317, July 2014.
Article (CrossRef Link).

[5] Shanhu Shang, Ning Zheng and Jian Xu, “Detecting malware variants via function-call graph
similarity,” in Proc. of 2010 IEEE Conference on Malicious and Unwanted Software, pp. 113-120,
October 19-20, 2010. Article (CrossRef Link).

[6] T. Abou-Assaleh, N. Cercone, V. Keselj and R. Sweidan, “N-gram based detection of new
malicious code,” in Proc. of 2004 IEEE Conference on Privacy, Security and Trust, pp. 193-196,
October 18, 2004. Article (CrossRef Link).

[7] Igor Santos, Jaime Devesa, Félix Brezo, Javier Nieves and Pablo Garcia Bringas, “OPEEM: A
Static-Dynamic Approach for Machine-Learning Based Malware Detection,” in Proc. of 2012

https://doi.org/10.3837/tiis.2017.02.018
https://doi.org/10.1145/2513228.2513294
https://doi.org/10.1016/j.istr.2009.03.003
https://doi.org/10.1109/TDSC.2013.40
https://doi.org/10.1109/MALWARE.2010.5665787
https://doi.org/10.1109/CMPSAC.2004.1342667

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019 3775

Springer Joint Conference CISIS’12-ICEUTE´12-SOCO´12 Special Sessions, pp. 271-280, 2012.
Article (CrossRef Link).

[8] Vinod P. Nair , Harshit Jain, Yashwant K. Golecha, Manoj Singh Gaur and Vijay Laxmi,
“MEDUSA: Metamorphic malware dynamic analysis using signature from API,” in Proc. of 2010
ACM Conf. on Security of Information and Networks, pp. 263-269, September 7-11, 2010.

[9] Qi-Guang Miao, Yun-Wang and Ying-Cao, “API Capture – A tool for monitoring the behavior of
malware,” in Proc. of 2010 IEEE Conference on Advanced Computer Theory and Engineering,
pp.390-394, September 20, 2010. Article (CrossRef Link).

[10] Matt Fredrikson, Somesh Jha and Mihai Christodorescu, “Synthesizing Near-Optimal Malware
Specifications from Suspicious Behaviors,” in Proc. of 2010 IEEE Conference on Security and
Privacy, pp. 45-60, May 16-19,2010. Article (CrossRef Link).

[11] Naqqash Aman, Naqqash Amanan, Fahim H. Abbasi and Farrukh Shahzad, “A Hybrid Approach
for Malware Family Classification,” in Proc. of 2017 Springer Conference on Applications and
Techniques in Information Security, pp. 169-180, 2017. Article (CrossRef Link).

[12] KyoungSoo Han, Jae Hyun Lim, Boojoong Kang and Eul Gyu Im, “Malware analysis using
visualized images and entropy graphs,” International Journal of Information Security, vol. 14, no.
1, pp. 1-14, April 29, 2014. Article (CrossRef Link).

[13] L. Nataraj,S. Karthikeyan,G. Jacob and B. S. Manjunath, “Malware images: visualization and
automatic classification,” in Proc. of 2011 ACM Conf. on Visualization for Cyber Security, pp. 1-4,
July 20, 2011. Article (CrossRef Link).

[14] Kesav Kancherla and Srinivas Mukkamala, “Image Visualization based Malware Detection,” in
Proc. of 2013 IEEE Conference on Computational Intelligence in Cyber Security, pp. 40-44, April
16-19,2013. Article (CrossRef Link).

[15] Aziz Makandar and Anita Patrot, “Malware Class Recognition Using Image Processing
Techniques,” in Proc. of 2017 IEEE Conference on Data Management, Analytics and Innovation,
pp. 76-80, February 24-26, 2017. Article (CrossRef Link).

[16] Konstantinos Kosmidis, “Machine Learning and Images for Malware Detection and
Classification,” 2017.

[17] Ban Xiaofang, Chen Li, Hu Weihua and Wu Qu, “Malware Variant Detection Using Similarity
Search over Content Fingerprint,” in Proc. of 2014 IEEE Conference on Control and Decision, pp.
5334-5339, May 31-June 2, 2014. Article (CrossRef Link).

[18] Ultimate Packer for Executables UPX. http://upx.sourceforge.net/
[19] Francesco Ciompi, Colin Jacobs, Ernst Th. Scholten, “Bag-of-frequencies: a descriptor of

pulmonary nodules incomputed tomography images,” IEEE Transaction on Medical Imaging, vol.
34, no. 4, pp. 962-973, November, 2014. Article (CrossRef Link).

[20] Yan Ke, R. Sukthankar, “PCA-SIFT: A more distinctive representation for local image
descriptors”, in Proc. of 2004 IEEE Conference on Computer Vision and Pattern Recognition, pp.
506–513, 27 June-2 July, 2004. Article (CrossRef Link).

[21] Aude OlivaAntonio Torralba, “Modeling the Shape of the Scene: A Holistic Representation of the
Spatial Envelope,” International Journal of Computer Vision, vol. 42, no. 3, pp. 145-175, May,
2001. Article (CrossRef Link).

[22] Hamad Naeem, Bing Guo, Muhammad Rashid Naeem,Muhammad Aamir,Muhammad Sufyan
Javed, “A new approach for image detection based on refined Bag of Words algorithm,” Optik -
International Journal for Light and Electron Optics, vol. 140, pp. 823-832, July, 2017.
Article (CrossRef Link).

[23] Weka. http://www.cs.waikato.ac.nz/ml/weka
[24] Matlab. https://www.mathworks.com/products/matlab.html
[25] Malimg Dataset. https://vision.ece.ucsb.edu/
[26] Malheur Dataset. https://www.sec.cs.tu-bs.de/data/malheur/
[27] Virus Share. http://www.virusshare.com/
[28] IKMLaboratory. https://sites.google.com/site/nckuikm/home/

https://doi.org/10.1007/978-3-642-33018-6_28
https://doi.org/10.1109/ICACTE.2010.5579452
https://doi.org/10.1109/SP.2010.11
https://doi.org/10.1007/978-981-10-5421-1_14
https://doi.org/10.1007/s10207-014-0242-0
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1109/CICYBS.2013.6597204
https://doi.org/10.1109/ICDMAI.2017.8073489
https://doi.org/10.1109/CCDC.2014.6852216
https://doi.org/10.1109/TMI.2014.2371821
https://doi.org/10.1109/CVPR.2004.1315206
https://doi.org/10.1023/A:1011139631724
http://dx.doi.org/doi:10.1016/j.ijleo.2017.05.018
https://www.sec.cs.tu-bs.de/data/malheur/

3776 Naeem et al.:A Cross-Platform Malware Variant Classification based on Image Representation

[29] Md. Enamul Karim, Andrew Wallenstein, Arun Lakhotia and Laxmi Parida, “Malware phylogeny
generation using permutations of code,” Journal of Computer Virology, vol. 1, no. 1, pp. 13-23,
December 20, 2005. Article (CrossRef Link).

[30] S. Nari, A. Ghorba.ni. “Automated malware classification based on network behavior,” in Proc. of
international conference on computing, networking and communications (ICNC), pp. 642-647,
2013. Article (CrossRef Link).

[31] Symantec, “Internet security threat report,” 2017.
[32] Kaspersky Lab, “Cyber financial threat report,” 2017.
[33] T. Ban, R. Isawa, S. Guo, D. Inoue, K. Nakao, “Efficient Malware Packer Identification Using

Support Vector Machines with Spectrum Kernel,” in Proc. of Eighth Asia Joint Conference on
Information Security, pp. 69-76, 2013. Article (CrossRef Link).

[34] Virus Total. https://www.virustotal.com/en/statistics/
[35] FUPX Packer. https://portableapps.com/apps/utilities/free_upx_portable
[36] Zhihua C, Fei X, Xingjuan C, Yang C, Gai-ge W, Jinjun C, “Detection of Malicious Code Variants

Based on Deep Learning,” IEEE Transactions on Industrial Informatics, vol. 14, no. 7, pp.
3187-3196, 2018. Article (CrossRef Link).

https://doi.org/10.1007/s11416-005-0002-9
https://doi.org/10.1109/ICCNC.2013.6504162
https://securelist.com/author/kaspersky/
https://doi.org/10.1109/ASIAJCIS.2013.18
https://portableapps.com/apps/utilities/free_upx_portable
https://doi.org/10.1109/TII.2018.2822680

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019 3777

Hamad Naeem He graduated from NFC IET, Multan, Pakistan, and Chongqing University,
Chongqing, China in 2012 and 2016, and received B.S. and M.E., respectively. He received
excellent master student award from Chongqing University, China in 2016. Currently, he is
pursuing Ph.D. degree in Software Engineering at Sichuan University, China. He has
published various articles in reputed SCIE and EI journals/conferences. His research interest
includes malware detection, image processing, internet security, and machine learning.

Bing Guo He received his BS degree in Computer Science from the Beijing Institute of
Technology in China, and MS and PhD degrees in Computer Science from the University of
Electronic Science and Technology of China, China, in 1991, 1999, and 2002, respectively.
He is currently a Professor in the School of Computer Science at the Sichuan University,
China. His current research interests include embedded real-time system and big data
management.

Farhan Ullah Farhan Ullah received his MS in computer sscience degree from CECOS
University Peshawar, Pakistan, in 2012 and BS in computer science degree from University
of Peshawar, Pakistan, in 2008. He is currently pursuing PhD degree in computer science
from School of Computer Science, Sichuan University Chengdu, China. He has
authored/co-authored 16 publications including 8 SCI/SCIE indexed journals. His research
interests include software similarity and data science.

Muhammad Rashid Naeem Muhammad Rashid Naeem was born in Rawalpindi, Punjab,
Pakistan in 1990. He received his bachelor’s degree in software engineering from
International Islamic University Islamabad, Pakistan and master’s degree in software
engineering from Chongqing University, China in 2012 and 2015 respectively. Currently, he
is PhD student at Sichuan University, China. He is author of various articles published in
reputed journals and conferences. His current research interests include mutation-testing,
software testing through static analysis and machine learning techniques.

