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Abstract 

 
With the proliferation of the Android malicious applications, malware becomes more capable 
of hiding or confusing its malicious intent through the use of code obfuscation, which has 
significantly weaken the effectiveness of the conventional defense mechanisms. Therefore, in 
order to effectively detect unknown malicious applications on the Android platform, we 
propose DroidVecDeep, an Android malware detection method using deep learning technique. 
First, we extract various features and rank them using Mean Decrease Impurity. Second, we 
transform the features into compact vectors based on word2vec. Finally, we train the classifier 
based on deep learning model. A comprehensive experimental study on a real sample 
collection was performed to compare various malware detection approaches. Experimental 
results demonstrate that the proposed method outperforms other Android malware detection 
techniques. 
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1. Introduction 

With the development of the mobile Internet, smartphone shipments grow rapidly, 
especially the domestic manufacturers of smartphones for the Android system. Android, as an 
open source and customizable operating system for smartphones, has more risks. According to 
the 2017 CVE(Common Vulnerabilities and Exposures) details report [1,2], the Android 
system ranked 842 holes among the number of product vulnerabilities, which is increased by 
61.0% as compared with that of 2016. Malicious software attack methods are diversified, and 
the distribution channels are multi-polarized, making it difficult to detect and prevent. As a 
result, manufacturers have a long delay in the repair of vulnerabilities. Faced with this severe 
challenge, we need better methods for malicious detection. 

Recently, a lot of researches have focused on signature-based detection methods, i.e., using 
static or dynamic analysis to discover high recognizable patterns [3,4,5], which are then used 
to characterize malware. However, this kind of methods would become less effective when 
detecting unknown malware. It’s more difficult to detect malicious applications using 
traditional methods due to code obfuscation, transformation attacks, etc. Moreover, during our 
analysis of Android applications for further studies, we have discovered that some of the 
benign applications also possess seemingly malicious characteristics, which makes them 
difficult to distinguish. Therefore, some recent researches tried to use machine learning 
techniques [6,7,8,9,10] to detect unknown Android malware. These works extract features 
using static or dynamic analysis and learn the difference between benign and malicious 
applications automatically. 

Deep learning, which is part of a broader family of machine learning methods based on 
learning data representations, has gained increasing attention in many fields. Deep learning 
architectures overcome the learning difficulty through stratified training, such as deep belief 
network [30], which pre-train multiple layers from bottom to up to construct the classification 
model. In this paper, we focus on the utilization of deep neural networks on feature 
representation to improve the detection performance. We propose DroidVecDeep, a novel 
Android malware detection method using deep learning technique. First, we extract various 
features from Android apps. Second, we transform these features into a high-level 
representation based on word2vec. Finally, we feed them into a deep learning model to build 
the classifier. Experiments on real-world apps show that deep learning and word embedding 
are suitable for characterizing Android malware features and improve detection accuracy. We 
make the following contributions: 

(1) We design DroidVecDeep, an automatic Android malware detection system, which 
combines static analysis and deep learning. 

(2) We extract various features and rank them by mean decrease impurity in random forest, 
which reduce feature dimensions and make the system more lightweight. Moreover, we 
transform the features into high-level representation using word2vec, which can then 
better characterize Android malware. According to the experiment, there is a 1-2% 
improvement in classification accuracy. 

The remainder of this paper is organized as follows. Related works are described in Section 
2. Section 3 briefly describes DroidVecDeep and its design. Section 4 introduces the details of 
feature extraction and deep learning model. The experiments we conducted and analysis are 
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described in Section 5.Finally, we draw our conclusions in Section 6. 

2. Related Work 
Feature Representation on Android Malware Detection 

Drebin[11] uses static analysis to extract as many application features as possible (such as 
permissions, API calls, network addresses, etc.) to characterize malicious applications; 
Maldetect[12] extracts Dalvik instructions from dex files and simplify them by symbolizing 
opcode. Then, N-gram encoding of the instruction sequence is used as the input feature of the 
classification; DroidSieve [13] extracts massive features centered on resources and semantics, 
and sorts the features to find the core features; FrequenSel [14]proposes a feature selection 
algorithm based on the frequency difference between the malicious application and benign 
application; HinDroid[15] extracts the API to construct a structured heterogeneous 
information network and characterized the relationship between APIs. The depth analysis and 
characterization of the extracted features make the classification better than the traditional 
detection methods. 

Yi Luan et al. [16] uses the word vector as the input layer of the neural network in the task of 
oral comprehension to alleviate the problem of overtraining; Edward Raff et al. [17] converts 
the bytes in the PE header into the word vector through word2vec, then map features to 
high-dimensional space for input layers of deep neural networks. A number of research studies 
have shown that transforming features into word vectors is used as an input layer of a deep 
neural network, which has a better application for classification tasks. 

Android Malware Detection using Deep Learning 
HinDroid[15] extracts APIs to build a structured heterogeneous information network, 

extracts multiple meta-paths, integrates different similarity methods using a multi-core 
architecture, and builds a classifier with better recognition capabilities; MalDozer[18]based on 
an artificial neural network that takes, as input, the raw sequences of API method calls, as they 
appear in the dex file, to enable malware detection and family attribution.; Deep4MalDroid[19] 
extracts Linux system kernel calls, constructs weighted directed graphs and uses deep 
confidence networks for malicious classification. 

DroidDetector[20] extracts Android applications Permissions, sensitive APIs, and dynamic 
behavior data, then firstly apply them into DBN, a deep learning model and achieved good 
results. DroidDeep[21] extracts more than 30,000 multi-level features and combines both 
static analysis and deep learning that is capable of detecting Android malware with a high 
accuracy and a low false alarm rate. 

The above work extracts and selects features from various perspectives, using a variety of 
deep learning models for modeling and classification. However, the treatment of features in 
some research work is relatively simple. The use of feature word embeddings combined with 
deep neural network has a good application in processing natural language and malicious 
detection in the PC field and has not yet been applied to mobile security detection. 

3. System Architecture 
In this section, we present the architecture of DroidVecDeep, as shown in Fig. 1, which 
consists of the following components. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019                              2183 

              

APK dataset

Feature Extraction 
& Selection

Feature 
Vectorization

 Deep Learning 
Model

Classification
Results

Benign App Malicous App

Apktool reverse Feature 
Documents

Permission、sensitive API etc.

RF MDI

Word embeddings——word2vec

 Pre-training Fine-Tuning

Benign Malicous

 
Fig. 1. Architecture of DroidVecDeep 

(1) APK dataset: We establish a dataset with 15,000 Android applications. It contains 
malicious applications of the most recent two months from Drebin[11], VirusTotal[22], 
and Contagio[23]. Since it is impossible to directly download APK from Google 
Play[32], so the benign samples are mainly downloaded from APKPure[24] and the 
domestic 360 application market[25]. To ensure the downloaded apks are benign 
applications, we download the most popular150 applications from 20 categories in the 
two application markets ranked by download counts.  

(2) Feature extraction & selection: We use static techniques to analyze applications. We 
extract features such as permissions, actions, and sensitive API calls, and use random 
forests for feature selection (See Section 4.1 for details). 

(3) Feature vectorization: We model the extracted features as a document, and then use 
word2vec to analyze the documents and transform the features into K-dimensional word 
vectors (See Section 4.2 for details). 

(4) Malicious classification: We use the DBN (Deep Belief Networks) model to establish an 
optimal detection classifier for Android application classification (See Section 4.3 for 
details). 

4. Feature Extraction and Classification 

4.1 Feature Extraction and Selection  
To systematically characterize Android apps, we conduct static analysis to extract four types 
of features. We reverse the APK and extract the AndroidManifest.xml file and the folder 
containing the smali source code with Apktool [26]. Then, we perform feature extraction as 
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follows: 

(1) We extract Permission and Intent Action from AndroidManifest.xml. Permission 
describes the permissions required by the application. Some of them would be potentially 
risky. For example, android.permission.ACCESS_WIFI_STATE is the permission to 
allow access to WIFI status, android.permission.SEND_SMS is the permission to allow 
send sms, android.permission.CALL_PHONE is the permission to allow make a phone 
call. In this step, we looked for a total of 120 risky permissions. We also scan the code to 
identify any explicit intents, which are used to start services within the same app. Action 
in Intent describes the common actions of the application, which is an important feature to 
represent malicious behavior. For example, android.intent.action.ANSWER is the intent 
to allow hand incoming calls, android.intent.action.CAMERA_BUTTON is the intent to 
allow take photos. 

(2) Java code is compiled to generate dex file, which can be run in the Android Dalvik virtual 
machine. The smali code is Dalvik's disassembly language, which can be obtained by 
decompiling dex files. Here, since there are a large number of common API calls shared 
between apps, we tend to analyze only sensitive APIs and use them for detection. For 
example, getDeviceId() can get the device information, and sendTextMessage() can send 
SMS. These methods have sufficient intent to reveal user privacy data or perform certain 
malicious operations implicitly. In this step, we analyze the smali code and extract more 
than 40 sensitive APIs as features. Some sensitive APIs are shown in Table 1. The risk 
level is based on the frequency of the API call by the malicious application. 

(3) We extract some sensitive strings from the smali source code as features. For example, 
ro.serialno indicates the unique device number, and sms_body is related to the text 
message. 

Table 1. Sensitive APIs 

Sensitive APIs Type Risk 
Level Sensitive APIs Type Risk 

Level 
getDeviceId Privacy High getNetworkOperator Privacy High 
getSubscriberId Privacy High getSimSerialNumber Privacy High 
getLine1Number Privacy High getAccounts Privacy High 
getInstalledApplications Privacy Medium getRunningAppProcesses Privacy Low 
getRunningTasks Privacy Low getPhoneType Privacy Low 
getNetworkOperatorName Privacy Low getAccountsByType Privacy Low 
getLastKnownLocation Location High getAllCellInfo Location High 
getNeighboringCellInfo Location High getCellLocation Location High 
startDiscovery Devices High setPreviewDisplay Devices High 
getBondedDevices Devices High MediaRecorder Devices High 
setWifiEnabled Devices High takePicture Devices Medium 
startPreview Devices Medium sendTextMessage Control High 
abortBroadcast Control High sendMultipartTextMessage Control High 
createFromPdu Control High SendDataMessage Control High 
requestLocationUpdates Control High execHttpRequest Control Medium 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019                              2185 

For each sample, we extract features based on the above steps and combine them as a 
feature vector. The preliminary extracted features are shown in Fig. 2. On the basis of these 
features, we conduct feature selection based on the Mean Decrease Impurity (MDI) 
importance [27] of random forests. 

SEND_SMS
CALL_BUTTON
getDeviceId()
sms_body
getDeviceId()
...

1

Permission Action Sensitive API Strings

ACCESS_WIFI_STATE
INSTALL_PACKAGES
CALL_PHONE
SEND_SMS
...

CALL
CALL_BUTTON
BATTERY_LOW
TIME_TICK
...

getDeviceId()
getLastKnownLocation()
sendTextMessage()
getLine1Number()
...

ro.serialno
sms_body
com.android.mms
...

Fig. 2. Features 

A classification tree is an input-output model represented by a tree structure T, from a 
random input vector (𝑋1, …𝑋𝑝)  taking its values in𝜒1 × … × 𝜒𝑝 = 𝜒 to a random output 
variableYϵγ. Any node t in the tree represents a subset of the space, with the root node being 𝜒 
itself. Internal nodes t are labeled with a binary test (or split) 𝑆𝑡 = (𝑋𝑚 < 𝑐) dividing their 
subset in two subsets corresponding to their two children 𝑡𝐿and 𝑡𝑅(c is a constant for subsets 
partitioning), while the terminal nodes (or leaves) are labeled with a best guess value of the 
output variable. A tree is built from a learning sample of size N drawn from 
𝑃(𝑋1, …𝑋𝑝,𝑌)using a recursive procedure which identifies at each node t the split 𝑆𝑡 = 𝑠 ∗for 
which the partition of the 𝑁𝑡  node samples into 𝑡𝐿and𝑡𝑅  maximizes the decreaseof some 
impurity measure 𝑖(𝑡) (e.g., the Gini index, the Shannon entropy, or the variance of Y)  

 ( ) ( ) ( ) ( ), L L R Ri s t i t p i t p i t∆ = − −  (1) 

And where 𝑝𝐿 = 𝑁𝑡𝐿/𝑁𝑡 and𝑝𝑅 = 𝑁𝑡𝑅/𝑁𝑡.  

 ( )
( )

( ) ( )
:

1Imp ,
t m

m t
T t T v s XT

X p t i s t
N ∈ =

= ∆∑ ∑  (2) 

A random forests consists of multiple classification trees. Each node in the decision tree is a 
condition about a feature in order to divide the data set into multiple copies according to 
different features. The node (optimal condition) can be determined using the impurity, here we 
use the Gini impurity, which is represented by Equation 2. When training the decision tree, we 
can calculate how many trees are reduced in impurity for each feature. For a decision tree 
forests, the average reduction in the impurity of each feature can be calculated and the average 
reduced impurity is used as the value of the feature selection. Through the value selection, 
features of higher importance are extracted as features of the final Android malicious 
classification. 

We perform feature selection as follows: First, We analyze apks and extract feature 
according to our feature list. Then, we transform the feature set into vector𝑉 = {0,1,0,0,1, . . }, 
in which 1 indicates that the feature is contained in this app, whereas 0 indicates not. Finally, 
we use random forests to build a model and get the ordered features list ranking by MDI. 

4.2 Feature Vectorization 
According to Section 4.1, the extracted features are represented as a feature vector based on 
one-hot encoding. According to the researches in the NLP domain, one-hot encoding does not 
contain any corpus information, and the distance between all words is the same. Word2vec[28] 
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defines the vector of words according to the context, and the words with high relevance have 
closer distances. That is to say, word2vec is more expressive and more capable of expressing 
the intrinsic characteristics of data. Word2vec can utilize either of two model architectures to 
produce a distributed representation of words: the Continuous Bag-of-Words model (CBOW) 
and the Skip-Gram model. In the continuous bag-of-words architecture, the model predicts the 
current word from a window of surrounding context words. In the skip-gram architecture, the 
model uses the current word to predict the surrounding window of context words. Joshua Saxe 
et al. [29] proposed a method to distinguish malware with neural networks. In their research, 4 
types of features (Byte/Entropy Histogram, PE Import, String 2D histogram, PE Metadata) are 
converted into 256-dimensional vectors one by one manually. Their system achieves a 95% 
detection rate at 0.1% false positive rate, based on more than 400,000 software binaries. 

Inspired by Joshua Saxe’s method and NLP technique, we try to apply word2vec to Android 
malware classification for features representation with word embeddings. For our case, we 
treat features extracted from apk files as words. In detail, each feature is represented as a 
k-dimensional vector. We use CBOW model for training. The final trained matrix is N × (K × 
X) dimensions, where N is the number of samples, K is the word vector dimension, and X is the 
number of features. Each vector represents a point in the k-dimensional space, and each 
element of the vector is determined by repeatedly training and adjusting the weight for the 
features. We use K=100 in all models.  

permission.NFC,permission.CAMERA,ro.serialno,getSimSerialNumbe
r,ro.serialno,action.PACKAGE_ADDED,action.TIME_SET

[[permission.NFC,permission.CAMERA],[ro.serialno,getSimSerialNu
mber],[action.PACKAGE_ADDED,action.TIME_SET]]

0.1492989825938020,0.4000392654722510,0.6544112757411370,
0.4360936610586030,0.2625891232528650,0.8703789204996410,
0,0,0,0,0,0,
0.5905078542421090,0.2561480182712290,0.2197241113915900,
0.3733459481958240,0.9559318538012990,0.9199211624150060,
0.0331631827395222,0.2103408041745300,0.2176221445247290,
0.8654216842670510,0.0826971222420845,0.2472367489816070,
0,0,0,0,0,0,
0.1857606712805770,0.9702894973402810,0.9184118380972090,
0.6365881141806940,0.8805922204694410,0.7968647895348130

 
Fig. 3. Feature Vectorization Process 

 
The specific vectorization process is described in algorithm1 and Fig. 3. (1) In lines 3-4, we 

perform feature selection according to the above description. (2) In lines 5, we divide feature 
document into four sentences according to the category of the feature. (3) In lines 6-7, we use 
the word2vec model for training to obtain the word vector. (4)In lines 8-13, if some features 
are not included in the sample, we fill it with 0. We simply describe the results of algorithm 1 in 
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Fig. 3. For convenience, we set k=6 in Fig. 3. The first part is the original feature list (Assume that 
the sample contains only six features.). The second part is the result of feature dividing 
(Algorithm1 step2). The last part is the result of feature vectorization (Algorithm1 step3-4). For 
example, if a sample contains permission.NFC, we can obtain word vector trained by word2vec, 
which is [0.1492989825938020,0.4000392654722510,0.6544112757411370,0.43609366105860- 
30,0.2625891232528650,0.8703789204996410]. If a sample does not contains permission.CAM- 
ERA, the vector is [0,0,0,0,0,0]. 
 

Algorithm1：Feature Vectorization 

Input： 
D: sample features documents 
K: dimension of word2vec 
F: feature list 

Output:  
S: N ×(K × X)-dimension vector 

1  begin 
2     foreach Di in D do 
3        sentences = empty_list(); 
4        Di = feature_select(Di); 
5        sentences ← three sentences extract from Di; 
6        model = train_word2vec(sentences,K); 
7        word_dict←model.wv.vocab; 
8        zero_vec← K-dimension zero vector; 
9        foreach Fi in F do 
10          if Fi in wordDict do 
11             S.extend(wordDict[Fi]); 
12          else 
13             S.extend(zero_vec); 
14    return S 
15  end 

 

4.3 Deep Learning Model 
Deep neural networks have a variety of structures, such as deep belief networks, convolutional 
neural networks, etc. They all have multiple hidden layers. The deep belief network [30,31] is 
a fast, greedy learning algorithm, which is able to learn typical features and has a good effect 
on the processing of one-dimensional data. Finally, we choose the deep belief network and 
softmax classifier to characterize and classify Android applications. 
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Fig. 4. DBN Training Process 

The Deep Belief Network (DBN) can be seen as a stack of multiple constrained Boltzmann 
machines. The hidden layer of each restricted Boltzmann machine is viewed as the upper layer 
of the restricted Boltzmann machine. Furthermore, the deep belief network can be trained 
quickly by layer-by-layer training that is, starting from the lowest level, training only one layer 
at a time until the last layer. The deep confidence network training process can be divided into 
two stages: pre-training and fine-tuning. Firstly, the parameters of the model are initialized to 
better values through layer-by-layer pre-training, and then the parameters are fine-tuned 
through traditional learning methods. The training process as shown in Fig. 4. 

Algorithm2：DBN Greedy Learning 

Input： 
Training Set: 𝒗�(𝒏),𝒏 = 𝟏, … ,𝑵; 
Learning Rate: 𝛂 
DBN Layer: L 
No. l weights: 𝒘(𝒍) 
No. l threshold: 𝒂(𝒍) 
No. l threshold: 𝒃(𝒍) 

Output:  
Weights: 𝑾𝟏, …𝑾𝒍 

1  begin  
2    for 𝐥 = 𝟏…𝐋 do 
3      Initialization：𝒘(𝒍)  ← 𝟎,𝒂(𝒍)  ← 𝟎,𝒃(𝒍)  ← 𝟎;  
4      for 𝐢 = 𝟏… 𝐥 − 𝟏 do 
5        Sample 𝒉(𝒊) according to 𝐪�𝒉(𝒊)�𝒉(𝒊−𝟏)�; 
6      Use 𝒉(𝒍−𝟏)as a training sample to fully train the Lth 

limited Boltzmann machine  𝒘(𝒍),𝒂(𝒍),𝒃(𝒍) 
7  end 

During the pre-training process, the layer-by-layer training method is used to simplify the 
training of the DBN in the training of multiple restricted Boltzmann machines. The specific 
training process is described in Algorithm 2 (lines 2-6). A lot of practice shows that 
pre-training can produce very good initial values of parameters, which greatly reduces the 
difficulty of learning the model. 
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In the fine-tuning stage, after the pre-training, combined with the Android malicious 
application classification task of this article, the global learning algorithm can be used to fine 
tune the parameters, and the model is converged to a better local optimum. 

In this study, the deep belief network is applied to detection of Android malicious 
applications. The system model diagram is shown in Fig. 5. The transformed (K × 
X)-dimensional word vector is input into the deep belief network for pre-training to provide 
the initial weight of the neural network. Then, fine-tuning of the parameters is performed, and 
a softmax classifier is added at the top layer to be used as a classification of malicious 
applications, and the classification result is finally output. 
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Fig. 5. Android malware detection model 

5. Evaluations 
In this section, we proceed to an empirical evaluation to fully evaluate the performance of the 
proposed Android malware detection system. The experiment uses the most common model 
evaluation metrics (i.e., Precision, Recall, F1) for machine learning. In particular, we mainly 
conduct the following three experiments: 

(1) Detection performance. We evaluated the detection performance of DroidVecDeep and 
other popular classification models with word embedding or not in the same dataset. 

(2) Features exploitation. We performed an in-depth analysis on the effectiveness of the 
extracted features. 

(3) Related works comparison. We compare the detection results of the DroidVecDeep with 
the related work mentioned above. 
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5.1 Experimental Setup 
The test dataset contains 15,000 applications. Malicious applications were malicious samples 
from VirusTotal 2017-10 and 2018-3 and Drebin datasets, totaling 12,000. Benign 
applications were obtained from the APKPure and 360 markets, totaling 3,000. We crawled 
according to the order of the leaderboards. Due to imbalanced samples, both the training set 
and the test set were randomly selected from among them, with a total of 3,000 samples and a 
sample ratio of 1:1. The 10-fold cross-validations are conducted for the evaluation. 

All the experiments were performed under the following environment: Intel Core i5-7500 
@3.4GHz CPU, 8GB RAM, GeForce GTX1050 GPU; the software environment is as follows: 
cuda9.0, cudnn9.0, TensorFlow-gpu1.7. The algorithm is mainly implemented in the python 
language. 

The most common evaluation metrics include true positive (TP), false positive (FP), true 
negative (TN), and false negative (FN). These four metrics can make up a confusion matrix as 
shown in Table 2. 

 
Table 2. Confusion matrix 

Prediction Malicious Benign 
Malicious TP FN 

Benign FP TN 
 
Depending on these basic metrics, a series of common evaluation metrics can also be 

generated as follows. 

 
TPPrecision

TP FP
=

+
  

 
TPRecall

TP FN
=

+
    

 
21 Recall PrecisionF

recall precision
× ×

=
+

  

Precision is the ratio of correctly predicted positive observations to the total predicted 
positive observations. Recall is the ratio of correctly predicted positive observations to the all 
observations in actual class F1 Score is the weighted average of Precision and Recall. 
Therefore, this score takes both false positives and false negatives into account. Intuitively it is 
not as easy to understand as accuracy, but F1 is usually more useful than accuracy, especially 
if you have an uneven class distribution. Accuracy works best if false positives and false 
negatives have similar cost. 

5.2 Comparisons of Word Embeddings in Classification Methods 
Experiments are divided into two groups. One group generates feature vectors based on 
one-hot encoding. The other group uses word2vec to convert original features into semantic 
feature vectors. Finally, we use DBN, C4.5, SVM and Naive Bayes algorithm as classifiers for 
malicious classification and evaluate their performance. To ensure that word vectors can be 
generated for each feature, we set min_count=1, where min_count is a parameter in word2vec. 
When the frequency of the word in the text is lower than min_count, it will be automatically 
ignored and the corresponding word vector will not be generated. The experimental results are 
shown in Table 3. 
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Table 3. Comparisons of Word Embeddings in Typical Classification Methods 

Classifier Malicious (%) Benign (%) Precision(%) Precision Recall F1 Precision Recall F1 
DBN 97.34 97.17 97.25 97.24 97.41 97.32 97.29 

DroidVecDeep 99.10 99.40 99.25 99.40 99.30 99.35 99.25 
C4.5 93.50 96.80 95.10 96.70 93.40 95.00 95.10 

w2v-C4.5 97.60 95.30 96.44 97.80 98.30 98.05 97.50 
SVM 94.20 98.70 96.40 98.60 94.10 96.30 96.40 

w2v -SVM 98.80 97.30 98.04 98.50 98.30 98.40 98.65 
NB 89.90 94.90 92.30 94.70 89.60 92.10 92.30 

w2v -NB 98.20 97.30 97.75 99.10 98.30 98.70 98.65 

According to the results shown in Table 3, the performance of SVM is far better than the 
other two algorithms, so it is often used as the preferred classifier in malicious detection. 
Although the overall Precision of SVM is higher, the recognition rate for malicious software is 
much lower than the benign recognition rate. As a deep learning classification algorithm, DBN 
can learn features better. Regardless of the precision or recall, it has a certain improvement 
compared to traditional machine learning algorithms. In the representation of features, the 
result of the word vector is also superior to the feature vector generated based on one-hot 
encoding. This shows that it is not sufficient to characterize the application based on the 
existence of the feature. The feature is passed through the shallow neural network word2vec. 
After training, it can better characterize the frequency of features in the application, which 
facilitates further classification work. 

 

5.3 Features Exploitation 
Compared with the current detection methods of the same kind, some methods choose all 
Android permissions and components as features, but only a few applications contain so many 
permissions in reality. The addition of such features does not have a great impact on the results 
of the classifier. Instead, it increases the computational complexity of processing and 
degenerates the efficiency of classifier learning. Our study uses random forests for feature 
selecting and dimensionality reduction, which optimizes the performance of the system to 
some extent. 

This section analyzes the feature selection strategy based on Mean Decrease Impurity in 
random forests. The decrease in the average impurity indicates the average degree of reduction 
of each feature to the error, which is characterized by Gini impurity. The top-10 permission, 
sensitive API and action features are shown in Fig. 6-8. Malware has a very large proportion 
of ransomware. Therefore, SYSTEM_ALERT_WINDOW permission is used to popup window, 
WRITE_SMS, SEND_SMS permission to send SMS messages are required by the malicious 
software. Corresponding to the permissions, sendTextMessage() is also the most important 
API in the sensitive API, and the rest are all API calls to get sensitive data from mobile phones. 
An intent is a description of an operation to be performed and an action indicates a general 
operation. Corresponding to the above description, ACTION.SEND can deliver some data to 
someone else, ACTION.CALL can perform a call to someone specified by the data. Sensitive 
strings always contains some privacy data, such as ro.serialno, sms_body. Since the number of 
features of sensitive strings is small, we have not performed feature selection on them. 
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Fig. 6. Top-ranked permission features     Fig. 7. Top-ranked sensitive API features 

 
Fig. 8.Top-ranked action features 

5.4 Parameter Tuning 
This section tunes the parameters of DroidVecDeep, which employs a DBN as the classifier. 
The parameters includes the number of pre-training iterations, the number of fine-tuning 
iterations, the number of hidden layers, the number of nodes, and the mini-batch.  

Table 4 shows the impact of two parameters (number of hidden layers and their number of 
nodes) that are important to the DBN on the classification result. Because it is an in-depth 
neural network model, unlike shallow networks such as RBM, the experiment sets the hidden 
layer parameter from layer 2 to layer 5, and compares the classification results. According to 
the experimental results, it can be concluded that when the hidden layer number is 2 and the 
number of nodes at each layer is 200, the classification result is optimal, and the precision is 
97.29%. 

Table 4. Comparisons between different deep learning model constructions 

Num of Neurons Malicious (%) Benign (%) Precision(%) Precision Recall F1 Precision Recall F1 
[150,150] 97.25 97.12 97.19 97.19 97.32 97.26 97.22 
[200,200] 97.34 97.17 97.25 97.24 97.41 97.32 97.29 
[250,250] 97.21 97.12 97.16 97.19 97.28 97.23 97.20 

[150,150,150] 96.95 97.30 97.13 97.36 97.01 97.18 97.16 
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[200,200,200] 96.86 97.21 97.04 97.27 96.93 97.10 97.07 
[250,250,250] 96.82 97.35 97.08 97.40 96.88 97.14 97.11 

[200,200,200,200] 97.16 97.08 97.12 97.15 97.23 97.19 97.16 
[200,200,200,200,200] 97.42 96.63 97.02 96.73 97.50 97.11 97.07 

Note: Num of Neurons: The number of neurons. [150,150,150] means that the DBN network contains 
3 layers and each layer contains 150 neurons. 

5.5 Comparisons of Sample Size 
This section mainly focuses on the number of samples for experimental analysis. We 
randomly selected 500, 1,000, 2,000, and 3,000 samples from the APK dataset for multiple 
experiments. The proportion of malicious and benign samples was 1:1. The experimental 
results are shown in Table 5. The comprehensive evaluation index of sample size is better than 
that of small sample size. The larger the sample size, the better the overall performance is. 

Table 5. Comparisons between different numbers of samples 
number of 
samples 

Malicious (%) Benign (%) Precision (%) Precision Recall F1 Precision Recall F1 
500 97.66 94.70 96.15 94.26 97.46 95.83 96.05 
1000 96.91 97.67 97.29 97.51 96.71 97.11 97.20 
2000 98.68 98.12 98.40 97.88 98.50 98.19 98.30 
3000 97.84 97.98 97.91 98.02 97.89 97.96 97.93 

5.6 Comparisons with Baselines 
In order to evaluate the effectiveness of the DroidVecDeep, we compare the proposed method 
with several baselines. Drebin[11]extracts static features and uses SVM model to classify 
Android malware. DroidDeep[21]extracts API call, permission, component etc. And it uses 
DBN to build a classifier. We extract the corresponding number of features as much as 
possible for experiment and use the same dataset from Section 5.1 to train Drebin, DroidDeep 
and our own model respectively. The results are shown in Fig. 9.  

 
Fig. 9. Comparisons with Baselines 
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 We can see that our method performs better than the other two baselines, achieve 99.1% 
accuracy. Drebin and DroidDeep only achieve 93.37% and 97.6% respectively. The 
experimental results clearly show that DroidVecDeep is better than the state-of-the-art 
machine learning algorithms. 

On the other hand, DroidDeep extracts the features and construct vectors based on one-hot 
encoding, at the same time, DroidVecDeep uses word2vec to transform features into the word 
embeddings, which compensates for the disadvantages of insufficient feature frequency 
characterization. Under the same classifier, it is obvious that our method has more advantages 
in feature transformation and expression. 

5.7 Comparisons with antivirus scanners 
In this section, we compare DroidVecDeep with several off-the-shelf antivirus scanners. For 
this experiment, we randomly select 1000 samples from our dataset, containing 500 malicious 
samples and 500 benign samples. To compete with common antivirus products, we send each 
sample to our trained model and VirusTotal [22] platform respectively. VirusTotal integrates a 
variety of antivirus engines, thus we can get the detection result from 10 well-known antivirus 
scanners (Avira, ClamAV, Comodo, ESET, Kaspersky, Kingsoft, McAfee, 360, Symantec, 
Tencent). Finally, we obtain the detection rates and false positive rates by the statistics of 
output. 

Table 6. Comparisons with antivirus scanners 
Result (%) avs1 avs2 avs3 avs4 avs5 avs6 avs7 avs8 avs9 avs10 Our 
Precision 98.98 99.48 98.68 97.83 99.59 65.56 97.27 98.93 99.13 97.18 99.21 

Recall 97.40 77.13 15.00 99.20 97.87 0.47 99.60 92.80 91.67 96.47 98.87 
F1 98.18 86.89 26.04 98.51 98.72 0.93 98.42 95.77 95.25 96.82 99.04 

Note: avs1-avs10: Avira, ClamAV, Comodo, ESET, Kaspersky, Kingsoft, McAfee, 360, Symantec, 
Tencent 

The results of the experiments are shown in Table 6, most antivirus scanner has a detection 
rate of over 95%, while there are some scanners that detection rates are below 70%. 
Obviouslythese antivirus scanners may not be specialized in detecting mobile applications. 
Among them, our detection method ranks third here, and obtain a detection rate of 99.21%. In 
addition, these samples have been public for a longer time, thus almost all antivirus scanners 
have the signature of malicious samples. The deep learning method has much more strengths 
than the traditional technique when the samples are unknown malware. 

From the perspective of recall rate, most antivirus scanners have a higher recall rate, but, for 
example, ClamAV, which achieves high accuracy and low recall rate, it may be that the mobile 
signatures database update untimely. And DroidVecDeep achieves a high recall rate. Weight 
both precision and recall, we get 99.04% F1 score. 

6. Conclusion 
In this paper, we propose DroidVecDeep, an Android malware detection method using deep 
learning based on word2vec embeddings. In this work, we firstly extracted a total of 240 
features from 4 main static feature types of Android apps, and then use word embeddings for 
characterization. Finally, we use a DBN-based deep learning to build the classifier. Our work 
compensates for the lack of extraction and characterization of some features in relevant work. 
We evaluate it with 3000 benign apps and 12000 malware in real life. Experimental results 
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show that DroidVecDeep performs well in accuracy and execution efficiency and is superior 
to some malicious detection tools. 
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