
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019 2180
Copyright ⓒ 2019 KSII

DroidVecDeep: Android Malware Detection
Based on Word2Vec and Deep Belief

Network

Tieming Chen1, Qingyu Mao1, Mingqi Lv1*, Hongbing Cheng1, Yinglong Li1
1 College of Computer Science, Zhejiang University of Technology

Hangzhou, Zhejiang, 310023, China
[e-mail:{tmchen, mqyzjut, mingqilv*,chenghb,liyinglong }@zjut.edu.cn]

*Corresponding author: Mingqi Lv

Received July 30, 2018; revised October 24, 2018; accepted November 5, 2018;
published April 30, 2019

Abstract

With the proliferation of the Android malicious applications, malware becomes more capable
of hiding or confusing its malicious intent through the use of code obfuscation, which has
significantly weaken the effectiveness of the conventional defense mechanisms. Therefore, in
order to effectively detect unknown malicious applications on the Android platform, we
propose DroidVecDeep, an Android malware detection method using deep learning technique.
First, we extract various features and rank them using Mean Decrease Impurity. Second, we
transform the features into compact vectors based on word2vec. Finally, we train the classifier
based on deep learning model. A comprehensive experimental study on a real sample
collection was performed to compare various malware detection approaches. Experimental
results demonstrate that the proposed method outperforms other Android malware detection
techniques.

Keywords: Android security, malware detection, deep learning, distributed representation,
word2vec

This paper is partially supported by the key national Natural Science Foundation of China with Grant No. 61772026,
No. U1509214, No.61602412 and No. 61502421, the Zhejiang Provincial Natural Science Foundation of China
with Grant No. LY18F020033, No. LY19F020083.

http://doi.org/10.3837/tiis.2019.04.025 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019 2181

1. Introduction

With the development of the mobile Internet, smartphone shipments grow rapidly,
especially the domestic manufacturers of smartphones for the Android system. Android, as an
open source and customizable operating system for smartphones, has more risks. According to
the 2017 CVE(Common Vulnerabilities and Exposures) details report [1,2], the Android
system ranked 842 holes among the number of product vulnerabilities, which is increased by
61.0% as compared with that of 2016. Malicious software attack methods are diversified, and
the distribution channels are multi-polarized, making it difficult to detect and prevent. As a
result, manufacturers have a long delay in the repair of vulnerabilities. Faced with this severe
challenge, we need better methods for malicious detection.

Recently, a lot of researches have focused on signature-based detection methods, i.e., using
static or dynamic analysis to discover high recognizable patterns [3,4,5], which are then used
to characterize malware. However, this kind of methods would become less effective when
detecting unknown malware. It’s more difficult to detect malicious applications using
traditional methods due to code obfuscation, transformation attacks, etc. Moreover, during our
analysis of Android applications for further studies, we have discovered that some of the
benign applications also possess seemingly malicious characteristics, which makes them
difficult to distinguish. Therefore, some recent researches tried to use machine learning
techniques [6,7,8,9,10] to detect unknown Android malware. These works extract features
using static or dynamic analysis and learn the difference between benign and malicious
applications automatically.

Deep learning, which is part of a broader family of machine learning methods based on
learning data representations, has gained increasing attention in many fields. Deep learning
architectures overcome the learning difficulty through stratified training, such as deep belief
network [30], which pre-train multiple layers from bottom to up to construct the classification
model. In this paper, we focus on the utilization of deep neural networks on feature
representation to improve the detection performance. We propose DroidVecDeep, a novel
Android malware detection method using deep learning technique. First, we extract various
features from Android apps. Second, we transform these features into a high-level
representation based on word2vec. Finally, we feed them into a deep learning model to build
the classifier. Experiments on real-world apps show that deep learning and word embedding
are suitable for characterizing Android malware features and improve detection accuracy. We
make the following contributions:

(1) We design DroidVecDeep, an automatic Android malware detection system, which
combines static analysis and deep learning.

(2) We extract various features and rank them by mean decrease impurity in random forest,
which reduce feature dimensions and make the system more lightweight. Moreover, we
transform the features into high-level representation using word2vec, which can then
better characterize Android malware. According to the experiment, there is a 1-2%
improvement in classification accuracy.

The remainder of this paper is organized as follows. Related works are described in Section
2. Section 3 briefly describes DroidVecDeep and its design. Section 4 introduces the details of
feature extraction and deep learning model. The experiments we conducted and analysis are

2182 Chen et al.: DroidVecDeep: Android Malware Detection Based on Word2Vec and Deep Belief Network

described in Section 5.Finally, we draw our conclusions in Section 6.

2. Related Work
Feature Representation on Android Malware Detection

Drebin[11] uses static analysis to extract as many application features as possible (such as
permissions, API calls, network addresses, etc.) to characterize malicious applications;
Maldetect[12] extracts Dalvik instructions from dex files and simplify them by symbolizing
opcode. Then, N-gram encoding of the instruction sequence is used as the input feature of the
classification; DroidSieve [13] extracts massive features centered on resources and semantics,
and sorts the features to find the core features; FrequenSel [14]proposes a feature selection
algorithm based on the frequency difference between the malicious application and benign
application; HinDroid[15] extracts the API to construct a structured heterogeneous
information network and characterized the relationship between APIs. The depth analysis and
characterization of the extracted features make the classification better than the traditional
detection methods.

Yi Luan et al. [16] uses the word vector as the input layer of the neural network in the task of
oral comprehension to alleviate the problem of overtraining; Edward Raff et al. [17] converts
the bytes in the PE header into the word vector through word2vec, then map features to
high-dimensional space for input layers of deep neural networks. A number of research studies
have shown that transforming features into word vectors is used as an input layer of a deep
neural network, which has a better application for classification tasks.

Android Malware Detection using Deep Learning
HinDroid[15] extracts APIs to build a structured heterogeneous information network,

extracts multiple meta-paths, integrates different similarity methods using a multi-core
architecture, and builds a classifier with better recognition capabilities; MalDozer[18]based on
an artificial neural network that takes, as input, the raw sequences of API method calls, as they
appear in the dex file, to enable malware detection and family attribution.; Deep4MalDroid[19]
extracts Linux system kernel calls, constructs weighted directed graphs and uses deep
confidence networks for malicious classification.

DroidDetector[20] extracts Android applications Permissions, sensitive APIs, and dynamic
behavior data, then firstly apply them into DBN, a deep learning model and achieved good
results. DroidDeep[21] extracts more than 30,000 multi-level features and combines both
static analysis and deep learning that is capable of detecting Android malware with a high
accuracy and a low false alarm rate.

The above work extracts and selects features from various perspectives, using a variety of
deep learning models for modeling and classification. However, the treatment of features in
some research work is relatively simple. The use of feature word embeddings combined with
deep neural network has a good application in processing natural language and malicious
detection in the PC field and has not yet been applied to mobile security detection.

3. System Architecture
In this section, we present the architecture of DroidVecDeep, as shown in Fig. 1, which
consists of the following components.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019 2183

APK dataset

Feature Extraction
& Selection

Feature
Vectorization

 Deep Learning
Model

Classification
Results

Benign App Malicous App

Apktool reverse Feature
Documents

Permission、sensitive API etc.

RF MDI

Word embeddings——word2vec

 Pre-training Fine-Tuning

Benign Malicous

Fig. 1. Architecture of DroidVecDeep

(1) APK dataset: We establish a dataset with 15,000 Android applications. It contains
malicious applications of the most recent two months from Drebin[11], VirusTotal[22],
and Contagio[23]. Since it is impossible to directly download APK from Google
Play[32], so the benign samples are mainly downloaded from APKPure[24] and the
domestic 360 application market[25]. To ensure the downloaded apks are benign
applications, we download the most popular150 applications from 20 categories in the
two application markets ranked by download counts.

(2) Feature extraction & selection: We use static techniques to analyze applications. We
extract features such as permissions, actions, and sensitive API calls, and use random
forests for feature selection (See Section 4.1 for details).

(3) Feature vectorization: We model the extracted features as a document, and then use
word2vec to analyze the documents and transform the features into K-dimensional word
vectors (See Section 4.2 for details).

(4) Malicious classification: We use the DBN (Deep Belief Networks) model to establish an
optimal detection classifier for Android application classification (See Section 4.3 for
details).

4. Feature Extraction and Classification

4.1 Feature Extraction and Selection
To systematically characterize Android apps, we conduct static analysis to extract four types
of features. We reverse the APK and extract the AndroidManifest.xml file and the folder
containing the smali source code with Apktool [26]. Then, we perform feature extraction as

2184 Chen et al.: DroidVecDeep: Android Malware Detection Based on Word2Vec and Deep Belief Network

follows:

(1) We extract Permission and Intent Action from AndroidManifest.xml. Permission
describes the permissions required by the application. Some of them would be potentially
risky. For example, android.permission.ACCESS_WIFI_STATE is the permission to
allow access to WIFI status, android.permission.SEND_SMS is the permission to allow
send sms, android.permission.CALL_PHONE is the permission to allow make a phone
call. In this step, we looked for a total of 120 risky permissions. We also scan the code to
identify any explicit intents, which are used to start services within the same app. Action
in Intent describes the common actions of the application, which is an important feature to
represent malicious behavior. For example, android.intent.action.ANSWER is the intent
to allow hand incoming calls, android.intent.action.CAMERA_BUTTON is the intent to
allow take photos.

(2) Java code is compiled to generate dex file, which can be run in the Android Dalvik virtual
machine. The smali code is Dalvik's disassembly language, which can be obtained by
decompiling dex files. Here, since there are a large number of common API calls shared
between apps, we tend to analyze only sensitive APIs and use them for detection. For
example, getDeviceId() can get the device information, and sendTextMessage() can send
SMS. These methods have sufficient intent to reveal user privacy data or perform certain
malicious operations implicitly. In this step, we analyze the smali code and extract more
than 40 sensitive APIs as features. Some sensitive APIs are shown in Table 1. The risk
level is based on the frequency of the API call by the malicious application.

(3) We extract some sensitive strings from the smali source code as features. For example,
ro.serialno indicates the unique device number, and sms_body is related to the text
message.

Table 1. Sensitive APIs

Sensitive APIs Type Risk
Level Sensitive APIs Type Risk

Level
getDeviceId Privacy High getNetworkOperator Privacy High
getSubscriberId Privacy High getSimSerialNumber Privacy High
getLine1Number Privacy High getAccounts Privacy High
getInstalledApplications Privacy Medium getRunningAppProcesses Privacy Low
getRunningTasks Privacy Low getPhoneType Privacy Low
getNetworkOperatorName Privacy Low getAccountsByType Privacy Low
getLastKnownLocation Location High getAllCellInfo Location High
getNeighboringCellInfo Location High getCellLocation Location High
startDiscovery Devices High setPreviewDisplay Devices High
getBondedDevices Devices High MediaRecorder Devices High
setWifiEnabled Devices High takePicture Devices Medium
startPreview Devices Medium sendTextMessage Control High
abortBroadcast Control High sendMultipartTextMessage Control High
createFromPdu Control High SendDataMessage Control High
requestLocationUpdates Control High execHttpRequest Control Medium

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019 2185

For each sample, we extract features based on the above steps and combine them as a
feature vector. The preliminary extracted features are shown in Fig. 2. On the basis of these
features, we conduct feature selection based on the Mean Decrease Impurity (MDI)
importance [27] of random forests.

SEND_SMS
CALL_BUTTON
getDeviceId()
sms_body
getDeviceId()
...

1

Permission Action Sensitive API Strings

ACCESS_WIFI_STATE
INSTALL_PACKAGES
CALL_PHONE
SEND_SMS
...

CALL
CALL_BUTTON
BATTERY_LOW
TIME_TICK
...

getDeviceId()
getLastKnownLocation()
sendTextMessage()
getLine1Number()
...

ro.serialno
sms_body
com.android.mms
...

Fig. 2. Features

A classification tree is an input-output model represented by a tree structure T, from a
random input vector (𝑋1, …𝑋𝑝) taking its values in𝜒1 × … × 𝜒𝑝 = 𝜒 to a random output
variableYϵγ. Any node t in the tree represents a subset of the space, with the root node being 𝜒
itself. Internal nodes t are labeled with a binary test (or split) 𝑆𝑡 = (𝑋𝑚 < 𝑐) dividing their
subset in two subsets corresponding to their two children 𝑡𝐿and 𝑡𝑅(c is a constant for subsets
partitioning), while the terminal nodes (or leaves) are labeled with a best guess value of the
output variable. A tree is built from a learning sample of size N drawn from
𝑃(𝑋1, …𝑋𝑝,𝑌)using a recursive procedure which identifies at each node t the split 𝑆𝑡 = 𝑠 ∗for
which the partition of the 𝑁𝑡 node samples into 𝑡𝐿and𝑡𝑅 maximizes the decreaseof some
impurity measure 𝑖(𝑡) (e.g., the Gini index, the Shannon entropy, or the variance of Y)

 () () () (), L L R Ri s t i t p i t p i t∆ = − − (1)

And where 𝑝𝐿 = 𝑁𝑡𝐿/𝑁𝑡 and𝑝𝑅 = 𝑁𝑡𝑅/𝑁𝑡.

 ()
()

() ()
:

1Imp ,
t m

m t
T t T v s XT

X p t i s t
N ∈ =

= ∆∑ ∑ (2)

A random forests consists of multiple classification trees. Each node in the decision tree is a
condition about a feature in order to divide the data set into multiple copies according to
different features. The node (optimal condition) can be determined using the impurity, here we
use the Gini impurity, which is represented by Equation 2. When training the decision tree, we
can calculate how many trees are reduced in impurity for each feature. For a decision tree
forests, the average reduction in the impurity of each feature can be calculated and the average
reduced impurity is used as the value of the feature selection. Through the value selection,
features of higher importance are extracted as features of the final Android malicious
classification.

We perform feature selection as follows: First, We analyze apks and extract feature
according to our feature list. Then, we transform the feature set into vector𝑉 = {0,1,0,0,1, . . },
in which 1 indicates that the feature is contained in this app, whereas 0 indicates not. Finally,
we use random forests to build a model and get the ordered features list ranking by MDI.

4.2 Feature Vectorization
According to Section 4.1, the extracted features are represented as a feature vector based on
one-hot encoding. According to the researches in the NLP domain, one-hot encoding does not
contain any corpus information, and the distance between all words is the same. Word2vec[28]

2186 Chen et al.: DroidVecDeep: Android Malware Detection Based on Word2Vec and Deep Belief Network

defines the vector of words according to the context, and the words with high relevance have
closer distances. That is to say, word2vec is more expressive and more capable of expressing
the intrinsic characteristics of data. Word2vec can utilize either of two model architectures to
produce a distributed representation of words: the Continuous Bag-of-Words model (CBOW)
and the Skip-Gram model. In the continuous bag-of-words architecture, the model predicts the
current word from a window of surrounding context words. In the skip-gram architecture, the
model uses the current word to predict the surrounding window of context words. Joshua Saxe
et al. [29] proposed a method to distinguish malware with neural networks. In their research, 4
types of features (Byte/Entropy Histogram, PE Import, String 2D histogram, PE Metadata) are
converted into 256-dimensional vectors one by one manually. Their system achieves a 95%
detection rate at 0.1% false positive rate, based on more than 400,000 software binaries.

Inspired by Joshua Saxe’s method and NLP technique, we try to apply word2vec to Android
malware classification for features representation with word embeddings. For our case, we
treat features extracted from apk files as words. In detail, each feature is represented as a
k-dimensional vector. We use CBOW model for training. The final trained matrix is N × (K ×
X) dimensions, where N is the number of samples, K is the word vector dimension, and X is the
number of features. Each vector represents a point in the k-dimensional space, and each
element of the vector is determined by repeatedly training and adjusting the weight for the
features. We use K=100 in all models.

permission.NFC,permission.CAMERA,ro.serialno,getSimSerialNumbe
r,ro.serialno,action.PACKAGE_ADDED,action.TIME_SET

[[permission.NFC,permission.CAMERA],[ro.serialno,getSimSerialNu
mber],[action.PACKAGE_ADDED,action.TIME_SET]]

0.1492989825938020,0.4000392654722510,0.6544112757411370,
0.4360936610586030,0.2625891232528650,0.8703789204996410,
0,0,0,0,0,0,
0.5905078542421090,0.2561480182712290,0.2197241113915900,
0.3733459481958240,0.9559318538012990,0.9199211624150060,
0.0331631827395222,0.2103408041745300,0.2176221445247290,
0.8654216842670510,0.0826971222420845,0.2472367489816070,
0,0,0,0,0,0,
0.1857606712805770,0.9702894973402810,0.9184118380972090,
0.6365881141806940,0.8805922204694410,0.7968647895348130

Fig. 3. Feature Vectorization Process

The specific vectorization process is described in algorithm1 and Fig. 3. (1) In lines 3-4, we

perform feature selection according to the above description. (2) In lines 5, we divide feature
document into four sentences according to the category of the feature. (3) In lines 6-7, we use
the word2vec model for training to obtain the word vector. (4)In lines 8-13, if some features
are not included in the sample, we fill it with 0. We simply describe the results of algorithm 1 in

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019 2187

Fig. 3. For convenience, we set k=6 in Fig. 3. The first part is the original feature list (Assume that
the sample contains only six features.). The second part is the result of feature dividing
(Algorithm1 step2). The last part is the result of feature vectorization (Algorithm1 step3-4). For
example, if a sample contains permission.NFC, we can obtain word vector trained by word2vec,
which is [0.1492989825938020,0.4000392654722510,0.6544112757411370,0.43609366105860-
30,0.2625891232528650,0.8703789204996410]. If a sample does not contains permission.CAM-
ERA, the vector is [0,0,0,0,0,0].

Algorithm1：Feature Vectorization

Input：
D: sample features documents
K: dimension of word2vec
F: feature list

Output:
S: N ×(K × X)-dimension vector

1 begin
2 foreach Di in D do
3 sentences = empty_list();
4 Di = feature_select(Di);
5 sentences ← three sentences extract from Di;
6 model = train_word2vec(sentences,K);
7 word_dict←model.wv.vocab;
8 zero_vec← K-dimension zero vector;
9 foreach Fi in F do
10 if Fi in wordDict do
11 S.extend(wordDict[Fi]);
12 else
13 S.extend(zero_vec);
14 return S
15 end

4.3 Deep Learning Model
Deep neural networks have a variety of structures, such as deep belief networks, convolutional
neural networks, etc. They all have multiple hidden layers. The deep belief network [30,31] is
a fast, greedy learning algorithm, which is able to learn typical features and has a good effect
on the processing of one-dimensional data. Finally, we choose the deep belief network and
softmax classifier to characterize and classify Android applications.

2188 Chen et al.: DroidVecDeep: Android Malware Detection Based on Word2Vec and Deep Belief Network

Visible Layer

Hidden Layer1 Visible Layer

Hidden Layer2

Visible Layer

Hidden Layer1

Hidden Layer2

Visible Layer

Hidden Layer1

Hidden Layer2

Output Layer

Samples
RBM

RBM

Pretraining Fine-Tuning

DBN

Generative
model

Deep
Neural network

Fig. 4. DBN Training Process

The Deep Belief Network (DBN) can be seen as a stack of multiple constrained Boltzmann
machines. The hidden layer of each restricted Boltzmann machine is viewed as the upper layer
of the restricted Boltzmann machine. Furthermore, the deep belief network can be trained
quickly by layer-by-layer training that is, starting from the lowest level, training only one layer
at a time until the last layer. The deep confidence network training process can be divided into
two stages: pre-training and fine-tuning. Firstly, the parameters of the model are initialized to
better values through layer-by-layer pre-training, and then the parameters are fine-tuned
through traditional learning methods. The training process as shown in Fig. 4.

Algorithm2：DBN Greedy Learning

Input：
Training Set: 𝒗�(𝒏),𝒏 = 𝟏, … ,𝑵;
Learning Rate: 𝛂
DBN Layer: L
No. l weights: 𝒘(𝒍)
No. l threshold: 𝒂(𝒍)
No. l threshold: 𝒃(𝒍)

Output:
Weights: 𝑾𝟏, …𝑾𝒍

1 begin
2 for 𝐥 = 𝟏…𝐋 do
3 Initialization：𝒘(𝒍) ← 𝟎,𝒂(𝒍) ← 𝟎,𝒃(𝒍) ← 𝟎;
4 for 𝐢 = 𝟏… 𝐥 − 𝟏 do
5 Sample 𝒉(𝒊) according to 𝐪�𝒉(𝒊)�𝒉(𝒊−𝟏)�;
6 Use 𝒉(𝒍−𝟏)as a training sample to fully train the Lth

limited Boltzmann machine 𝒘(𝒍),𝒂(𝒍),𝒃(𝒍)
7 end

During the pre-training process, the layer-by-layer training method is used to simplify the
training of the DBN in the training of multiple restricted Boltzmann machines. The specific
training process is described in Algorithm 2 (lines 2-6). A lot of practice shows that
pre-training can produce very good initial values of parameters, which greatly reduces the
difficulty of learning the model.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019 2189

In the fine-tuning stage, after the pre-training, combined with the Android malicious
application classification task of this article, the global learning algorithm can be used to fine
tune the parameters, and the model is converged to a better local optimum.

In this study, the deep belief network is applied to detection of Android malicious
applications. The system model diagram is shown in Fig. 5. The transformed (K ×
X)-dimensional word vector is input into the deep belief network for pre-training to provide
the initial weight of the neural network. Then, fine-tuning of the parameters is performed, and
a softmax classifier is added at the top layer to be used as a classification of malicious
applications, and the classification result is finally output.

M B

D
BN

So
ftm

ax

(K*X)-Dimension Feature Vector Input
Note:M:malicious B:benign

...

...

...

...

Fig. 5. Android malware detection model

5. Evaluations
In this section, we proceed to an empirical evaluation to fully evaluate the performance of the
proposed Android malware detection system. The experiment uses the most common model
evaluation metrics (i.e., Precision, Recall, F1) for machine learning. In particular, we mainly
conduct the following three experiments:

(1) Detection performance. We evaluated the detection performance of DroidVecDeep and
other popular classification models with word embedding or not in the same dataset.

(2) Features exploitation. We performed an in-depth analysis on the effectiveness of the
extracted features.

(3) Related works comparison. We compare the detection results of the DroidVecDeep with
the related work mentioned above.

2190 Chen et al.: DroidVecDeep: Android Malware Detection Based on Word2Vec and Deep Belief Network

5.1 Experimental Setup
The test dataset contains 15,000 applications. Malicious applications were malicious samples
from VirusTotal 2017-10 and 2018-3 and Drebin datasets, totaling 12,000. Benign
applications were obtained from the APKPure and 360 markets, totaling 3,000. We crawled
according to the order of the leaderboards. Due to imbalanced samples, both the training set
and the test set were randomly selected from among them, with a total of 3,000 samples and a
sample ratio of 1:1. The 10-fold cross-validations are conducted for the evaluation.

All the experiments were performed under the following environment: Intel Core i5-7500
@3.4GHz CPU, 8GB RAM, GeForce GTX1050 GPU; the software environment is as follows:
cuda9.0, cudnn9.0, TensorFlow-gpu1.7. The algorithm is mainly implemented in the python
language.

The most common evaluation metrics include true positive (TP), false positive (FP), true
negative (TN), and false negative (FN). These four metrics can make up a confusion matrix as
shown in Table 2.

Table 2. Confusion matrix

Prediction Malicious Benign
Malicious TP FN

Benign FP TN

Depending on these basic metrics, a series of common evaluation metrics can also be

generated as follows.

TPPrecision

TP FP
=

+

TPRecall

TP FN
=

+

21 Recall PrecisionF

recall precision
× ×

=
+

Precision is the ratio of correctly predicted positive observations to the total predicted
positive observations. Recall is the ratio of correctly predicted positive observations to the all
observations in actual class F1 Score is the weighted average of Precision and Recall.
Therefore, this score takes both false positives and false negatives into account. Intuitively it is
not as easy to understand as accuracy, but F1 is usually more useful than accuracy, especially
if you have an uneven class distribution. Accuracy works best if false positives and false
negatives have similar cost.

5.2 Comparisons of Word Embeddings in Classification Methods
Experiments are divided into two groups. One group generates feature vectors based on
one-hot encoding. The other group uses word2vec to convert original features into semantic
feature vectors. Finally, we use DBN, C4.5, SVM and Naive Bayes algorithm as classifiers for
malicious classification and evaluate their performance. To ensure that word vectors can be
generated for each feature, we set min_count=1, where min_count is a parameter in word2vec.
When the frequency of the word in the text is lower than min_count, it will be automatically
ignored and the corresponding word vector will not be generated. The experimental results are
shown in Table 3.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019 2191

Table 3. Comparisons of Word Embeddings in Typical Classification Methods

Classifier Malicious (%) Benign (%) Precision(%) Precision Recall F1 Precision Recall F1
DBN 97.34 97.17 97.25 97.24 97.41 97.32 97.29

DroidVecDeep 99.10 99.40 99.25 99.40 99.30 99.35 99.25
C4.5 93.50 96.80 95.10 96.70 93.40 95.00 95.10

w2v-C4.5 97.60 95.30 96.44 97.80 98.30 98.05 97.50
SVM 94.20 98.70 96.40 98.60 94.10 96.30 96.40

w2v -SVM 98.80 97.30 98.04 98.50 98.30 98.40 98.65
NB 89.90 94.90 92.30 94.70 89.60 92.10 92.30

w2v -NB 98.20 97.30 97.75 99.10 98.30 98.70 98.65

According to the results shown in Table 3, the performance of SVM is far better than the
other two algorithms, so it is often used as the preferred classifier in malicious detection.
Although the overall Precision of SVM is higher, the recognition rate for malicious software is
much lower than the benign recognition rate. As a deep learning classification algorithm, DBN
can learn features better. Regardless of the precision or recall, it has a certain improvement
compared to traditional machine learning algorithms. In the representation of features, the
result of the word vector is also superior to the feature vector generated based on one-hot
encoding. This shows that it is not sufficient to characterize the application based on the
existence of the feature. The feature is passed through the shallow neural network word2vec.
After training, it can better characterize the frequency of features in the application, which
facilitates further classification work.

5.3 Features Exploitation
Compared with the current detection methods of the same kind, some methods choose all
Android permissions and components as features, but only a few applications contain so many
permissions in reality. The addition of such features does not have a great impact on the results
of the classifier. Instead, it increases the computational complexity of processing and
degenerates the efficiency of classifier learning. Our study uses random forests for feature
selecting and dimensionality reduction, which optimizes the performance of the system to
some extent.

This section analyzes the feature selection strategy based on Mean Decrease Impurity in
random forests. The decrease in the average impurity indicates the average degree of reduction
of each feature to the error, which is characterized by Gini impurity. The top-10 permission,
sensitive API and action features are shown in Fig. 6-8. Malware has a very large proportion
of ransomware. Therefore, SYSTEM_ALERT_WINDOW permission is used to popup window,
WRITE_SMS, SEND_SMS permission to send SMS messages are required by the malicious
software. Corresponding to the permissions, sendTextMessage() is also the most important
API in the sensitive API, and the rest are all API calls to get sensitive data from mobile phones.
An intent is a description of an operation to be performed and an action indicates a general
operation. Corresponding to the above description, ACTION.SEND can deliver some data to
someone else, ACTION.CALL can perform a call to someone specified by the data. Sensitive
strings always contains some privacy data, such as ro.serialno, sms_body. Since the number of
features of sensitive strings is small, we have not performed feature selection on them.

2192 Chen et al.: DroidVecDeep: Android Malware Detection Based on Word2Vec and Deep Belief Network

Fig. 6. Top-ranked permission features Fig. 7. Top-ranked sensitive API features

Fig. 8.Top-ranked action features

5.4 Parameter Tuning
This section tunes the parameters of DroidVecDeep, which employs a DBN as the classifier.
The parameters includes the number of pre-training iterations, the number of fine-tuning
iterations, the number of hidden layers, the number of nodes, and the mini-batch.

Table 4 shows the impact of two parameters (number of hidden layers and their number of
nodes) that are important to the DBN on the classification result. Because it is an in-depth
neural network model, unlike shallow networks such as RBM, the experiment sets the hidden
layer parameter from layer 2 to layer 5, and compares the classification results. According to
the experimental results, it can be concluded that when the hidden layer number is 2 and the
number of nodes at each layer is 200, the classification result is optimal, and the precision is
97.29%.

Table 4. Comparisons between different deep learning model constructions

Num of Neurons Malicious (%) Benign (%) Precision(%) Precision Recall F1 Precision Recall F1
[150,150] 97.25 97.12 97.19 97.19 97.32 97.26 97.22
[200,200] 97.34 97.17 97.25 97.24 97.41 97.32 97.29
[250,250] 97.21 97.12 97.16 97.19 97.28 97.23 97.20

[150,150,150] 96.95 97.30 97.13 97.36 97.01 97.18 97.16

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04

0

0.005

0.01

0.015

0.02

0.025

-0.0005

5E-18

0.0005

0.001

0.0015

0.002

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019 2193

[200,200,200] 96.86 97.21 97.04 97.27 96.93 97.10 97.07
[250,250,250] 96.82 97.35 97.08 97.40 96.88 97.14 97.11

[200,200,200,200] 97.16 97.08 97.12 97.15 97.23 97.19 97.16
[200,200,200,200,200] 97.42 96.63 97.02 96.73 97.50 97.11 97.07

Note: Num of Neurons: The number of neurons. [150,150,150] means that the DBN network contains
3 layers and each layer contains 150 neurons.

5.5 Comparisons of Sample Size
This section mainly focuses on the number of samples for experimental analysis. We
randomly selected 500, 1,000, 2,000, and 3,000 samples from the APK dataset for multiple
experiments. The proportion of malicious and benign samples was 1:1. The experimental
results are shown in Table 5. The comprehensive evaluation index of sample size is better than
that of small sample size. The larger the sample size, the better the overall performance is.

Table 5. Comparisons between different numbers of samples
number of
samples

Malicious (%) Benign (%) Precision (%) Precision Recall F1 Precision Recall F1
500 97.66 94.70 96.15 94.26 97.46 95.83 96.05
1000 96.91 97.67 97.29 97.51 96.71 97.11 97.20
2000 98.68 98.12 98.40 97.88 98.50 98.19 98.30
3000 97.84 97.98 97.91 98.02 97.89 97.96 97.93

5.6 Comparisons with Baselines
In order to evaluate the effectiveness of the DroidVecDeep, we compare the proposed method
with several baselines. Drebin[11]extracts static features and uses SVM model to classify
Android malware. DroidDeep[21]extracts API call, permission, component etc. And it uses
DBN to build a classifier. We extract the corresponding number of features as much as
possible for experiment and use the same dataset from Section 5.1 to train Drebin, DroidDeep
and our own model respectively. The results are shown in Fig. 9.

Fig. 9. Comparisons with Baselines

2194 Chen et al.: DroidVecDeep: Android Malware Detection Based on Word2Vec and Deep Belief Network

 We can see that our method performs better than the other two baselines, achieve 99.1%
accuracy. Drebin and DroidDeep only achieve 93.37% and 97.6% respectively. The
experimental results clearly show that DroidVecDeep is better than the state-of-the-art
machine learning algorithms.

On the other hand, DroidDeep extracts the features and construct vectors based on one-hot
encoding, at the same time, DroidVecDeep uses word2vec to transform features into the word
embeddings, which compensates for the disadvantages of insufficient feature frequency
characterization. Under the same classifier, it is obvious that our method has more advantages
in feature transformation and expression.

5.7 Comparisons with antivirus scanners
In this section, we compare DroidVecDeep with several off-the-shelf antivirus scanners. For
this experiment, we randomly select 1000 samples from our dataset, containing 500 malicious
samples and 500 benign samples. To compete with common antivirus products, we send each
sample to our trained model and VirusTotal [22] platform respectively. VirusTotal integrates a
variety of antivirus engines, thus we can get the detection result from 10 well-known antivirus
scanners (Avira, ClamAV, Comodo, ESET, Kaspersky, Kingsoft, McAfee, 360, Symantec,
Tencent). Finally, we obtain the detection rates and false positive rates by the statistics of
output.

Table 6. Comparisons with antivirus scanners
Result (%) avs1 avs2 avs3 avs4 avs5 avs6 avs7 avs8 avs9 avs10 Our
Precision 98.98 99.48 98.68 97.83 99.59 65.56 97.27 98.93 99.13 97.18 99.21

Recall 97.40 77.13 15.00 99.20 97.87 0.47 99.60 92.80 91.67 96.47 98.87
F1 98.18 86.89 26.04 98.51 98.72 0.93 98.42 95.77 95.25 96.82 99.04

Note: avs1-avs10: Avira, ClamAV, Comodo, ESET, Kaspersky, Kingsoft, McAfee, 360, Symantec,
Tencent

The results of the experiments are shown in Table 6, most antivirus scanner has a detection
rate of over 95%, while there are some scanners that detection rates are below 70%.
Obviouslythese antivirus scanners may not be specialized in detecting mobile applications.
Among them, our detection method ranks third here, and obtain a detection rate of 99.21%. In
addition, these samples have been public for a longer time, thus almost all antivirus scanners
have the signature of malicious samples. The deep learning method has much more strengths
than the traditional technique when the samples are unknown malware.

From the perspective of recall rate, most antivirus scanners have a higher recall rate, but, for
example, ClamAV, which achieves high accuracy and low recall rate, it may be that the mobile
signatures database update untimely. And DroidVecDeep achieves a high recall rate. Weight
both precision and recall, we get 99.04% F1 score.

6. Conclusion
In this paper, we propose DroidVecDeep, an Android malware detection method using deep
learning based on word2vec embeddings. In this work, we firstly extracted a total of 240
features from 4 main static feature types of Android apps, and then use word embeddings for
characterization. Finally, we use a DBN-based deep learning to build the classifier. Our work
compensates for the lack of extraction and characterization of some features in relevant work.
We evaluate it with 3000 benign apps and 12000 malware in real life. Experimental results

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019 2195

show that DroidVecDeep performs well in accuracy and execution efficiency and is superior
to some malicious detection tools.

References
[1] IDC: Smartphone OS Market Share. https://www.idc.com/promo/smartphone-market

-share/os.
[2] 2017 Special Report on Android Malware. http://blogs.360.cn/360mobile/2018/03/01/

review_Android_malware_of_2017/.
[3] A. Shabtai, Y. Fledel, U. Kanonov et al., “Google android:a state-of-the-art review of security

mechanisms,” 2009. Article (CrossRef Link).
[4] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab, “A review on feature selection in

mobile malware detection,” Digital investigation, vol. 13, pp. 22-37, 2015.
Article (CrossRef Link).

[5] A.P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of mobile malware in the wild,”
in Proc. of the 1st ACM workshop on Security and privacy in smartphones and mobile devices,
ACM, pp. 3-14, 2011. Article (CrossRef Link).

[6] H. J. Zhu, Z. H. You, Z. X. Zhu, W. L. Shi, X. Chen, and L. Cheng, “DroidDet: Effective and
robust detection of android malware using static analysis along with rotation forest
model,” Neurocomputing, vol. 272, pp. 638-646, 2018. Article (CrossRef Link).

[7] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, “Significant Permission Identification for
Machine Learning Based Android Malware Detection,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 7, pp. 3216-3225, 2018. Article (CrossRef Link).

[8] C. Wang, Z. Li, X. Mo, H. Yang, and Y. Zhao, “An android malware dynamic detection method
based on service call co-occurrence matrices,” Annals of Telecommunications, vol. 72, pp.
607-615, 2017. Article (CrossRef Link).

[9] Y. Xu, C. Wu, K. Zheng, X. Niu, and T. Lu, “Feature Selection to Mine Joint Features from
High-dimension Space for Android Malware Detection,” KSII Transactions on Internet &
Information Systems, vol. 11, no. 9, pp.4658-4679, 2017. Article (CrossRef Link).

[10] T. Chen, X. Zhang, S. Jin, and O. Kim, “Efficient classification using parallel and scalable
compressed model and its application on intrusion detection,” Expert Systems with Applications,
vol. 41, pp. 5972-5983, 2014. Article (CrossRef Link).

[11] D. Arp, M. Spreitzenbarth, M. H¨ubner, H. Gascon, and K. Rieck, “Drebin: Effective and
Explainable Detection of Android Malware in Your Pocket,” in Proc. of 21st Annual Network and
Distributed System Security Symposium (NDSS’14), pp. 1–15, San Diego, CA, USA, February
2014. Article (CrossRef Link).

[12] T. Chen, Y. Yang et al., “Maldetect: An Android Malware Detection System Based on Abstraction
of Dalvik Instructions,” Journal of Computer Research and Development,vol. 53, pp. 2299-2306,
2016.(in Chinese) Article (CrossRef Link).

[13] Suarez-Tangil, G., S.K. Dash, M. Ahmadi, J. Kinder, G. Giacinto, and L.Cavallaro, “DroidSieve:
Fast and accurate classification of obfuscated android malware,” in Proc. of the Seventh ACM on
Conference on Data and Application Security and Privacy, ACM, pp. 309-320, 2017.
Article (CrossRef Link).

[14] K. Zhao, D. Zhang, X. Su, and W. Li, “Fest: A feature extraction and selection tool for Android
malware detection,” in Proc. of Computers and Communication (ISCC), 2015 IEEE Symposium on,
IEEE, pp. 714-720, 2015. Article (CrossRef Link).

[15] S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, “Hindroid: An intelligent android malware
detection system based on structured heterogeneous information network,” in Proc. of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, pp.
1507-1515, 2017. Article (CrossRef Link).

https://arxiv.org/abs/0912.5101
https://doi.org/10.1016/j.diin.2015.02.001
https://doi.org/10.1145/2046614.2046618
https://doi.org/10.1016/j.neucom.2017.07.030
https://doi.org/10.1109/tii.2017.2789219
https://doi.org/10.1007/s12243-017-0580-9
https://doi.org/10.3837/tiis.2017.09.026
https://doi.org/10.1016/j.eswa.2014.04.009
https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.7544/issn1000-1239.2016.20160348
https://doi.org/10.1145/3029806.3029825
https://doi.org/10.1109/ISCC.2015.7405598
https://doi.org/10.1145/3097983.3098026

2196 Chen et al.: DroidVecDeep: Android Malware Detection Based on Word2Vec and Deep Belief Network

[16] Y. Luan, S. Watanabe, and B. Harsham, “Efficient learning for spoken language understanding
tasks with word embedding based pre-training,” in Proc. of Sixteenth Annual Conference of the
International Speech Communication Association, pp. 1398-1402, 2015. Article (CrossRef Link).

[17] E. Raff, J. Sylvester, and C. Nicholas, “ Learning the PE Header, Malware Detection with Minimal
Domain Knowledge,” in Proc. of the 10th ACM Workshop on Artificial Intelligence and Security,
ACM, pp. 121-132, 2017. Article (CrossRef Link).

[18] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “Android Malware Detection using Deep
Learning on API Method Sequences,” 2017. Article (CrossRef Link).

[19] S. Hou, A. Saas, L. Chen, and Y. Ye, “Deep4maldroid: A deep learning framework for android
malware detection based on linux kernel system call graphs,” in Proc. of 2016 IEEE/WIC/ACM
International Conference on Web Intelligence Workshops (WIW), IEEE, pp. 104-111, 2016.
Article (CrossRef Link).

[20] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware characterization and detection using
deep learning,” Tsinghua Science and Technology, vol. 21, pp. 114-123, 2016.
Article (CrossRef Link).

[21] X. Su, D. Zhang, W. Li, and K. Zhao, “A deep learning approach to android malware feature
learning and detection,” in Proc. of Trustcom/BigDataSE/I SPA, 2016 IEEE, IEEE, pp. 244-251,
2016. Article (CrossRef Link).

[22] VirusTotal. Article (CrossRef Link).
[23] Contagio Mobile Malware Mini Dump. Article (CrossRef Link).
[24] APKPure. Article (CrossRef Link).
[25] 360 market. Article (CrossRef Link).
[26] Apktool. Article (CrossRef Link).
[27] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, “Understanding variable importances in forests

of randomized trees,” in Proc. of Advances in neural information processing systems, pp. 431-439,
2013. Article (CrossRef Link).

[28] Q. Le, and T. Mikolov, “Distributed representations of sentences and documents,” in Proc. of
International Conference on Machine Learning, pp. 1188-1196, 2014. Article (CrossRef Link).

[29] J. Saxe, and K. Berlin, “Deep neural network based malware detection using two dimensional
binary program features,” in Proc. of Malicious and Unwanted Software (MALWARE), 2015 10th
International Conference on, IEEE, pp. 11-20, 2015. Article (CrossRef Link).

[30] G. E. Hinton, S. Osindero, and Y. W. The, “A fast learning algorithm for deep belief nets,” Neural
computation, vol. 18, no. 7, pp. 1527-1554, 2006. Article (CrossRef Link).

[31] deep-belief-network. Article (CrossRef Link).
[32] Y. Shao, J. Ott, Y. J. Jia, Z. Qian, and Z. M. Mao, “The misuse of android unix domain sockets and

security implications,” in Proc. of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, ACM, pp. 80-91, 2016. Article (CrossRef Link).

https://www.isca-speech.org/archive/interspeech_2015/i15_1398.html
https://doi.org/10.1145/3128572.3140442
https://arxiv.org/abs/1712.08996
https://doi.org/10.1109/WIW.2016.040
https://doi.org/10.1109/TST.2016.7399288
https://doi.org/10.1109/TrustCom.2016.0070
https://www.virustotal.com/
http://contagiominidump.blogspot.hk/
https://apkpure.com/
http://zhushou.360.cn/
http://ibotpeaches.github.io/Apktool
http://papers.nips.cc/paper/4928-understanding-variable-importances-in-forests-of-randomized-tre
https://arxiv.org/abs/1405.4053
https://doi.org/10.1109/MALWARE.2015.7413680
https://doi.org/10.1162/neco.2006.18.7.1527
https://github.com/albertbup/deep-belief-network
https://doi.org/10.1145/2976749.2978297

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019 2197

Tieming Chen, received the Ph.D. degree in software engineering from Beihang
University, Beijing, China, in 2011. He is currently a professor with the College of Computer
Science and Technology, Zhejiang University of Technology. His research interests include
data mining and cyberspace security.

Qingyu Mao, received the B.S. degree in computer science & technology from Zhejiang
A&F University in 2016. He is currently pursuing the M.S. degree with the School of
Computer Science & Technology and Software Engineering, Zhejiang University of
Technology. His research interests include data mining and mobile security.

Mingqi Lv, received the Ph.D. degree in computer science from Zhejiang University,
Hangzhou, China, in 2012. He is currently an assistant professor with the College of
Computer Science and Technology, Zhejiang University of Technology. His research
interests include ubiquitous computing, data mining and human computer interaction.

Hongbing Cheng, associate professor, was born in 1979. He is a post doctor candidate in
State Key Laboratory for Novel Software Technology at Nanjing University. His research
interest includes crptography and information security, computer communications and
networks, cloud computing.

Yinglong Li, received the PhD degree computer science from Renmin University of China,
Beijing, China, in 2014. Currently, he is a lecturer of computer science in school of computer
science and technology, Zhejiang University of Technology. His research interests include
edge-computing and privacy protection in Internet of Things (IoT).

