
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019 1922
Copyright ⓒ 2019 KSII

IMT: A Memory-Efficient and Fast
Updatable IP Lookup Architecture Using an

Indexed Multibit Trie

Junghwan Kim1, Myeong-Cheol Ko1, Moon Sun Shin1 and Jinsoo Kim1*
1 Department of Computer Engineering, Konkuk University

268 Chungwon-daero, Chungju-si, Chungcheongbuk-do, 27478, Korea
[e-mail: {jhkim, cheol, msshin, jinsoo}@kku.ac.kr]

*Corresponding author: Jinsoo Kim

Received August 2, 2017; revised May 21, 2018; revised August 23, 2018; accepted November 10, 2018;
published April 30, 2019

Abstract

IP address lookup is a function to determine nexthop for a given destination IP address. It takes
an important role in modern routers because of its computation time and increasing Internet
traffic. TCAM-based IP lookup approaches can exploit the capability of parallel searching but
have a limitation of its size due to latency, power consumption, updatability, and cost. On the
other hand, multibit trie-based approaches use SRAM which has relatively low power
consumption and cost. They reduce the number of memory accesses required for each lookup,
but it still needs several accesses. Moreover, the memory efficiency and updatability are
proportional to the number of memory accesses. In this paper, we propose a novel architecture
using an Indexed Multibit Trie (IMT) which is based on combined TCAM and SRAM. In the
proposed architecture, each lookup takes at most two memory accesses. We present how the
IMT is constructed so as to be memory-efficient and fast updatable. Experiment results with
real-world forwarding tables show that our scheme achieves good memory efficiency as well
as fast updatability.

Keywords: IP address lookup, indexed multibit trie, subtrie-pushing, TCAM-based index,
prefix updatability

http://doi.org/10.3837/tiis.2019.04.010 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019 1923

1. Introduction

Internet traffic has been rapidly increased for past several decades and demanded more
powerful forwarding engine. IP address lookup is one of the key functions required for
forwarding packets in a router. It is to determine the nexthop information for a given
destination IP address. The IP address lookup consumes much more computational cycles in
these days because it requires Longest Prefix Matching (LPM) due to Classless Inter-Domain
Routing (CIDR) [1]. The growth of routing information also demands high-performance IP
lookup engine. The recent routing table contains more than 600,000 network prefixes.

Many IP address lookup schemes have been researched that generally fall into either of two
categories: trie-based and TCAM-based. In trie-based approach, it often requires multiple
accesses to the trie structure. So most of research focused on reducing the number of memory
accesses [2]. Multibit trie is one of the basic enhancements to reduce memory accesses. A
prefix can be expanded to a longer node using called prefix expansion technique in a multibit
trie [3]. Multibit trie-based approaches proceed to search with a long stride unlike a binary trie
(or unibit trie).

Ternary Content-Addressable Memory (TCAM) is a specialized memory that searches the
entire entries in a single cycle in parallel. Each cell can represent * as well as 0 or 1, so it is
suitable for storing prefixes. It can search for the longest matching prefix if priority-based
selection logic is provided. However, its size is restrictive because it consumes more power
and takes longer latency than SRAM. The power consumption is reduced by routing table
compaction and partitioning [4]. Furthermore, hybrid architectures of TCAM-SRAM were
proposed to exploit both advantages [5][6].

The update overhead is one of the major issues in high-performance IP lookup engine. The
update time may affect lookup speed because it consumes computational resources and may
lock the lookup operation during the update. The number of memory entries to store a single
prefix affects the update time. Longer stride in a multibit trie makes it possible to lookup fast,
but it takes longer update time because more entries are often associated with a single prefix.

In this paper, we propose a new novel IP address lookup architecture which especially
focuses on memory efficiency and fast updatability. In that architecture, we use both TCAM
and SRAM to store multibit trie-based lookup structure. Unlike the conventional multibit trie
our scheme performs lookups very fast only requiring at most two memory accesses. The size
of each subtrie is controlled to satisfy memory efficiency and updatability criteria. An
elaborate technique is also devised to control the number of TCAM accesses incurred by a
single update.

The rest of this paper is organized as follows. Section 2 reviews related works, and Section
3 explains conventional IP lookup methods employing multibit trie and presents our
motivation. Section 4 describes our proposed architecture with a lookup scheme, construction
algorithm for IMT, and an update algorithm. Experiment results are presented and discussed in
Section 5. Lastly, Section 6 concludes the paper.

1924 Kim et al.: IMT: A Memory-Efficient and Fast Updatable IP Lookup Architecture
Using an Indexed Multibit Trie

2. Related Works

There has been much research on power consumption of TCAM [4][7-9]. In CoolCAMs, the
routing table is partitioned into sub-tables (TCAM buckets) to reduce power consumption [7].
Lu and Sahni made enhanced CoolCAMs and proposed several architectures based on the use
of wide SRAM [8]. Reduction of the number of entries in a TCAM-based routing table is
crucial in point of power consumption, cost, and lookup delay. Liu suggested some techniques
to reduce the entries [4].

Several TCAM-based IP lookup engines have been proposed. Akhbarizadeh et al. proposed
a TCAM-based IP forwarding engine using prefix segregation scheme [10]. In that scheme,
prefixes in the routing table are partitioned into two groups. One consists of non-overlapped
prefixes, and the other group covers remaining prefixes. These two groups are contained in
two separate TCAMs. The TCAM containing non-overlapped prefixes does not need priority
encoder and sorting the prefixes in order of length, so it achieves good lookup performance
and fast updates. Akhbarizadeh et al. partitioned prefixes and stored them into several TCAM
blocks as well [11]. In this scheme, multiple selectors deliver incoming traffic to those blocks
in parallel. It exploits popular prefixes stored in early stage memory to reduce contention in
TCAM blocks and enhance the lookup performance.

In TCAM-based lookup schemes, all entries should be sorted to guarantee the longest prefix
matching, which makes it difficult to update incrementally. Shah and Gupta proposed a novel
prefix ordering scheme, chain-ancestor order, which reduces the number of memory
movements on updates [12].

Luo et al. proposed a hybrid architecture which consists of TCAM-based lookup engine and
SRAM-based pipelined engine [5]. In that architecture, FIB is partitioned into two sets.
Disjoint leaf prefixes are mapped into TCAM-based engine and other overlapping prefixes are
mapped into SRAM-based engine to increase throughput and to reduce the update overhead.
Kim et al. proposed a hybrid architecture based on SRAM and TCAM [6]. In that architecture,
16-bit indices are stored in SRAM while prefixes longer than 16 bits are distributed over
TCAM blocks. Since a TCAM block is selectively activated by an index, high throughput is
achieved with low power. Prefixes are evenly distributed over TCAM blocks by elaborated
technique so the size of TCAM is minimized in point of entries and width.

Several trie-based or multibit trie-based schemes have been proposed [3][13-20]. Srinivasan
and Varghese proposed leaf pushing and multibit trie [3]. Le at al. devised an SRAM-based
bidirectional pipeline for high throughput IP lookup engine [13]. In that scheme, leaf-pushed
unibit trie is used for IP address lookup. They tried to optimize memory balancing which is
crucial in the pipelined architecture. Basu and Narlikar designed an SRAM-based pipeline to
process IP lookup [14]. In the pipeline, a leaf-pushed trie is allocated to the stages and
balancing the allocation is crucial. Write bubble technique was proposed to handle updates in
the pipeline efficiently. Lee and Lim proposed multi-stride decision trie which satisfies some
characteristics [15]. Wu et al. proposed pipelined IP lookup scheme based on a prefix trie [16].
In that scheme, prefixes are classified into short and long groups. The short group is contained
in a quick table and the long group is indexed by the quick table.

Chu et al. proposed a GPU-based parallel architecture [17]. A novel variable-stride multibit
trie-based data structure was devised to reduce search steps and to optimize memory accesses
in GPU. Li et al. devised a fixed-stride multibit trie to compact the data structure and utilize
the GPU’s memory access pattern fully [18]. In that scheme, each unit is either a nexthop or a
pointer to a child by means of leaf-pushing, i.e., it is a disjoint multibit trie. Li et al. used a
multibit trie-based table and pursued the efficiency of on-chip memory containing the lookup

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019 1925

table by splitting the table [21]. However, for off-chip access, they should use hashing and it
needs parallel memory accesses or sparse slots to avoid conflicts. It is assumed each traversing
step in the multibit trie is pipelined and the split table is accessed in parallel.

3. Conventional Multibit Tries for IP lookup
This section describes in detail the background knowledge about the multibit trie that has been
previously developed. A trie is a kind of search tree structure used to find the Longest
Matching Prefix (LMP) for a destination IP address. A binary trie (or unibit trie) is the most
fundamental trie whose degree is two [2]. A node in a binary trie is represented by a bit string
which indicates the path from the root to that node. Fig. 1(a) shows an instance of a binary trie
in which prefixes are represented by filled circles (a ~ h). The LMP is the last visited prefix
when a trie is traversed from the root node. For example, given a destination address 0100100
(7-bit long for simplicity), the LMP should be the prefix h though the prefix a is also matched.
In a binary trie, the IP lookup time is accounted for by the number of accessed nodes. The
number of memory accesses for each prefix is shown in Fig. 1(b). In the worst case, it is the
trie depth, which is 32 in IPv4 and 128 in IPv6.

(a) A binary trie with eight prefixes (b) The number of memory accesses

 Fig. 1. An example of prefixes and the corresponding memory accesses

The number of memory accesses can be reduced if several bits are checked in a node. In a

multibit trie, several bits can be checked at once in a node [3]. The number of bits to be
checked per node is called stride. Fig. 2 shows a multibit trie corresponding to Fig. 1(a). In the
figure, each of S1 ~ S4 represents a multibit trie node and we call it a subtrie of a multibit trie.
Fig. 2(a) depicts a conceptual view in which each subtrie range is projected to the binary trie.
Fig. 2(b) shows the actual memory state for the multibit trie. In that figure, each entry consists
of the nexthop associated with a prefix and a child pointer. In Fig. 2(c), prefix a is expanded to
leaves by a technique called leaf-pushing [3]. In a leaf-pushed multibit trie, all the prefixes are
located at leaves and matching always occurs at leaves. Note that each entry contains either the
nexthop or a child pointer but not both in a leaf-pushed multibit trie. So a leaf-pushed multibit
trie requires less memory space.

Compared to a binary trie, a multibit trie requires less memory accesses for each lookup. In
Fig. 1(b), the average number of memory accesses of the multibit trie is 1.88 while that of the
binary trie is 4.63. However, there are some disadvantages on a multibit trie. First, it still
requires several memory accesses and even the number of memory accesses is considerably
high according to the depth of the multibit trie. In Fig. 2, it requires at least three memory

Prefix Mem. acc.
in BT1)

Mem. acc.
in MT2)

a 0* 2 1
b 00* 3 1
c 10* 3 1
d 110* 4 2
e 111* 4 2
f 01000* 6 2
g 010011* 7 3
h 0100100* 8 3
Avg. mem. acc. 4.63 1.88

1) BT = Binary Trie

2) MT = Multibit Trie

a

b

d e

f

g

h

c

0

0

1

1 1 0

1926 Kim et al.: IMT: A Memory-Efficient and Fast Updatable IP Lookup Architecture
Using an Indexed Multibit Trie

accesses to match the prefix g or h. Second, while longer stride makes the number of memory
accesses decrease, it causes poor memory efficiency. In Fig. 2(b), among 8 entries only one
entry contains a prefix in S2 when the stride is 3. Also, long stride derives too many entries per
prefix, so it may experience poor updatability. Third, leaf-pushing causes a lot of memory
accesses for a single prefix update. For example, in Fig. 2(c), when the prefix a is updated, all
the leaf-pushed 7 entries should be accessed even in different subtries.

(a) Conceptual view (b) Basic multibit trie (c) Leaf-pushed multibit trie
Fig. 2. Two types of multibit tries

4. IP Address Lookup Using an Indexed Multibit Trie

4.1 Overall Scheme
The prefix expansion in multibit tries considerably reduces the number of steps to reach the
longest matching prefix compared to binary tries. However, all the subtries on the traversed
path have to be visited, so quite a time is still taken in matching process if the depth of the trie
is high. We propose a new scheme to achieve fast lookup without visiting intermediate subtries.
In this scheme, only the last matching subtrie is directly visited using an index without visiting
intermediate subtries.

Fig. 3 shows an Indexed Multibit Trie (IMT) which is constructed by our scheme. The
construction algorithm will be described in Section 4.4. Unlike Fig. 2, each subtrie is
independent and directly accessible without going through the intermediate subtries in the
multibit trie of Fig. 3. All subtries are stored in SRAM and each entry is accessed using direct
addressing as the conventional multibit tries. To determine a subtrie, we use the subtrie index
which is the root of that subtrie. Since the lengths of subtrie roots are various, we exploit
TCAM to store and search those values. Fig. 3 (b) shows the subtrie indexes in TCAM and all
the subtries in SRAM. IP address lookup can be performed very fast irrespective of the length
of the matched prefix since it is always completed by accesses to TCAM and SRAM. Let us
consider a straightforward example. Given an input IP address, 0100110 (7-bit address for
simplicity), the longest matching prefix g will be found in two steps without going through the
subtrie S1 and S2. First, the TCAM is searched with 0100110, and the fourth entry is returned
as the longest matching entry though the first and the third entries are also matched. Since the
length of S4’s root is 5, the 5 significant bits of 0100110 are masked. Then, next 2 bits are used
as offset because stride is 2. Now, the SRAM is accessed using the subtrie pointer S4 and the
offset of 2 (= 102).

b c
S1

f a a a a a a
S2

d e
S3

h a g g S4

b a c
S1

f
S2

d e
S3

h g g S4

a
b

d e

f

g

h

c

S1

S2 S3

S4

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019 1927

Each SRAM entry only has Next Hop Identifier (NHI) field and the field for the pointer to a
child subtrie is not required because the intermediate subtries along the path need not to be
actually traversed. So the capacity of required SRAM is almost as half as those of other
non-leaf pushing based multibit tries. Note that there remain some null entries in SRAM. In
Fig. 3 (b), there are four null entries, A ~ D in the SRAM. In our scheme, the root prefix of a
subtrie is not expanded because the corresponding NHI will be stored in TCAM entry.
Accordingly, the prefix k is not expanded. When it accesses the entry A or B, the final result is
in TCAM. In case of the entry C, it cannot be accessed because the longer one (S4) will be
matched instead. In case of the entry D, the final result should be the NHI of prefix a. To obtain
that result the prefix a should have been expaned to the entry D by leaf-pushing. Such
expansion incurs a large amount of updates when the original prefix is updated. In next section,
we will describe how to find the correct matching result while avoiding leaf-pushing and large
updating overhead.

(a) An Indexed Multibit Trie (b) Lookup based on TCAM and SRAM
Fig. 3. Overall lookup scheme

4.2 Organization
We propose an architecture to support the Indexed Multibit Trie scheme in which each subtrie
of a multibit trie is indexed and accessed using that index. In that architecture, TCAM contains
an index to subtries and the subtrie itself is contained in SRAM. For more efficient use of the
multibit trie, we split the TCAM into two parts: pTCAM and nTCAM as shown in Fig. 4. All
subtries are divided into two groups. In one group, every subtrie root is a prefix whereas in the
other group all the subtrie roots are non-prefix nodes. pTCAM and nTCAM accommodate the
indexes to the former group and the latter group, respectively. For a given input IP address,
each TCAM part searches for the longest matching result separately in parallel.

In Fig. 4, the selection logic chooses the index result (③) among the both results of TCAM
parts (① and ②). It is straightforward to design the selection logic. It determines the result by
means of the length of the subtrie roots. The longer (more specific) subtrie root is selected. If
leng of ② is greater than that of ①, the selection logic chooses ②. In that case, NHI field of ③
is filled with that of ①. The SRAM-based search engine finds an entry with leng, ptr, stride
and a given IP address, and gets the result of NHI from that SRAM entry. However, if the
accessed entry is null, the final result becomes the NHI which comes from ③.

n2
n1

NULL
NULL

n6
NULL

n4
n5
n8

NULL
n7
n7

b
a

f
C

d
e
h

D
g
g

S1

S2

S3

S4

SRAM

B
A

TCAM

* S1
11* S3
0100* S2
01001* S4

2
1
1
2

subt_idx ptr stride

4
5

0
2

leng
n9
-

NHI

n1
-

a
b

d e

f

g

h

S1

S2
S3

S4

k

subtrie index: *

subtrie index: 11*

subtrie index: 0100*

subtrie index: 01001*

1928 Kim et al.: IMT: A Memory-Efficient and Fast Updatable IP Lookup Architecture
Using an Indexed Multibit Trie

Let us consider an example in Fig. 5. We do not use leaf-pushing in our scheme. When it

accesses the entry D of SRAM in Fig. 3, there is a null entry even if its result should be the
nexthop for prefix a. To resolve this problem prefix expansion is partially applied to such
prefix in our scheme. To avoid heavily updating problem the expansion is limited to the
immediate descendant subtrie roots, which is only the root of subtrie S2 in this example. We
call it subtrie-pushing instead of leaf-pushing because the prefix is not expanded to leaves but
to subtrie roots.

Consequently, S1 and S2 have prefixes in roots while S3 and S4 do not. So the index for the
former is contained in pTCAM, on the other hand, that for the latter is contained in nTCAM.
Note that the prefixes in subtrie roots are not expanded in SRAM because the corresponding
NHIs are already in pTCAM. Consider null entries A ~ D in SRAM. Whenever a null entry is
met in SRAM, it refers to NHI which was delivered from pTCAM. Let us consider an input IP
address, 0100101. The longest matching results for pTCAM and nTCAM are < n1, 4, S2, 1 >
and < φ, 5, S4, 2 >, respectively. Since leng (= 5) in nTCAM’s result is higher, < n1, 5, S4, 2 >
will be delivered to SRAM-based search engine. Note that n1 comes from pTCAM’s result.
Now, the SRAM-based search engine accesses the entry D in S4 using the last two bits 01 of
the IP address 0100101. The entry D is null, however, the lookup engine can determine the
final matching result because it already has n1 as NHI which comes from pTCAM. When the
prefix a is updated, it only needs to access the roots of immediate descendant subtries such as
S2. So subtrie-pushing technique can save a lot of memory accesses incurred by update of a
prefix.

(a) An Indexed Multibit Trie (b) IMT-based lookup
Fig. 5. An example for IMT-based lookup engine

n2
n1

NULL
NULL

n6
NULL

n4
n5
n8

NULL
n7
n7

b
a

f
C

d
e
h

D
g
g

S1

S2

S3

S4

SRAM

B
A

pTCAM

* S1
0100* S2

11* S3
01001* S4

2
1

1
2

subt_idx ptr stride
0
4

2
5

leng

n9
n1

NHI

nTCAM

a

b

d e

f
g

h

S1

S2 S3

S4

k

SRAM-
based
Search
Engine

pTCAM

nTCAM

Selection
Logic

IP
Addr ①

③
②

④

① <NHI, leng, ptr, stride>
② <∅, leng, ptr, stride>
③ <NHI, leng, ptr, stride>
④ <NHI>

NHI: Next Hop Identifier
leng: length of a subtrie root
ptr: pointer to a subtrie
stride: stride of a subtrie

Fig. 4. Architecture for IMT-based IP lookup engine

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019 1929

4.3 Lookup Algorithm
Fig. 6 shows the procedure the lookup engine performs whenever an IP address is given. First,
it searches both TCAMs in parallel. Then, it determines which one is longer result. The SRAM
is accessed using the longer result. It will return NHI as the final result. If the result of the
SRAM is NULL, NHI from pTCAM will be the final result.

Lookup Algorithm

Lookup(ip)
{
 do_parallel { // Search in TCAM
 <pNHI, leng1, subt_ptr1, stride1> = lookup_pTCAM(ip);
 <leng2, subt_ptr2, stride2> = lookup_nTCAM(ip);
 }
 if (leng1 > leng2)
 <leng, subt_ptr, stride> = <leng1, subt_ptr1, stride1>;
 else
 <leng, subt_ptr, stride> = <leng2, subt_ptr2, stride2>;
 NHI = lookup_SRAM(ip, <leng, subt_ptr, stride>);

 if (NHI == NULL)
 NHI = pNHI; // final result in pTCAM
 return NHI;
}

Fig. 6. Lookup algorithm

4.4 Construction of an Indexed Multibit Trie
Since a multibit trie is constituted by a set of subtries, we first obtain the subtries from a binary
trie to construct an IMT. When constructing subtries, we use some metrics to ensure that each
constructed subtrie is memory-efficient and fast updatable.

 Memory efficiency of a subtrie

The SRAM efficiency of a subtrie can be measured by

𝐸𝑆𝑅𝐴𝑀 = 𝑛𝑝𝑟𝑒𝑓 𝑛𝑒𝑛𝑡⁄ = 𝑛𝑝𝑟𝑒𝑓 2𝑠𝑡𝑟𝑖𝑑𝑒⁄ (1)

where 𝑛𝑝𝑟𝑒𝑓 is the number of prefixes and 𝑛𝑒𝑛𝑡 is the number of expanded entries in the
subtrie. When 𝐸𝑆𝑅𝐴𝑀 is calculated, 𝑛𝑝𝑟𝑒𝑓 excludes the root prefix of a subtrie because it is not
actually stored in SRAM.

If the subtrie is overlapped by other descendant subtries, the SRAM efficiency will be

 𝐸𝑆𝑅𝐴𝑀 = 𝑛𝑝𝑟𝑒𝑓 �2𝑠𝑡𝑟𝑖𝑑𝑒 − Δent�⁄ (2)

where Δent is the total number of eclipsed entries in the subtrie. We allow subtries to be
overlapped, which makes it possible to construct larger subtries efficiently. For example, S1
and S3 are overlapped, and Δent is 1 in Fig. 5. Also, S2 and S4 are overlapped, and Δent is 1.

The TCAM efficiency of a subtrie is,

1930 Kim et al.: IMT: A Memory-Efficient and Fast Updatable IP Lookup Architecture
Using an Indexed Multibit Trie

 𝐸𝑇𝐶𝐴𝑀 = 1− 1 𝑛𝑝𝑟𝑒𝑓⁄ (3)

Both SRAM and TCAM efficiency increase as 𝑛𝑝𝑟𝑒𝑓 increases. However, 𝐸𝑆𝑅𝐴𝑀 tends to

decrease as stride increases. 𝐸𝑇𝐶𝐴𝑀 is defined by 0 when 𝑛𝑝𝑟𝑒𝑓 is 1 because there is no subtrie
not having any prefix. In Fig. 5, 𝐸𝑆𝑅𝐴𝑀 of S1 is 2/3 = 0.67. Likewise, those of S2, S3, and S4
are 1.0, 1.0, and 0.5, respectively. 𝐸𝑇𝐶𝐴𝑀 of S1, S2, S3, and S4 are 0.67, 0, 0.5, and 0.5,
respectively.

 Update overhead of a subtrie

The average update overhead of SRAM for a subtrie can be measured by

 𝑈𝑆𝑅𝐴𝑀 = 𝑡𝑎𝑓𝑓 𝑛𝑏𝑡−𝑛𝑜𝑑𝑒⁄ = 𝑡𝑎𝑓𝑓 �2𝑠𝑡𝑟𝑖𝑑𝑒+1 − 1�⁄ (4)

where 𝑡𝑎𝑓𝑓 is the total number of affected entries by updates on each binary-trie node in the
subtrie and 𝑛𝑏𝑡−𝑛𝑜𝑑𝑒 is the number of expanded binary-trie nodes in the subtrie except the root.
In Fig. 5, assuming binary-trie nodes are expanded to all possible position in the subtrie, S4
has 7 (expanded) binary-trie nodes. So 𝑛𝑏𝑡−𝑛𝑜𝑑𝑒 of S4 is 6 excluding the root. 𝑡𝑎𝑓𝑓 is the sum
of affected entries by means of update on each binary-trie node. 𝑡𝑎𝑓𝑓 can be computed by

𝑡𝑎𝑓𝑓 = ∑𝐴(𝑏𝑖) (5)

where 𝑏𝑖 is the i-th binary-trie node in the subtrie except the root and 𝐴(𝑥) denotes the number
of entries affected by binary-trie node 𝑥. For example, in S4, update on prefix g affects 2
entries in the subtrie, so A(g) = 2. When all 𝐴(𝑏𝑖) are computed similarly and summed up,
𝑡𝑎𝑓𝑓 of S4 is 7.

If the subtrie is overlapped by other descendant subtries, the average update overhead will
be

𝑈𝑆𝑅𝐴𝑀 = 𝑡𝑎𝑓𝑓 �2𝑠𝑡𝑟𝑖𝑑𝑒+1 − 1− Δbt−node�⁄ (6)

where Δbt−node is the total number of eclipsed binary-trie nodes in the subtrie. When
calculating 𝑡𝑎𝑓𝑓, it excludes updates on eclipsed nodes. Since all binary-trie nodes except the
root affects only SRAM, we do not consider the average update overhead of TCAM for a
subtrie.

For a given subtrie, maximum number of affected entries by update is

𝑚𝑎𝑓𝑓 = Max(𝐴(𝑏1),𝐴(𝑏2), … ,𝐴(𝑏𝑛)) (7)

When constructing each subtrie, we consider 𝐸𝑆𝑅𝐴𝑀 but not 𝑈𝑆𝑅𝐴𝑀 because 𝑈𝑆𝑅𝐴𝑀 does not

increase as 𝐸𝑆𝑅𝐴𝑀 increases in general. Also, 𝑚𝑎𝑓𝑓
 is considered to control the excessive

accesses to SRAM. Fig. 7 shows our IMT construction algorithm. The algorithm uses two
parameters α and β to decide whether it makes the current subtrie to be enlarged or not. α is the
lower bound of 𝐸𝑆𝑅𝐴𝑀, i.e., every constructed subtrie will have the value at least α. β is the
upper bound of 𝑚𝑎𝑓𝑓, i.e., every constructed subtrie will have the value at most β.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019 1931

In the IMT construction algorithm, among all binary-trie nodes only prefix nodes are visited
in reverse-level order, i.e., from bottom to top order. The function next_prefix_node() gives
such nodes in turn. The currently visited prefix node p directly constitutes a subtrie. Then, it
repeats to check if the current subtrie can be enlarged to cover the sibling node with stride
incremented by one. If the enlarged subtrie does not satisfy α ≤ 𝐸𝑆𝑅𝐴𝑀 and β ≥ 𝑚𝑎𝑓𝑓, the
previous subtrie is established. Whenever a subtrie is constituted, it just marks the root node in
the binary trie and sets its stride instead of actual prefix expansion. The prefix expansion is
straightforward and will be done at later phase. Every prefix is reviewed and contained just
once in a subtrie by dynamic programming.

Indexed Multibit Trie Construction Algorithm

Construct_IMT(α, β)
{
 while (there remains any prefix node) {
 p = next_prefix_node();
 if (p.flag == true) continue;
 stride = 1;
 pref = 1; // prefixes of the current subtrie
 ent = 0; // eclipsed entries of the current subtrie
 while (p.leng > 0) {
 q = p’s sibling node;
 tpref = get_pref(q, stride) + pref;
 tent = get_ent(q, stride) + ent;
 tmax_aff = MAX(get_max_aff(q, stride), max_aff);
 if (mem_eff(tpref, tent, stride) < α || tmax_aff > β)
 break;
 pref = tpref;
 ent = tent;
 max_aff = tmax_aff;
 p = p’s parent;
 if (p is a prefix) prefixes ++;
 stride++;
 }
 p.stride = stride – 1;
 p.subt_root = true; // Set a new subtrie root
 Mark all nodes’ flag as true in the subtrie;
 }
}

Fig. 7. IMT construction algorithm

In Fig. 5, we have shown prefix a is expanded to the roots of the immediate descendant
subtries by subtrie-pushing. For a given binary-trie node b, the number of immediate
descendant subtrie roots of b is denoted by δ(b) when there is no prefix node on the path from
b to the immediate descendant subtrie roots including those roots. If b is the root of a subtrie,
δ(b) = 0. Suppose δ(a) is large in Fig. 5. It implies the update on the prefix a causes a lot of
accesses to TCAM. In that case, we need to control excessive subtrie-pushing by creating a
new subtrie. Note that we don’t have to do subtrie-pushing if the prefix a becomes the root of a
new subtrie. Fig. 8 shows such splitting algorithm. γ is a parameter to limit the number of
immediate descendant subtries. For some prefix p, if δ(p) is greater than γ, the new subtrie will
be split with p as the root.

1932 Kim et al.: IMT: A Memory-Efficient and Fast Updatable IP Lookup Architecture
Using an Indexed Multibit Trie

Subtrie Splitting Algorithm

Split_Subtries(p, cur_stride, γ)
{
 if (p.subt_root)
 cur_stride = p.stride;
 if (!p.subt_root && p is a prefix && δ(p) > γ) {
 // Set a new subtrie root
 p.subt_root = true;
 p.stride = cur_stride;
 }
 if (cur_stride > 0) {
 Split_Subtries(p.lchild, cur_stride - 1);
 Split_Subtries(p.rchild, cur_stride - 1);
 } else {
 Split_Subtries(p.lchild, 0);
 Split_Subtries(p.rchild, 0);
 }
}

Fig. 8. Subtrie splitting algorithm

4.5 Update Algorithm
Each update message on a prefix is associated with a binary-trie node. There are three cases in
position of that node: at subtrie root, inside subtrie, and outside subtrie. Fig. 9 depicts the
algorithm according to the updating node position. First, if the updating node is a subtrie root,
only TCAM is accessed for the update. It incurs at most one memory access to pTCAM and
nTCAM each except movements to preserve order of prefixes in TCAM. Some technique to
reduce memory movements for preserving order in TCAM has been researched [12]. The
TCAM entries in our scheme are much less than others, so we expect the memory movement
for preserving order is not crucial in our scheme. Second, if a new prefix is inserted outside

Move the entry:
pTCAM nTCAM

Move the entry:
nTCAM pTCAM

Modify the entry:
in pTCAM

Type? insert

modify

delete

Start update

Subtrie
root?

Y N

Inside
subtrie?

Y

N

Merge
possible?

Y N

Merge subtries Make a subtrie
(update TCAM & SRAM)

Split a subtrie

Make a subtrie
(update TCAM & SRAM)

Update SRAM

Update inherited
TCAM entries

Splitting
required?

Y

N

Fig. 9. Update Algorithm

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019 1933

subtrie, it should be checked whether the new prefix can be merged with the existing subtrie.
The criterion for merging is whether 𝑈𝑆𝑅𝐴𝑀 is larger than β after merging. If not, a new subtrie
will be created and pTCAM is accessed once. Then, several subtrie-pushed entries in pTCAM
should be updated. Lastly, in case the updating node is inside some subtrie, it is checked
whether the subtrie can be split or not. 𝑈𝑆𝑅𝐴𝑀 is used for criterion. In all the cases the number
of SRAM and TCAM accesses are limited by β and γ, respectively.

5. Evaluation
In this section, the proposed architecture is evaluated in terms of memory efficiency and

updatability using real-world public routing tables. For the experiment, the routing tables were
collected on three different dates from ripe.net [22]. Since the network prefixes do not vary
much in different locations, we used routing data from various dates to observe changes over
time. Table 1 depicts the characteristics of the routing tables. All the routing tables were
converted into IPv4 Forwarding Information Bases (FIBs) for our experiment. The experiment
was performed using Intel(R) Core(TM) i7-2600 (3.4 GHz) with main memory of 4 GB.

Table 1. Routing tables
 rrc0-2017 rrc0-2015 rrc0-2013

Location Amsterdam Amsterdam Amsterdam
Date 03/01/2017 03/01/2015 03/01/2013
Prefixes 668,390 550,463 484,860

Table 2 shows the summary of IMT construction results with parameters (α = 0.5, β = 64, γ

= 16). In the table, the number of prefixes has been increased sharply over time, so the memory
efficiency is crucial in IP lookup engine to accommodate more prefixes. Note that the other
characteristics in the table have a tendency to be time-invariant except the requirement of
pTCAM, nTCAM, and SRAM. For example, the average length of the subtrie roots is about 21,
which is irrespective of collecting date.

Table 2. IMT construction results (α = 0.5, β = 64, γ = 16)

 rrc0-2017 rrc0-2015 rrc0-2013
Prefixes 668,390 550,463 484,860
Binary-trie nodes 1,533,248 1,292,006 1,154,517
Subtries 123,097 112,011 102,809
Avg. leng of subtrie root 21.01 21.02 21.05
Max. leng of subtrie root 31 31 31
Avg. stride of subtrie 2.15 2.12 2.09
Max. stride of subtrie 11 11 11
Avg. multibit-trie depth 5.19 5.20 5.09
Max. multibit-trie depth 12 12 12
pTCAM(entries) 50,446 45,299 41,361
nTCAM(entries) 72,651 66,712 61,448
SRAM(entries) 1,114,798 931,458 825,112
Eclipsed(entries) 155,820 132,554 119,434
TCAM power(nJ) 97.8 80.8 71.3
TCAM search delay(ns) 7.1 5.4 4.6

1934 Kim et al.: IMT: A Memory-Efficient and Fast Updatable IP Lookup Architecture
Using an Indexed Multibit Trie

In Table 2, ‘multibit-trie depth’ means the highest level of the trie, i.e., maximum number of

subtries on the path from the root to each leaf node. It is related to the number of memory
accesses when a conventional SRAM-based multibit-trie is used. Its average value is about 5
and the maximum value is 12. On the other hand, in IMT, it takes at most one TCAM access
and one SRAM access.

Moreover, IMT requires less memory compared to the conventional SRAM-based
multibit-trie. In rrc0-2017, about 123 K entries are required for TCAM and 1.1 M entries are
required for SRAM. Since each SRAM entry stores only NHI field, it requires at most 16 bits.
As a result, the total SRAM requirement is 2.2 MB in IMT. Since the conventional
SRAM-based multibit-trie does not use TCAM, it only requires SRAM of 2.2 M entries.
However, in that case, each SRAM entry needs a pointer to the child subtrie, so each entry
requires 32 bits additionally and total SRAM requirement becomes 6.6 MB. In Table 2,
‘eclipsed’ is the size of an overlapped region by descendant subtries which is explained in
Section 4.4. The eclipsed space can be reused like free space, so we can reduce the total SRAM
requirement by the amount of the eclipsed entries. As a result, the required SRAM is reduced
by 14 %.

TCAM plays an important role in parallel search of subtries, but it may cause much power
to be consumed. Agrawal and Sherwood presented TCAM power consumption and delay time
model useful for network system design [23]. We obtained TCAM power and search delay of
IMT using their model and tool. For calculation of power and delay, TCAM size and
technology feature size are used as input parameters. For 90nm technology, the results of
TCAM power and delay are shown in Table 2.

In Section 4.4, 𝑚𝑎𝑓𝑓 denotes the maximum number of entries affected by a single node
update. Actually, it represents the maximum number of SRAM accesses incurred by a single
update. Fig. 10 shows the distribution of 𝑚𝑎𝑓𝑓, in which most subtrie updates (99%) incur less
than 17 SRAM accesses. The largest value of 𝑚𝑎𝑓𝑓

 is 1276 when we set the parameters as α =
0.5, β = ∞, γ = ∞. In case of α = 0.5, β = 64, γ = 16, every subtrie is constructed to have the
value of 𝑚𝑎𝑓𝑓

 less than or equal to 64, however, the percentage of 𝑚𝑎𝑓𝑓
 being 17 ~ 64 is less

than 1% as stated above. In addition, the actual SRAM access time can be reduced because the
contiguous entries can be accessed in burst mode and each entry is merely 16-bit long. In Fig.
10, some count values are higher than others, especially when the number of SRAM accesses
is a power of two. The reason for this is that the number of entries in a subtrie is always a
power of two and the maximum number of entries affected by a single update is most often a
power of two.

In the earlier section, δ(b) denotes the number of immediate descendant subtrie roots of a
binary-trie node b when there is no prefix node on the path from b to the subtrie roots including
those roots. It presents how many subtrie roots are affected when a binary trie node is updated.
Since the subtrie roots are always stored in TCAM, δ means the number TCAM accesses
incurred by a binary-trie node update. Fig. 11 shows the distribution of δ and the number of
TCAM accesses incurred by a single update is lower than 4 (99%). The largest value of δ is
890, however, the value can be limited by 16 when we set the parameters as α = 0.5, β = 64, γ
= 16.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019 1935

Fig. 10. Distribution of 𝑚𝑎𝑓𝑓 in rrc0-2017 Fig. 11. Distribution of δ in rrc0-2017

Fig. 12 shows how the number of subtries and the stride size change with α. The number of

subtries steadily increases with α because the size of each subtrie is reduced as α increases. On
the other hand, average stride goes down as α increases. When α is higher than 0.5, the
average stride becomes about 1. It implies each subtrie has merely two entries in average.

Fig. 13 shows the number of entries in TCAM and SRAM varying with α. As α grows, the
required SRAM size sharply decreases while the required TCAM size gradually increases. Fig.
14 and Fig. 15 show the required TCAM size and SRAM size, respectively. In Fig. 14, the size
of pTCAM is significantly increased compared to that of nTCAM when α is higher than 0.5.
This is due to the increase in the number of subtrie roots contained in the pTCAM as the
number of small subtries increases.

The memory efficiency and the update overhead are depicted in Fig. 16 and Fig. 17,
respectively. There are 6 graphs in each figure according to routing data collection dates and
the type of memory. Fig. 16 shows memory efficiency of TCAM and SRAM. Both memories
are inversely related to each other. However, the trend of the change is independent of the
routing data collection dates. Fig. 17 shows the average number of memory accesses incurred
by a single update. These values for TCAM and SRAM also change inversely each other, but
they do not change over time. It implies that the characteristics of the IMT, such as memory
efficiency and update overhead, hardly change with time.

Fig. 12. Subtries and stride in rrc0-2017 Fig. 13. Memory requirements in rrc0-2017

SRAM Accesses
10 0 10 1 10 2 10 3 10 4

C
ou

nt

10 1

10 2

10 3

10 4

10 5

=0.5, =64, =16

=0.5, = , =

TCAM Accesses
10 0 10 1 10 2 10 3

C
ou

nt

10 1

10 2

10 3

10 4

10 5

10 6

=0.5, =64, =16

=0.5, = , =

0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f S
ub

tri
es

10 5

0

0.5

1

1.5

2

2.5

3

3.5

St
rid

e

0

1

2

3

4

5

6

7

of subtries

stride

0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f E
nt

rie
s

10 6

0

2

4

6

8

10

12

TCAM(=64, =16)
TCAM(= , =)
SRAM(=64, =16)
SRAM(= , =)

1936 Kim et al.: IMT: A Memory-Efficient and Fast Updatable IP Lookup Architecture
Using an Indexed Multibit Trie

Fig. 14. TCAM requirement in rrc0-2017 Fig. 15. SRAM requirement in rrc0-2017

Fig. 16. Memory efficiency Fig. 17. Update overheads

IMT is compared to several architectures with respect to the number of accesses to TCAM

and SRAM, and also their required size, in Table 3. ‘Uniform TCAM’ denotes the architecture
which simply consists of a single TCAM. ‘CoolCAM-subtree’ and ‘CoolCAM-postorder’ are
the schemes described in [7]. ‘1-12Wc’ and ‘M-12Wb’ are the best-effort schemes in [8]. Our
IMT is constructed with α = 0.5, β = 64, γ = 16. For the compared schemes, we used a bucket
size of 128 entries because power consumption in those schemes becomes the smallest when
the bucket size is 128 [8]. In the table, the size of TCAM and SRAM is measured by the
number of entries. In IMT, the size of SRAM is reduced by a factor of 144 bits since 144-bit
wide SRAM was assumed in [8]. Our scheme shows the smallest memory requirement as well
as fewer TCAM searches.

Table 3. Comparison on memory size and accesses in rrc0-2017

Scheme TCAM
Size

SRAM
Size

TCAM
Searches

SRAM
Accesses

Uniform TCAM 668,390 668,390 1 1
CoolCAM-subtree 1,347,224 1,357,668 2 2
CoolCAM-postorder 741,496 741,496 2 2
1-12Wc 267,774 267,774 2 2
M-12Wb 142,451 142,451 2 2
IMT 123,097 121,014 1 2

0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f E
nt

rie
s

10 5

0

0.5

1

1.5

2

pTCAM
nTCAM

0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f E
nt

rie
s

10 6

0

1

2

3

4

SRAM

Eclipsed

0 0.2 0.4 0.6 0.8 1

M
em

or
y

Ef
fic

ie
nc

y

0

0.2

0.4

0.6

0.8

1

SRAM 2017
SRAM 2015
SRAM 2013
TCAM 2017
TCAM 2015
TCAM 2013

0 0.2 0.4 0.6 0.8 1

Av
g.

 M
em

. A
cc

.

0

0.5

1

1.5

2

2.5

3

SRAM 2017
SRAM 2015
SRAM 2013
TCAM 2017
TCAM 2015
TCAM 2013

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019 1937

Overall memory efficiency can be evaluated by considering the relative cost of TCAM and
SRAM. Fig. 18 depicts the overall memory efficiency in each scheme under the general fact
that the numbers of transistors per cell of TCAM and SRAM are 16 and 6, respectively. IMT
gives better overall memory efficiency than other schemes while α ≤ 0.5. The overall memory
efficiency can be also controlled by α in our scheme while the other schemes have little change
with their bucket size.

The proposed scheme is designed not only to focus on memory efficiency and update
overhead, but also has the advantage of being controlled by three parameters, α, β, and γ. The
above experiment results are summarized and discussed in terms of memory efficiency and
update overhead as follows.

First, the TCAM requirement is much lower than the SRAM requirement, though the
memory requirements of TCAM and SRAM are inversely related to each other. Considering
that the number of transistors per cell and the power consumption are high in the TCAM, it is
desirable to make the TCAM size as small as possible. In addition, the TCAM requirement
sharply increases when α is larger than 0.5, while the SRAM requirement is generally low
when α is 0.4 or more. Therefore, it is thought that an optimal memory requirement can be
obtained when α is around 0.5. The memory efficiency of TCAM and SRAM is also inversely
related to each other. Considering the number of transistors per cell of TCAM and SRAM, the
overall memory efficiency of IMT gradually decreases with α. However, if α is 0.5 or less, it
always gives better results than other schemes.

Second, the update overhead also shows an inverse relationship between TCAM and SRAM,
as does the memory efficiency. With α = 0.5, for a single update, the average numbers of
SRAM accesses and TCAM accesses are 1.06 and 0.22, respectively. In other words, the
number of SRAM memory accesses is higher than that of TCAM. However, the effective
update overhead of SRAM is expected to be relatively low because SRAM latency is much
lower than TCAM latency and it can operate in burst mode.

Fig. 18. Comparison on overall memory efficiency in rrc0-2017

6. Conclusion
TCAM-based IP address lookup engine can find the longest matching prefix with one access
using parallel search, however, its power consumption and cost have been the problems. Even
the current FIB size is too large to be contained in a single TCAM. On the other hand
trie-based IP address lookup uses SRAM, which is cheaper and also consumes less power than

0 0.2 0.4 0.6 0.8 1

O
ve

ra
ll

M
em

or
y

Ef
fic

ie
nc

y

0

0.5

1

1.5

2

2.5

IMT

Bucket Size
64 128 256 512 1024

Uniform TCAM
CoolCAM-subtree

CoolCAM-post
1-12Wc
M-12Wb

1938 Kim et al.: IMT: A Memory-Efficient and Fast Updatable IP Lookup Architecture
Using an Indexed Multibit Trie

TCAM. However, the trie-based IP address lookup usually has to traverse many nodes, which
causes the lookup performance to be degraded. Though multibit trie-based approach can
reduce the traversing steps significantly, it still needs to access the SRAM several times. Also,
an update incurs access to several SRAM entries and sometimes a large number of entries.

In this paper, we propose a novel multibit trie scheme, Indexed Multibit Trie (IMT) and an
architecture based on it. In the IMT, each subtrie is indexed and accessed directly without
going through intermediate subtries. We use TCAM to store such index because only the
longest matching index can be used to access the target subtrie. In the proposed architecture, IP
address lookup is performed very fast requiring maximum two memory accesses. One access
is for a subtrie index and the other is for a subtrie entry regardless of the depth in IMT.

Subtrie partitioning is crucial to save memory and enable fast updatability. Generally, the
larger subtrie increases the requirement of SRAM space but decreases the requirement of
TCAM space. In this paper, we use three criteria α, β, and γ to construct the IMT efficiently.
The size of SRAM and TCAM can be well-controlled using those parameters. Also, using
those parameters the update overhead is controlled not to excessively access the memories.
Experiment results with real-world FIBs show that the proposed scheme can achieve good
memory efficiency as well as fast updatability by setting appropriate parameters.

References
[1] V. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless Inter-Domain Routing (CIDR): An Address

Assignment and Aggregation Strategy,” RFC1519, 1993. Article (CrossRef Link).
[2] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous, “Survey and Taxonomy of IP Address

Lookup Algorithms,” IEEE Network, vol. 15, issue 2, pp. 8-23, March/April 2001.
Article (CrossRef Link).

[3] V. Srinivasan and G. Varghese, “Fast Address Lookups Using Controlled Prefix Expansion,” ACM
Transactions on Computer Systems, vol. 17, no. 1, pp. 1–40, February 1999.
Article (CrossRef Link).

[4] H. Liu, “Routing Table Compaction in Ternary CAM,” IEEE Micro, vol. 22, issue 1, pp. 58-64,
Jan./Feb. 2002. Article (CrossRef Link).

[5] L. Luo, G. Xie, Y. Xie, L. Mathy, and K. Salamatian, “A Hybrid Hardware Architecture for
High-Speed IP Lookups and Fast Route Updates,” IEEE/ACM Transactions on Networking, vol.
22, no. 3, June 2014. Article (CrossRef Link).

[6] J. Kim, M.-C.l Ko, H.-K. Kang, and J. Kim, “A Hybrid IP Forwarding Engine with High
Performance and Low Power,” in Proc. of International Conference on Computational Science
and Its Applications, pp. 888-899, 2009. Article (CrossRef Link).

[7] F. Zane, G. Narlikar, and A. Basu, “CoolCAMs: Power-Efficient TCAMs for Forwarding Engines,”
in Proc. of IEEE INFOCOM, vol. 1, pp. 42–52, 2003. Article (CrossRef Link).

[8] W. Lu and S. Sahni, “Low-Power TCAMs for Very Large Forwarding Tables,” IEEE/ACM
Transactions on Networking, vol. 18, no. 3, June 2010. Article (CrossRef Link).

[9] G. Wang and N.-F Tzeng, “Exact Forwarding Table Partitioning for Efficient TCAM Power
Savings,” in Proc. of IEEE NCA 2007, pp. 249-252, 2007. Article (CrossRef Link).

[10] M. J. Akhbarizadeh, M. Nourani, and C. D. Cantrell, “Prefix Segregation Scheme for a
TCAM-Based IP Forwarding Engine,” IEEE Micro, vol. 25, issue 4, pp. 48-63, July-August 2005.
Article (CrossRef Link).

[11] M. J. Akhbarizadeh, M. Nourani, R. Panigrahy, and S. Sharma, “A TCAM-Based Parallel
Architecture for High-Speed Packet Forwarding,” IEEE Transactions on Computers, vol. 56, no. 1,
pp. 58-72, January 2007. Article (CrossRef Link).

[12] D. Shah and P. Gupta, “Fast Updating Algorithms for TCAMs,” IEEE Micro, vol. 21, no. 1, pp.
36-47, Jan.-Feb. 2001. Article (CrossRef Link).

https://tools.ietf.org/html/rfc1519
https://doi.org/10.1109/65.912716
https://doi.org/10.1145/296502.296503
https://doi.org/10.1109/40.988690
https://doi.org/10.1109/TNET.2013.2266665
https://doi.org/10.1007/978-3-642-02457-3_72
https://doi.org/10.1109/INFCOM.2003.1208657
https://doi.org/10.1109/TNET.2009.2034143
https://doi.org/10.1109/NCA.2007.20
https://doi.org/10.1109/MM.2005.73
https://doi.org/10.1109/TC.2007.250623
https://doi.org/10.1109/40.903060

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019 1939

[13] H. Le, W. Jiang, and V. K. Prasanna, “A SRAM-based Architecture for Trie-based IP Lookup
using FPGA,” in Proc. of 16th IEEE International Symposium on Field-Programmable Custom
Computing Machines, pp. 33–42, 2008. Article (CrossRef Link).

[14] Anindya Basu and Girija Narlikar, “Fast Incremental Updates for Pipelined Forwarding Engines,”
IEEE/ACM Transactions on Networking, vol. 13, no. 3, pp. 690-703, June 2005.
Article (CrossRef Link).

[15] J. Lee and H. Lim. "Multi-Stride Decision Trie for IP Address Lookup," IEIE Transactions on
Smart Processing & Computing, vol. 5, no. 5, pp.331-336, 2016. Article (CrossRef Link).

[16] Y. Wu, G. Nong, and M. Hamdi, "Scalable Pipelined IP lookup with Prefix Tries," Computer
Networks, vol 120, pp. 1-11, June 2017. Article (CrossRef Link).

[17] Hung-Mao Chu, Tsung-Hsien Li, and Pi-Chung Wang, “IP Address Lookup by Using GPU,” IEEE
Transactions on Emerging Topics in Computing, vol. 4, issue 2, April-June 2016.
Article (CrossRef Link).

[18] Yanbiao Li, Dafang Zhang, Alex X. Liu, and Jintao Zheng, “GAMT: A Fast and Scalable IP
Lookup Engine for GPU-based Software Routers,” in Proc.of 9th ACM/IEEE ANCS’13, pp. 1-12,
2013. Article (CrossRef Link).

[19] Sartaj Sahni and Kun Suk Kim, “Efficient Construction of Multibit Tries for IP Lookup,”
IEEE/ACM Trans. on Networking (TON), vol. 11, issue 4, pp. 650–662, August 2003.
Article (CrossRef Link).

[20] Stefan Nilsson and Gunnar Karlsson, “IP-Address Lookup Using LC-Tries,” IEEE Journal on
Selected Areas in Communications, vol. 17, no. 6, pp. 1083-1092, June 1999.
Article (CrossRef Link).

[21] Yanbiao Li, Dafang Zhang, Kun Huang, Dacheng He, and Weiping Long, “A Memory-Efficient
Parallel Routing Lookup Model with Fast Updates,” Computer Communications, vol. 38, pp.
60-71, 2014. Article (CrossRef Link).

[22] RIS Raw Data. Article (CrossRef Link).
[23] B. Agrawal and T. Sherwood, “Ternary CAM Power and Delay Model: Extensions and Uses,”

IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 16, issue 5, pp. 554–564, 2008.
Article (CrossRef Link).

https://doi.org/10.1109/FCCM.2008.9
https://doi.org/10.1109/TNET.2005.850216
https://doi.org/10.5573/IEIESPC.2016.5.5.331
https://doi.org/10.1016/j.comnet.2017.03.017
https://doi.org/10.1109/TETC.2015.2460453
https://doi.org/10.1109/ANCS.2013.6665171
https://doi.org/10.1109/TNET.2003.815288
https://doi.org/10.1109/49.772439
https://doi.org/10.1016/j.comcom.2013.10.005
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://doi.org/10.1109/TVLSI.2008.917538

1940 Kim et al.: IMT: A Memory-Efficient and Fast Updatable IP Lookup Architecture
Using an Indexed Multibit Trie

Junghwan Kim received the B.S., M.S. and Ph.D degrees from Seoul National
University, Seoul, in 1991, 1993 and 1999, respectively, all in computer science. In
1999 he joined Samsung Electronics, where he was a senior researcher. In 2001 he
joined the faculty of Konkuk University, where he is now a professor. His research
interests are in the areas of parallel computing, communication networking, GPU
computing, and design of efficient algorithms.

Myeong-Cheol Ko is a professor of computer engineering at Konkuk University,
where he directs the AVIT(Advanced Visualization and Interaction Technology)
research group. He received PhD in computer science from Yonsei University in 2003.
His research interests are in 3D computer graphics and human-computer interaction
focusing on the design and implementation of augmented reality systems.

Moonsun Shin received Ph.D degrees from Chungbuk National University in 2004 in
computer science. In 2005 she joined the faculty of Konkuk University, where she is
now an associate professor. Her research interests include context awareness, security
model. ICT convergence and big data analysis.

Jinsoo Kim received the B.S. degree from Seoul National University, Seoul, in 1983,
and the M.S. and Ph.D degrees from Korea Advanced Institute of Science and
Technology (KAIST), in 1985 and 1998, respectively, all in computer engineering. In
1985, he joined Korea Telecom, where he was a senior researcher. In 2000, he joined
the faculty of Konkuk University, where he is now a professor. His research interests
include parallel computing architectures, high-speed networking, packet processing
systems, and named data networking.

