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Abstract 
 

To support a large-scale Hadoop cluster, Hadoop heartbeat messages are designed to deliver 
the significant messages, including task scheduling and completion messages, via 
piggybacking to reduce the number of messages received by the NameNode. Although 
Hadoop is designed and optimized for high-throughput computing via batch processing, the 
real-time processing of large amounts of data in Hadoop is increasingly important. This paper 
evaluates Hadoop’s performance and costs when the heartbeat period is controlled to support 
latency sensitive applications. Through an empirical study based on Hadoop 2.0 (YARN) [1] 
architecture, we improve Hadoop’s I/O performance as well as application performance by up 
to 13 percent compared to the default configuration. We offer a guideline that predicts the 
performance, costs and limitations of the total system by controlling the heartbeat period using 
simple equations. We show that Hive performance can be improved by tuning Hadoop’s 
heartbeat periods through extensive experiments. 
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1. Introduction 

Hadoop is one of the most popular distributed processing frameworks for big data. A 
Hadoop cluster is typically composed of tens or hundreds of machines that process large 
amounts of data. To support a large-scale cluster, Hadoop heartbeat messages are designed to 
deliver significant messages, including task scheduling and completion messages, via 
piggybacking to reduce the number of messages received by a NameNode. Hadoop was 
originally designed and optimized for high-throughput computing via batch processing, so job 
turn-around times between submission and completion are not a primary focus in Hadoop 
architecture. As such, Hadoop heartbeat periods are infrequent. For example, the default 
heartbeat period between the NameNode and DataNode in the Hadoop distributed file system 
(HDFS) [2] is three seconds. It is too long for short tasks, because it can exceed the task 
execution time. 

In this paper, we suggest a solution to improve Hadoop's system performance by optimizing 
its heartbeat periods. We determine the types of heartbeats that provide greater impact on 
performance improvements and characterize the types of queries that will enable performance 
improvements when the heartbeat periods are reduced. Our contributions are as follows. 

First, we evaluate the performance of Hadoop 2.0 through experiments that deliberately 
tune Hadoop heartbeat periods. In Hadoop 2.0 architecture, three kinds of heartbeats are used 
to control the Hadoop distributed file system and manage cluster resources. We characterize 
the I/O performance and application performance according to changes in the heartbeat 
periods and compare the performance results to those of the default configurations in Hadoop. 
We use the DFSIO benchmark, a built-in application to measure storage performance, to 
measure storage within the Hadoop file system. The experimental results show that the read 
I/O performance is improved by 12 percent, and the Terasort Map task execution time is 
shortened by 5.5 percent over the performance results of the default heartbeat periods. 
Moreover, we analyze the expected performance, system costs, and limitations using 
simplified mathematical equations. 

Second, we evaluate Hive performance according to changes in heartbeat periods using 
TPC-H on a Hive workload [3]. We choose Hive as target application because it is the most 
widely used application in the Hadoop ecosystem. When we reduce all of the heartbeat periods 
in Hadoop, the execution time decreases by up to 18.9 percent compared to the execution 
times in the default configurations, depending on query type. Our analysis of the experimental 
results shows that queries with more nested select loops provides greater performance 
improvements than other types of queries. 

The rest of the paper is organized as follows. Section 2 summarizes related work. Section 3 
offers background information on Hadoop and Hive. Sections 4 and 5 describe the 
performance experiment results and analysis of Hadoop and Hive, respectively. Section 6 
draws conclusions. 

2. Related Work 
There are several studies on Hadoop performance improvements, which focus on tuning the 
option parameters in Hadoop. For example, one study [4] achieved performance 
improvements by modifying the HDFS data block size configurations, data compression, Java 
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Virtual Machine (JVM) policy, and the copy phase in the Map and Reduce process. However, 
unlike in our work, they did not try to optimize the heartbeat periods to improve system 
performance. 

The study [5] proposes HDFS-AIO using Adaptable I/O system(ADIOS) [6] which 
supports many different I/O methods, data formats and parallel file systems. It supports many 
high performance I/O techniques, such as data staging, asynchronous I/O and collective I/O. 
And it enables HDFS to select optimal I/O routines and parameter values for a particular 
platform without modifying the source code. It needs additional middleware to achieve 
performance gains, but our work just requires changing configurations.  

The Starfish system [7] attempts to optimize Hadoop by modifying configurations. It first 
collects the previous job’s profile information, then estimates the virtual job’s running time 
through simulating this job’s execution with different searches through the parameter space to 
find the optimal configuration settings with shortest estimated job execution time [8]. 
However, Starfish system adopted recursive random search algorithm. Yet certain features 
render it inefficient in achieving a global optimum. In contrast, we propose a way to select the 
parameter’s optimal value by setting up an equation.  

Another study [9] found that optimizing small MapReduce jobs improved overall system 
performance. The optimization shortened the time used to first initialize and configure the job. 
It also replaced the allocation process from the pull model to the push model. Like our work, 
the study focused on performance improvements for a bundle of short tasks. However, they 
approached the problem by changing the message direction incurred by the scheduling model 
difference, whereas our work does not change the Hadoop push-pull message architecture. 

In a fifth paper, the focus was placed on Hadoop's heartbeat messaging. In this study [10], 
Worker failure was detected through a heartbeat during the job execution. When the failure 
occurred, the total execution time experienced further delays. Accordingly, they reduced the 
failure recovery time by sensing heartbeat activity. Our work achieves performance 
improvements in the Hadoop system by reducing heartbeats, which is applicable to a normal 
job execution environment. 

3. Background 
In this section we describe the background knowledge relevant to the research conducted. First, 
we describe types of heartbeats in Hadoop, as well as their functionalities and usage. Then we 
introduce the internal structure, data structure, and query statement of Hive. 

3.1. Hadoop Heartbeat 
In distributed processing systems, a heartbeat is basically intended to periodically check the 
node's liveness. Beyond checking liveness of daemons, controlling tasks, and other 
information, tasks are incorporated inside heartbeats to reduce the number of messages 
between nodes. In particular, the NameNode and JobTracker are central entities that manage 
the other nodes in the cluster. Thus, Hadoop restricts the number of messages sent to these 
nodes in order to reduce their loads. This paper focuses on Hadoop 2.0 architecture. In Hadoop 
2.0 there are two kinds of heartbeats: the HDFS heartbeat and the Yarn heartbeat. 

3.1.1. HDFS Heartbeat 
The HDFS is a file system that supports a distributed environment. It is composed of a 
NameNode and DataNodes. The NameNode is a server that manages the metadata of the file 
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system. DataNodes save the actual data blocks and deliver those blocks to the read and write 
data when clients need that data. The HDFS heartbeat is the heartbeat between the NameNode 
and DataNodes. A DataNode sends information about its liveness as well as its status change. 
When a client reads a certain file from the HDFS or writes to the HDFS, the client accesses the 
NameNode and receives the position of the block (e.g. the node's IP address that has the 
block.). Then the client directly accesses the DataNode and requests block read and write 
operations. Because the NameNode has scalability issues, it does not send a message to a 
DataNode proactively. Instead, the NameNode communicates with a DataNode in response to 
a message from that DataNode when needed. A DataNode sends periodic heartbeat signals to 
the NameNode. Thus, if there is a change in a DataNode's status caused by the completion of a 
read or write operation, a time delay might exist for the status update to the NameNode. The 
maximum delay is the heartbeat cycle. For this reason, the heartbeat cycle can influence the 
execution times of the read and write operations in the HDFS. The described process in which 
clients write blocks in the HDFS is shown in Fig. 1. 
 

 
 

Fig. 1. The message passing flows in HDFS File write. 
 
 

In the HDFS, the heartbeat signal period for DataNode  NameNode is set in the Hadoop 
folder as /etc/hadoop/hdfs-site.xml. The default value is set to three seconds. In large-scale 
systems with a lot of DataNodes, a short heartbeat cycle can place excessive loads on the 
NameNode. However, in the case of Hadoop clusters with less than a hundred DataNodes, 
DataNode updates with a shorter heartbeat period do not lead to a large load on the 
NameNode. Therefore by reducing the heartbeat period below the default values an 
improvement in HDFS performance is expected. 
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Fig. 2. The job execution process in YARN. 

3.1.2. Yarn Heartbeat 
In Hadoop 2.0, Yarn [1] is supported, as shown in Fig. 2. Yarn is a new resource management 
and scheduling method that separates the job scheduling and monitoring functions that were 
managed by JobTracker in Hadoop 1.0. Yarn's Resource Manager (RM) and Application 
Master (AM) manage the necessary functions. In particular, RM manages all of the worker 
nodes in clusters and receives reports on the status of each worker node. When jobs require 
resources, RM assigns the necessary resources to meet the specific requirements of each job. 
AM manages each job and is located in each server. It manages worker nodes, determining 
whether they satisfactorily execute tasks. If the tasks are completed, AM disappears after 
collecting and sending the results to RM and the client. Each worker node is managed by Node 
Manager (NM). In Yarn, each state is reported via heartbeat to reduce the load on the central 
server in the same manner as the HDFS. Heartbeats can be divided into two types: 

I. Node Manager  Resource Manager heartbeat 
II. Application Master  Resource Manager heartbeat 
In Type I, NM sends a heartbeat to RM for each cycle, and this heartbeat contains the status 

information of the current node.In Type II, AM sends a heartbeat to RM for each cycle, and 
this heartbeat contains the status information for the current job being performed, as well as 
the job results. 

The default value of each heartbeat is one second and it can be configurable if needed. For 
Type I NM  RM heartbeat can be set in Hadoop the /etc/hadoop/yarn-site.xml file. For Type 
II AM  RM heartbeat can be set in the /etc/hadoop/mapred-site.xml file. 

3.2. Hive 
The HDFS has a completely different underlying structure from common databases that 
support SQL queries. Hive [3], often called SQL in Hadoop, enables database query 
processing by handling an SQL-like declarative language to access the HDFS. The structure of 
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the Hive is shown in Fig. 3. The Hive Thrift Server supports multiple computer languages for 
the client. The query from the client is passed to the Hive Driver through the Hive Thrift 
Server. In the driver, the query goes through the process of parsing, planning, and optimizing. 
After the process, the query is executed by Hadoop MapReduce and the HDFS. 

Because the Hive query is performed by Hadoop MapReduce and the HDFS, the system 
performance is relevant to the length of the Hadoop heartbeat period. In this paper, we show 
how changes in the heartbeat period can influence system performance. 
Fig. 4 shows an example of Hive data being stored in the HDFS. Hive stores its Rational 
Database table structure as multiple files in the HDFS. The default storage location for data 
processed by Hive is the user/hive/warehouse folder. The first-level folder, /myScore, is the 
database, followed by /univ, which is the table. The next level, /year=2014, is a partition of the 
table. In the partition, data is stored (i.e. /year=2014). In this way, the data is stored in the 
HDFS. 

To provide access to the Hive data, Metastore is added to the Hive architecture. Metastore 
stores Hive database structure information, which is metadata about the table and partitions. 
As shown in Fig. 3, when a client sends a query to the driver, the driver gets metadata from 
Metastore to find the data corresponding to the query. Then the query is performed with the 
data taken from the HDFS. 

 

 
Fig. 3. Hive system architecture 

 

3.2.1. Hive Query 
Hive supports HiveQL, which is similar to SQL. HiveQL provides all of the queries, including 
select, project, join, aggregate, and union. The difference between HiveQL and RDBMS is 
that HiveQL is a schema on read that provides very fast data load times by verifying the data at 
the time of query execution. HiveQL enables the use of various queries for the same data and 
supports query optimization. In this study, we use TPC Benchmark (TPC-H) for our 
experiment. It consists of 22 SQL statements for the data and allows us to measure system 
performance via queries. 
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Fig. 4. Hive data structure 

4. Hadoop Performance 
In this section, we present the experiment results and analysis. We show how Hadoop's basic 
performance shifts according to changes in the heartbeat period. In particular, to understand 
the performance characteristic of Hadoop, we first examine the performance of the basic 
read/write I/O operations on the HDFS by measuring the DFSIO execution time of the 
read/write on the HDFS while varying the HDFS and YARN heartbeats. Next, we run the 
Terasort benchmark to determine the total application performance. Because the Hive query is 
performed by Hadoop MapReduce and the HDFS, the system performance is relevant to the 
length of the Hadoop heartbeat period. In this paper, we show how changes in the heartbeat 
period can influence system performance. The Hadoop cluster used in the experiment is shown 
in Fig. 5.  

 
Fig. 5. The testbed cluster for experiments. 

 
The server hardware consists of an Intel Xeon E3-1240V3 Quad-core processor, 4GB DDR3 
RAM, a 1TB HDD (data storage), a 256GB SSD (data storage), a 120GB SSD (operating 
system), and SWAP/System space. The software environment includes the operating system 
(Ubuntu Desktop 14.04 LTS), a Java virtual machine (OpenJDK 1.7.0), and Hadoop (Apache 
Hadoop 2.6.0).  

4.1. DFSIO 
DFSIO is a workload that measures the basic file I/O performance of the read/write, which is 
available in the default Hadoop package. In this study, we carry out an experiment on the 
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10GB file read and write with a replication factor of 3. The detailed heartbeat period is 
configured as follows. For the experiment, we reduce the HDFS heartbeat from 3 seconds to 1 
second, and reduce the other two heartbeats from 1 second to 0.2 seconds. We have done many 
experiments with different values, but the following values are representative values that 
clearly show the experiment result. The way to find optimal heartbeat period is presented in 
Section 4.6 as Equation (1). 

<Heartbeat Configuration Cases for Experiments> 
• Case 1. HDFS HB:3s, AMRM HB:1s, NMRM HB:1s (default) 
• Case 2. HDFS HB:3s, AMRM HB:0.2s, NMRM HB:0.2s 
• Case 3. HDFS HB:1s, AMRM HB:1s, NMRM HB:1s 
• Case 4. HDFS HB:1s, AMRM HB:1s, NMRM HB:0.2s 
• Case 5. HDFS HB:1s, AMRM HB:0.2s, NMRM HB:1s 
• Case 6. HDFS HB:1s, AMRM HB:0.2s, NMRM HB:0.2s 
 

We carry out experiments on six different heartbeat configuration cases, including the default 
configuration (Case 1 above). The heartbeat periods for Cases 2 to 6 have reduced from the 
default setting. We experiment on each configuration case five times and then average the 
execution times. Fig. 6 and Fig. 7 show the write and read execution time respectively, for 
each heartbeat configuration case. Note that the Y-axis, which indicates the execution time, 
starts from 260 seconds in Fig. 6 and starts from 25 seconds in Fig. 7. Further discussion is 
provided below for DFSIO write and DFSIO read. 

 

4.2. DFSIO Write 
When the HDFS heartbeat periods are reduced, overall performance improves. Compared to 
the experimental results for Case 1, the results for Case 3 show a performance increase of 
1.4%. Compared to Case 2, Case 6 show a performance increase of 0.8%. With file write, 
DataNodes must update the status to the NameNode. Therefore, reducing the HDFS heartbeat 
periods increases the total processing time. 

When the Yarn heartbeats (AMRM heartbeats and NMRM heartbeats) are shortened 
to the same value, the overall performance improves. In particular, compared to Case 1, the 
Case 2 results show a performance increase of 2.8%. Compared to Case 3, the Case 6 results 
show a performance increase of 2.3%. This is because the task scheduling latency is reduced. 

Our experiments also show which Yarn heartbeats have greater impacts on performance 
than others. When the AMRM heartbeat is shortened (compare Case 3 to 5, and Case 4 to 6), 
there are noticeable increases in performance. However, when the NMRM heartbeat is 
shortened (compare Case 3 to 4, and Case 5 to 6), only a slight improvement is observed, and 
no significant differences exist. This indicates that the process time between the RM and AM 
is a performance bottleneck in which the RM allocates resources to the AM, and the AM 
reports the results back to the RM. Therefore, we can achieve the most performance gains by 
reducing the AMRM heartbeat. Finally, if we shorten all three heartbeats (Case 6), we 
obtain a performance improvement of 3.6% over the default case.  
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Fig. 6. The execution time for 10GB file write. 

4.3. DFSIO Read 
Next, we move on to the experiments on the DFSIO read executions with the same six 
configuration cases described above, and we evaluate the effects of the heartbeat periods on 
performance. 

When the HDFS heartbeat is shortened to 1 second, the changes in performance are not 
significant (compare Case 1 to 3, and Case 2 to 6). This result differs from the aforementioned 
write results. Because no file blocks are created or removed from the perspective of the 
DataNode, it makes sense that the HDFS heartbeat is unrelated to performance in the case of 
read operation. 

When two Yarn heartbeats (the AMRM and NMRM heartbeats) are reduced to the 
same value, the performance improves (a 13% improvement from Case 1 to 2, and a 12.5% 
improvement from Case 3 to 6). This occurs because reducing the Yarn heartbeat periods 
reduces the latency from the task scheduling. We notice that the performance improves more 
in read execution compared to write execution. This is because the read operation execution 
time is relatively shorter than the write operation execution time, which makes the effect more 
visible. Therefore, in the case of latency-sensitive workloads with intensive reads and not 
many data transfers, shortening the Yarn heartbeat periods can be very effective in improving 
performance. 
Like the write execution experiments, our experiments show which Yarn heartbeats offer 
greater impacts on performance. When the AMRM heartbeat is shortened (Case 3  5 and 
Case 4  6), there are noticeable increases in performance. However, when the NMRM 
heartbeat is shortened (Case 3  4 and Case 5  6), the improvements were only very slight 
or nonexistent. As with write, we see that most of the performance gains come from reducing 
the process time required by RM to allocate resources to AM, and for AM to report the results 
to RM. 
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Fig. 7. The execution time for 10GB file read. 

4.4. Discussion: DFSIO Read/Write 
Summarizing the experimental results for DFSIO write/read, we obtain the following relevant 
conclusions. 

• Shortening the HDFS heartbeat period improves write execution performance but does not 
have a significant effect on read performance. 
• Shortening the AMRM heartbeat period improves performance significantly for both 
read execution and write execution. 
• The duration of the NMRM heartbeat does not have a significant impact on improving 
performance in either read or write. 
The NMRM heartbeat is a system-wide parameter that directly affects the cluster system. 
Shortening its period increases the heartbeat frequency regardless of job execution status. 
Therefore, we need to be careful when changing the NMRM heartbeat period. On the other 
hand, the AMRM heartbeat period can be adjusted for the lifetime of each job without 
affecting the entire system. Therefore, we shorten the AMRM heartbeat period for 
applications that require faster responses and effectively obtain performance improvements. 

4.5. Terasort 
Terasort is a benchmark test used to measure application performance in the Hadoop 
Mapreduce framework. Terasort is included in the default Hadoop package. In this 
experiment, we use the 10GB input file for sorting, and we compress the intermediate data 
(Map output) to reduce the shuffle data exchange. There are three simultaneous map tasks and 
one reduced task per DataNode. We use Slow Start, which delays the task reduction after all of 
the map tasks are completed. In this experiment, the total execution time is measured to 
represent the overall performance according to heartbeat cycle. 
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Fig. 8. All map task execution time by heartbeat setting(sec) 

 
Fig. 8 shows the entire map task execution time per configuration. Each experimental setup 

is the same as in the DFSIO experiment. The reduce and shuffle phase results are not presented 
because they do not show significant differences. 

When the HDFS heartbeat is shortened to 1 second, there are no significant changes in 
performance (Case 1 to 3, and Case 2 to 6). Because the read only operation of the HDFS 
block is performed in the map phase, the results are logically consistent with the results of the 
DFSIO read case. 

When two heartbeats related with YARN are shortened to the same value, the overall 
performance improves (a 5.5% improvement from Case 1 to 2, and a 5.5% improvement from 
Case 3 to 6). This is because the shortened heartbeats lead to latency reductions via task 
scheduling. Because there are 76 map tasks, nine task execution phases (waves) can take 
place. When a map task is finished and the next task requires resource allocation, the RM 
should receive a message. Thus, a shortened heartbeat period can contribute to performance 
improvements over a series of map task executions. 

With Terasort, when the AMRM heartbeat is shortened (Case 3  5, and Case 4  6) 
and when the NMRM heartbeat is shortened (Case 3  4, and Case 5  6), all cases show 
similar performance improvements. This indicates that both heartbeats play an important role 
in the process of task resource allocation. When both heartbeats are shortened (Cases 2 and 4), 
the largest performance improvement is obtained, as expected (shown in Fig. 8). 

4.6. Heartbeat Signal Cycle Limitations and Analysis on System Performance 
In this section, we theoretically approximate loads on the NameNode depending on the 
heartbeat period by formula, and we analyze the lowest heartbeat period limit. The definition 
of parameters for determining loads on the NameNode is as follows. 

• Network Bandwidth (Bps) :  
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• Average heartbeat size (Bytes) :  
• Average heartbeat transmission and processing time(seconds) :  
• The number of heartbeats that can be processed per second :  
• The number of DataNodes in the HDFS cluster :  
• HDFS heartbeat period (seconds) :  

The average heartbeat transmission and processing time can be computed as  
. The coefficient value of 10 in the equation is from the byte-to-bit  

conversion and CRC packet header overhead. The number of heartbeats that can be processed 
per second by a NameNode is an inverse of the average processing time. 

 
When The number of heartbeat signals that the NameNode receives per second is defined 

as  / . Thus, it should be . 

 

 
 

                   …             (1) 

Let us assume a typical HDFS cluster consists of a hundred nodes with 1GBps Ethernet. 
We use Tcpdump to capture the packet to measure the heartbeat message length. The average 
transmission size for the heartbeats is approximately 2KBytes when executing DFSIO write. If 
this value is substituted into Equation (1),  should be longer than two seconds. However, 
DFSIO write does not incur an excessive overhead to reduce the heartbeat period to less than 2 
seconds. This is because the above DFSIO write is executed in a severe environment and the 
heartbeat packet size is 396 bytes when there is no change in the HDFS. Equation (1) is a 
satisfactory guideline for determining the heartbeat period. 

5. Hive Performance 

5.1. TPC-H-ON-HIVE 
The Transaction Processing Performance Council (TPC) is a non-profit corporation 
established in 1988 to regulate the standards of performance criteria for measuring system 
processing performance. The TPC-alphabet notation enables the benchmark test model 
presented in TPC. This allows for an evaluation of system throughput. The TPC-H benchmark 
[11] used in this experiment consists of 1 to 22 complex queries with a large amount of test 
data. By executing these queries, the database processing performance can be measured. In 
TPC-H-on-Hive [12], these 22 queries using HiveQL are implemented to measure the 
performance of Hive on Hadoop. 

In this experiment, we deal with three types of heartbeats: (A) the HDFS heartbeat, (B) the 
MRAppMaster  RM heartbeat, and (C) the NM  RM heartbeat. As in Section 4, we 
examine six different heartbeat configuration cases, as follows. 
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<Heartbeat Configuration Cases for Experiments> 
• Case 1. HDFS HB:3s, AMRM HB:1s, NMRM HB:1s (default) 
• Case 2. HDFS HB:3s, AMRM HB:0.2s, NMRM HB:0.2s 
• Case 3. HDFS HB:1s, AMRM HB:1s, NMRM HB:1s 
• Case 4. HDFS HB:1s, AMRM HB:1s, NMRM HB:0.2s 
• Case 5. HDFS HB:1s, AMRM HB:0.2s, NMRM HB:1s 
• Case 6. HDFS HB:1s, AMRM HB:0.2s, NMRM HB:0.2s 
In these experiments, we generate data using dbgen, which is provided by TPC-H, and we 

store the generated *.tbl files on the HDFS. After setting the configuration for each 
experiment, we execute TPC-H-on-Hive queries. We generate 1GB and 10GB files using 
degen and represent each query execution time to compare the change in performance 
according to heartbeat period. Fig. 9 presents a normalized graph that shows the execution 
time of the TPC-H-on-Hive queries for the 1GB dataset with the default configuration (Case 
1). Fig. 10 presents a graph for the same experiment for the 10GB dataset. The queries without 
a value on each graph are failed queries. 

When only the HDFS heartbeat is shortened from 3s to 1s, only a very small performance 
improvement occurs. For example, when comparing Cases 1 and 3 for the 1GB dataset, the 
performance increases by 0.09%, and for the 10GB dataset, the performance increases by 
4.2%. 

When two heartbeats related with Yarn are shortened to the same value, a greater 
improvement in performance is possible than with the reduction in the HDFS heartbeat. When 
comparing Cases 1 and 4 for the 1GB dataset, the performance increases by 18.0%. With the 
10GB dataset, the performance increases by 5.7%. This is because the shortened heartbeats 
lead to latency reductions via task scheduling. 

When the AM  RM heartbeat is shortened, performance improves. When comparing 
Cases 1 and 5 for the 1GB dataset, the performance increases by 15.3%. With the 10GB 
dataset, the performance increases by 3.5%.  

In the experiment with the NM  RM heartbeat, there is either a small increase or no 
difference in performance depending on queries. When comparing Cases 1 and 6 for the 1GB 
dataset, the performance increases by 0.19%. With the 10GB dataset, the performance 
decreases by 10.5%. As before, most of the performance gains come from the reductions in the 
process time required for RM to allocate resources to AM, and for AM to report the results to 
RM. 

Shortening all three kinds of heartbeat values achieves the largest improvement in 
performance. When comparing Cases 1 and 2 for the 1GB dataset, the performance increases 
by 18.9%. With the 10GB dataset, the performance increases by 11.7%. 

5.2. Analysis on the execution time difference between 1GB and 10GB data set 
For the TPC-H benchmark test, we generate 1GB and 10GB files and store them on the HDFS. 
We expect that the execution time for the 10GB files would be ten times longer than the 
execution time for the 1GB files because the amount of data increases 10 times. However, the 
experiments show otherwise. Two of the queries show the largest and smallest execution time 
gaps between the 1GB and 10GB datasets. These are TPC-H-on-Hive Queries 8 and 13, 
respectively. The execution of Query 8 takes 103.47s for the 1GB dataset and 428.99s for the 
10GB dataset. These are the largest gaps. The execution of Query 13 it takes 65.62s for the 
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1GB dataset and 101.29s for the 10GB dataset. These are the smallest gaps. 
We analyze the TPC-H benchmark.log file, which shows the execution results of each query. 

With Query 8, there are 15 MapReduce jobs for the 1GB dataset and 18 jobs for the 10GB 
dataset. Furthermore, the number of mappers and reducers increases in the query execution for 
the 10GB dataset (mapper: 9  44; reducer: 2  35). With Query 13, there are four 
MapReduce jobs for both the 1GB and 10GB datasets. However, the number of mappers and 
reducers increases in the query execution for the 10GB dataset at a lower rate than with Query 
8 (mapper: 5  11; reducer: 4  11). When comparing the amount of data that the queries 
actually deal with, Query 8 deals with four times as much data ( 790MB for 1GB dataset, 
7.9GB for 10GB dataset) than Query 13. As the actual data that each query processes increases, 
the execution time of the query increases, as does the gap in the execution times of the query 
for the 1GB and 10GB datasets. 

 
Fig. 9. A normalized TPC-H-on-Hvie Query execution time for 1GB data set. 

 
Fig. 10. A normalized TPC-H-on-Hive Query execution time for 10GB data set. 
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5.3. Analysis on query performance improvements 
When all of the Hadoop heartbeat values are shortened from the default values (HDFS HB: 3s 
 1s, AMRM HB: 1s  0.2s, NMRM HB: 1s  0.2s), the performance in the execution 
of queries increases. This performance increase applies to all of the queries, and it can be seen 
as the result of performance increases in Hadoop. For analysis, we compare each of the two 
queries that show the highest or lowest increases in performance among all queries. 

The most improved performance queries are Queries 11 and 15, in that order. The least 
improved queries are Queries 19 and 6, in that order. In general, the execution time of each job 
is reduced when the heartbeat period is shortened. However, the amount of performance 
improvement differs by query type. In particular, as the number of nested select statements in 
a query increases, the number of read and write executions in the HDFS increases. As seen in 
Section 4, shortening the heartbeat periods is more effective when there are more HDFS read 
and write executions. 

Queries 11 and 15 have nested select statements and result in the largest performance 
increases. Queries 6 and 19, which have the smallest increases in performance, do not have 
nested select statements. Queries 11 and 15, which have nested select statements, have more 
HDFS read/write executions and show larger performance improvements than Queries 6 and 
19, which do not have nested select statements. 

6. Conclusion 
This paper suggests a novel method of improving Hadoop system performance by optimizing 
Hadoop heartbeat periods without incurring additional significant overhead. In Hadoop 2.0 
(YARN), Hadoop has three kinds of heartbeats. We evaluate system performance by changing 
the three types of heartbeats and we analyze the resulting system performance. With the HDFS 
heartbeat, the changes affect the file write performance but they do not affect file reading 
performance. The heartbeat sent by Application Master to Resource Manager affects 
application performance as well as the file write and read operations. Because the heartbeat 
transmits during job execution, shortening the heartbeat period can significantly improve 
performance. 

We propose a guideline for determining the minimum value of the heartbeat period via 
Equation (1). This equation takes into consideration the NameNode load, the number of 
DataNodes, and the network bandwidth in the HDFS clusters. We expect these guidelines to 
be useful for operating clusters. Lastly, the performance of the entire system is measured and 
analyzed via a TPC-H-on-Hive query using Hive in various heartbeat configuration sets. The 
results indicate that when reducing only the HDFS heartbeat, significant performance 
improvements should not be expected. On the other hand, the largest performance 
improvements are achieved when reducing three heartbeats. In particular, the query composed 
of multiple nested select statements receives more benefits by reducing the heartbeat periods. 
Thus, as long as this approach does not overload computing resources, it will elicit the best 
performance improvements. In the future, we plan to apply this scheme to medium and 
large-scale Hadoop clusters and evaluate the system performance. 
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