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Abstract 

 
The purpose of this work is to solve the problem of representing an entire video using 
Convolutional Neural Network (CNN) features for human action recognition. Recently, due 
to insufficient GPU memory, it has been difficult to take the whole video as the input of the 
CNN for end-to-end learning. A typical method is to use sampled video frames as inputs and 
corresponding labels as supervision. One major issue of this popular approach is that the 
local samples may not contain the information indicated by the global labels and sufficient 
motion information. To address this issue, we propose a binary hashing method to enhance 
the local feature extractors. First, we extract the local features and aggregate them into global 
features using maximum/minimum pooling. Second, we use the binary hashing method to 
capture the motion features. Finally, we concatenate the hashing features with global features 
using different normalization methods to train the classifier. Experimental results on the 
JHMDB and MPII-Cooking datasets show that, for these new local features, binary hashing 
mapping on the sparsely sampled features led to significant performance improvements.  
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1. Introduction 

Human action recognition aims to automatically classify the ongoing action in a video clip, 
which is one of the most important areas in video analysis and computer vision research. Its 
potential applications include video surveillance, human computer interaction, content-based 
retrieval, and so on [1]. It is one of the challenging problems in computer vision for some 
reasons. First, the viewpoint changes, background clutter and motion characteristics contain 
large intra-class variations，even within one action class. Second, the identification of an 
action class is related to many other high-level visual clues, such as human poses, the scene 
class and interacting objects. These related problems are very difficult to solve. Furthermore, 
although videos are temporally segmented, the segmentation of an action is more subjective 
than the segmentation of a static object, which means that there is no precise definition of the 
beginning and end of an action. Finally, the high dimension and low quality of video data 
usually adds difficulty to develop robust and efficient recognition methods.  

Action recognition in videos has attracted considerable attention of researchers in the 
past few years, and much progress has been made in computer vision field [2-8]. Basically, a 
number of existing methods [9-11] perform the steps for action recognition, including feature 
extraction, feature encoding and classifier training. Feature encoding is arguably the most 
important since each action can only be discriminatively represented by proper feature 
encoding. This is crucial to guarantee intra-class and inter-class separability during the 
recognition step itself. 

With the resurgence of efficient deep learning and pose estimation algorithms, several 
works have focused on how to combine local features with high-level information (e.g., pose 
information) and learned features. These include the two-stream convolutional networks 
based on RGB appearance frames and optical flows [12], the two-stream convolutional 
networks combined with dense trajectories [8], Pose Convolutional Neural Networks 
(P-CNN) [13], recurrent pose-attention network (RPAN)[14], and skeleton sequence-based 
multi-stream networks[15].  

Generally, deep architectures for action recognition in videos take as their input short 
video clips consisting of a series of frames. The use of single frames might be insufficient to 
effectively capture the dynamics of actions since single frames ignore temporal information. 
However, using longer video clips requires more model parameters and demands more 
training data and computational resources. This problem also exists in other popular CNN 
architectures, such as 3D CNNs [16]. Thus, state-of-the-art deep action recognition models 
are usually trained to generate useful features from short video clips. These models are then 
pooled to generate holistic sequence-level descriptors, which are then used to train a linear 
classifier with specific action labels. 

 For example, in the P-CNN model, a video representation is obtained by extracting the 
output features of the FC (fully connected) layers from the RGB and optical flow streams, 
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and these are combined using max/min pooling. Note that the max/min pooling captures only 
the first-order correlations between the features. A higher-order pooling [17] that captures 
higher order correlations between the CNN features can be more appropriate, which is the 
main motivation for the scheme proposed in this paper.  
 

 

Fig. 1. Two different actions : cutting a tomato (left) and cutting a carrot(right) 
 

Generally, action recognition is a coarse-grained problem with the goal of 
distinguishing between human actions under different scene conditions (e.g. running on a 
track vs. swimming in water). However, in this work, we consider fine-grained action 
recognition, such as the act of cutting a tomato vs. cutting a carrot illustrated in Fig. 1. As 
can be seen, the coarse-grained action of cutting is still similar. However, the underlying 
finer-grained concept of the object being cut is totally different. Understandably, detecting 
such actions poses greater challenges and thus, requires a different treatment. Specifically, 
we assume a two-stream CNN framework with human pose estimation as suggested in [13] 
with separated RGB appearances and optical flow streams. We then extract CNN features 
from different parts of the human body in each stream and proceed to concatenate the final 
video features using different aggregation methods. 

As mentioned above, while CNN features at the frame-level might be very noisy, we 
assume that the correlations among the temporal evolutions of frame features can capture 
useful action cues that may help improve recognition performance. Intuitively, some of the 
actions might have key sub-action frames for better discrimination of the action, while they 
may be ignored as noise when the max/min pooling scheme is used. In this paper, we use this 
intuition to develop a theoretical framework for action recognition using hashing pooling on 
the two-stream CNN features. Our pooling scheme is based on binary hashing. It is a simple 
technique that decomposes a video frame’s feature matrix, which is computed from the FC 
layer input. After inputting a sequence of video frames and their corresponding joint 
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positions [18], we can extract the CNN features from each frame in each part of the human 
body. After the CNN feature extraction is prepared, we select some key frames with their 
features from the video and compare them to the adjacent feature vector in the chosen frames. 
Then, we use a vector with a binary value to represent the results of the feature comparison 
between one pair of adjacent frames. Since we selected some frames from a video, we can 
obtain a binary value matrix after comparisons. Afterwards, we can compose the binary 
value matrix into a decimal vector and get the raw hashing feature of the video. Obviously, 
the result in the decimal vector has a wide range compared to the P-CNN features, and we 
must normalize the hashing features if we want to fuse these two features. Following [3], we 
tried 2L  normalization. We considered that the normalization approach influences the final 
classification result, and we also tried 1L  normalization and the fusion of 1 2L + Lβ ⋅
normalization.  

The rest of this paper is organized as follows. Section 2 introduces the related works on 
fine-grained action recognition and the video representation approach. Section 3 describes 
the details of our B-CNN method. We present the experiments in Section 4 by using the 
proposed method on two standard action datasets. The conclusion is presented in Section 5.  

2. Related Work 

Existing approaches to fine-grained action recognition have been direct extensions of 
methods developed to address image recognition problems and have been mainly based on 
handcrafted features. A few notable approaches [9-11] first extract features from 
spatial-temporal interest point locations and then train a classifier using feature fusion. 
However, more recent works [12-16] have advanced towards data-driven deep feature 
learning approaches. 

As mentioned above, the lack of sufficient annotated video data, and the need for 
expensive computational devices make direct extension of these methods (which were 
primarily developed for image recognition tasks) challenging for video data, thus demanding 
efficient representations.  

Another promising setting for fine-grained action recognition uses mid-level features, 
such as human poses. Obviously, estimating human poses and developing action recognition 
frameworks based on them directly tackles the action inference from processing on the 
pixel-level, thereby allowing for a higher-level of sophisticated action reasoning. Although 
there have been significant advancements in pose estimation recently, most of these methods 
are computationally demanding and thus difficult to extend to the millions of video frames 
that form standard datasets.  
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A different approach to fine-grained recognition was proposed by Zhou et al [19] to 

detect and analyze human-object interactions in videos. Their method begins by generating 
regional proposals for human object interactions in the scene, extracts the regional features 
and then trains an action classifier. A method based on tracking human hands and their 
interactions with objects is presented in Ni et al [20]. Hough forests for action recognition 
are proposed in Gall et al [21]. Although recognizing objects may be helpful, it may be 
difficult to detect in the context of fine-grained actions.  

We also note that there have been some other deep learning architectures devised for 
action modeling such as 3D convolutional filters, recurrent neural networks, long-short term 
memory networks, and large scale video classification architectures. These architectures 
demand huge numbers of videos for effective training; however, these are mostly unavailable 
for fine-grained activity tasks and thus the feasibility of these architectures is yet to be 
confirmed.  
Pooling has been a useful scheme for reducing the size of video representations, thereby 
enabling the applicability of efficient machine learning algorithms to these data 
transformation. Recently, a pooling technique maintaining the temporal order of the frames 
was proposed by Fernando et al [22]. A method fusing deep features with action trajectories 
in video was proposed by Wang et al [8]. Early and late fusion of CNN feature maps for 
action recognition was discussed in [23, 24]. Our proposed hashing pooling scheme is 
somewhat similar to the second-order and higher-order pooling approaches proposed in [17] 
and [25], which generate representations from low-level descriptors for the semantic 
segmentation of images and object recognition. Moreover, our hashing descriptor is inspired 
by the sequence compatibility kernel (SCK) descriptor that was introduced in [26] which 
pools the higher-order occurrences of feature maps from skeletal body joints for action 
recognition. In contrast, we use the frame-level feature vectors (the output of the fully 
connected layers) from the deep classifiers to generate our pooled descriptors. Therefore, the 
size of our pooled descriptors is a function of the number of action classes. Moreover, unlike 
SCK, which uses pose skeletons, we use raw action videos directly. Our work is also 
different from works such as [27, 28] in which tensor descriptors were proposed for 
hand-crafted features. In this paper, we show how CNNs could benefit from higher-order 
pooling for the application of fine-grained action recognition.  
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Fig. 2. The process of action recognition 

 

3. B-CNN: Binary-hashing CNN feature 

We assume that an action sequence contains vast amounts of information from many 
sub-actions. However, we believe that the key sub-actions are essential for action recognition. 
For example, the method in [12] depends on the appearance-based and motion-based CNN 
descriptors extracted from each video frame, which are aggregated over the timeline to form 
the video descriptor. These methods give equal weights to each video frame. However, we 
assume that the key sub-action carries the most important information. Therefore, we want to 
add the key sub-action information as a significant supplement. Consequently, we choose a 
key frame sequence that is a sub-set of the original video sequence. We proceed to extract 
the CNN features from this sequence and perform a feature comparison to construct the 
binary hashing feature. Fig. 2 provides an overview. The details are described below.  

To construct the hashing feature, we first compute the optical flow [29] for every 
consecutive pair of frames. Following the process described in [30], the values of the motion 
field are transformed into the interval [0, 255] by | |16 128x y x yv v= × + . The values outside the 
interval are truncated. We save the transformed flow maps as images with three channels 
according to the motion and the flow intensity (shown in Fig. 3). 
 

FC  Featu re

OF CNN

RGB CNN

Aggregation

Aggregation

min

max

bh

min

max

bh

B-CNN
p

tf

p
tf

pv

p
pv l

p
pv l

appv

ofv

pv

R igh t hand

FC  Featu re

SVM

R igh t hand



4418                             Weixia Liu n et al.: Tongue Image Segmentation via Thresholding and Gray Projection 

 
(a)                        (b)                        (c) 
Fig. 3. (a),(b): a pair of consecutive video frames (c) transformed flow map 

 

Given a video frame sequence and the corresponding joint positions with different body 
parts, we crop the image patches for the left hand, right hand, upper body, and full body from 
the RGB(appearance) and flow(motion) images. As Fig. 2 shows, to distinguish between the 
appearance and motion patches, we use two distinct convolutional neural networks with an 
architecture similar to [31]. Hence, both networks have 5 equal convolutional and 3 fully 
connected layers. Each patch is adjusted to 224 224× pixels to fit the first layer in the network. 
The outputs of the second fully connected layer that are denoted as the FC features are used 
for the frame descriptor ( p

tf ). For the RGB patches we use the publicly available “VGG-f ” 
network from [32], which has been pre-trained using the ImageNet LSVRC 2012 dataset 
[33]. For flow patches, we use the motion network provided by [30], which has been 
pre-trained for the action recognition task on the UCF101 dataset [34]. Afterwards, we 
obtain the FC feature ( p

tf ) as the frame descriptor from two convolutional neural networks. 
Given the descriptors p

tf  for each body part p and the original video F with T frames, 
we can select h frames from the original video with its corresponding descriptors as Eq.(1). 
The proper choice of hashing size h may have an effect on the recognition performance as 
Eq.(2). We will discuss this in Section 4. After the key frames and their features are selected 
from the original video F, we then proceed with the comparison of two adjacent frames. 
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Fig. 4. The process of B-CNN feature.  

 

Fig. 4 shows that we compare the adjacent descriptors with each dimension 4096k =
and obtain a binary value matrix k hM × . For the row vector x  1 2 0[ , ,..., ]h hx x x− − in each row of 
M, we use Eq.(3). As Eq.(3) shows, the function 2 wB U  maps a sequence of binary values of 
length w to a nonnegative integer, which denotes the variation between the video frames. 
Finally, we obtain the descriptor p

hashv  for the entire video F of part p. 
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Based on [13], we also consider the max and min aggregation by computing the 
maximum and minimum values for each descriptor dimension i in T video frames as 
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The static video descriptor for part p is defined by the concatenation of the 
time-aggregated frame descriptor as Eq.(5). 

 1 1[ ,..., , ,..., ]p
stat k kv M M m m=  (5) 

The dynamic video descriptor p
dynv  comes from the temporal frame difference as

p p p
t t t tf f f+∆∆ = −  for 4t∆ =  frame, and ,

i iM m∆ ∆  is computed as Eq.(6).  

 
1 1

[ ,..., , ,..., ]
k k

p
dyn M M m mv = ∆ ∆ ∆ ∆  (6) 

Finally, the static and dynamic video descriptors for the appearance and motion for all 
parts are concatenated to obtain a global video representation p for the video. To make this 
representation invariant to the number of extracted different descriptors, the concatenated 
result is further normalized by certain methods. Generally, there are two common 
normalization techniques: 



4420                             Weixia Liu n et al.: Tongue Image Segmentation via Thresholding and Gray Projection 

• 1L  normalization. In 1L  normalization [35], the feature p is divided by its 1L norm:
 𝐩 =  𝐩/‖𝐩‖𝟏 

• 2L  normalization. In 2L  normalization [4], the feature p is divided by its 2L norm:
 𝐩 =  𝐩/‖𝐩‖𝟐 

In addition, we define and use a fusion normalization method as Eq.(7).  
 

 1 2
( )p p p pβ= + ⋅  (7) 

In Section 4, we evaluate the effect of different hashing sizes h, different normalization 
techniques and different fusion parameters β  for the action recognition performance.  

4. Experimental Results and Analysis 

This section provides experimental evidence of the usefulness of our proposed hashing 
scheme and fusion-normalization for action recognition. We verify this task using two 
popular benchmark datasets, the MPII-Cooking Activities and the JHMDB dataset.  
 
4. 1 Datasets 

The MPII Cooking Activities Dataset [5] consists of a series of high-resolution videos 
of human actions occurring in a kitchen with the same activity background. Some of the 
actions are very similar. The dataset consists of videos of people cooking various dishes, 
slicing foods, washing their hands and washing objects. Each video contains a single person 
cooking a dish, and there are 12 such videos in the dataset in general. There are 64 distinct 
activities spread across 3748 video clips and one background activity (1861 clips). The 
activities range from coarse subject motions, such as moving objects, opening the 
refrigerator, etc., to fine-grained actions such as peeling, slicing, cutting, etc.  

The JHMDB Dataset [36] is a subset of the larger HMDB dataset [37]. It contains 21 
categories involving a single person engaging in an action such as brushing hair, sitting, 
standing, walking, waving, etc. The video clips only include a short duration of an action. 
Each video clip contains 15-40 frames and 36-55 clips per action. There are a total of 928 
video clips containing 31838 annotated frames. There are 3 training/testing splits for the 
JHMDB dataset, and the evaluation averages the results over these splits.  
 
4. 2 Evaluation Methods 

Following the standard protocols, we use the mean average precision over 7-fold 
cross-validation on the MPII-Cooking dataset. Other datasets use the mean average accuracy 
of 3-splits. For the former, we use the evaluation code published with the dataset. 
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4. 3 Preprocessing 
The original MPII cooking videos have very high resolution. While the activities occur 

only in specific parts of the scene, we use the difference of a frame to estimate a window of 
the scene to localize the action. Specifically, for each sequence, first we convert the frames 
to their half sizes. This is followed by frame-differencing, erosion, filtering, and connected 
component labeling. This constructs a binary image for each frame, which is then combined 
through the sequence, and a binary mask is generated for the whole sequence.  

We use the largest bounding box containing all the connected components in this binary 
mask as the region of the action, and then crop the video to this box. To compute the optical 
flow, we use the Brox implementation [29]. Each flow image is rescaled to 0-255 and saved 
as a PNG image for storage efficiency as described in [12]. For the JHMDB dataset, the 
frames are already low resolution. Thus, we directly use them in the CNN after resizing them 
to the expected input sizes.  
 
4. 4 Parameter Learning 

As is obvious from Eq.(2) and Eq.(7) there are a few hyper-parameters associated with 
the binary hashing descriptor. In this subsection, we systematically analyze the effect of 
these parameters on the overall classification performance of the descriptor. For this purpose, 
we use the mean average accuracy over 3 training/testing splits for JHMDB. Specifically, we 
explore the effect of the changes on (i) different normalization methods, (ii) the factor β of 
the fusion normalization and (iii) hashing size h. In Fig. 6, we plot the average classifier 
accuracy for each of these cases. For (i) and (iii), we compare the hashing size of [6, 7, 8, 9, 
10]. Under 1L  normalization, 2L  normalization and 1 2L + Lβ ⋅  normalization fusion with 
fixed 0.03β = . We compare the PCNN and the binary hashing feature, and combined the 
two methods for the JHMDB dataset. The result shows that the binary hashing feature is 
indispensable as [38] concluded, and motion information is essential for action recognition. 

For (i) we compared the recognition accuracy using different normalization methods. As 
Fig. 5 shows, there is no difference in choosing the normalization method when using only 
the hashing feature. Their performances are all worse than the combination of the P-CNN 
and hashing features. 

However, the different normalization has a different effect when we choose feature 
fusion. Like Fig. 6 shows, using 1L  normalization is slightly better than 2L  normalization. 
We also noted that the accuracy of fusion normalization is significantly higher than either 
normalization alone. 
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Fig. 5. Comparison among different normalization methods 

 

Fig. 6. Comparison among different hashing size 
 

In fact, the normalization method is related to the kernel used in the final classifier. In our 

case of the linear SVM, the kernel is ( , ) Tk x y x y= . The choice of 1L  normalization can 

ensure two things: (i) (x,x) constk = , and (ii) (x,x) k(x,y)k < feature selection in sparse 

feature spaces. This can guarantee a simple consistency criterion by interpreting (x,y)k as a 

similarity score, which should be the most similar point to it. For (iii), as Fig. 7 shows, as the 

rate of the fusion parameter β  increases, the recognition accuracy increases as well. 

However, beyond a certain rate, the accuracy starts dropping. Meanwhile, we note that under 

almost every β  setting, the accuracy with hashing size 7h = beats the other settings, and 

the accuracy with the hashing size 10h = is robust but is not the best. This is perhaps due to 
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the hashing size variation. Note that the JHMDB sequences contain approximately 30-40 
frames per sequence. When the hashing size increases, the time difference between each pair 
of adjacent frames become shorter and the action variation becomes more prominent. 

 
Fig. 7. Comparison among different normalization factor 

 

4. 5 Results and Comparisons to the State of the Art 
In this subsection, we provide full experimental comparisons of the two datasets. Our 

main goal is to analyze the usefulness of hashing to capture the motion information for 
action recognition.  

In Table 1, we compared the results of original Hashing feature and feature fusion with 
the PCNN feature under different normalization methods. In Table 2 and Table 3, we 
compared the binary hashing descriptors to the state-of-the-art dense trajectory features [33] 
encoded by Fisher vectors [22] and PCNN [6] results on these two datasets. 
 

Table 1. Comparison of different normalization methods with hashing features and PCNN 
features for the JHMDB and MPII Cooking dataset (% accuracy). 

Method JHMDB MPII Cooking 

PCNN 74. 6 62. 3 
Hashing 62. 9 57. 2 

P+L1-Hashing 75. 1 63. 5 
P+L2-Hashing 74. 7 62. 8 

P+L1, L2 Hashing Fusion 75. 6 63. 8 
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Table 2. MPII Cooking Activities dataset (7-splits) 
Algorithm mAP(%) 

IDT+FV ICCV’13 67. 6 
PCNN ICCV’15 62. 3 

Our B-CNN 63. 8 
 

Table 3. JHMDB dataset (3-splits) 
Algorithm Avg. Acc. (%) 

IDT+FV ICCV’13 65. 9 
PCNN ICCV’15 74. 6 

Our B-CNN 75. 6 

For the JHMDB dataset, we use hashing size 7h = for the classifier scores, and
0.03β =  for the feature fusion. The BCNN method improves the performance from 74.6% 

to 75.6%. We use the same setup for the MPII Cooking dataset except that we use the 
hashing size 12h = . The fusion normalization factor β  is set to 0.3. The BCNN method 
improves the performance from 62.3% to 63.8%. As is clear, although the binary hashing 
feature by itself is not superior to other methods, when the PCNN, binary hashing, 1L  
normalization and 2L  normalization are combined, it demonstrates significant promise. 

5. Conclusion 

In this paper, we presented a method for the higher-order pooling of CNN features for 
action recognition in videos. We showed how to use binary hashing to generate a 
higher-order descriptor that can capture motion information from a video. Our experimental 
analysis of two standard fine-grained action datasets clearly demonstrates that using the 
binary hashing feature method and fusion normalization is beneficial for the task and leads to 
state-of-the-art performance. A promising direction for future work is to adapt region- based 
CNNs [39] for each B-CNN part by fine-tuning networks for corresponding video frame 
areas. Another interesting direction is to model the temporal evolution of frames using RNNs 
[40].  
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