
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, Aug. 2018 4057
Copyright ⓒ 2018 KSII

A Study on the Design and Effect of

Computational Thinking and Software
Education

Jungin Kwon1 and Jaehyoun Kim2

1 College of General Studies, Sangmyung University
Hongimun 2-Gil, Jongno-Gu, Seoul - ROK

[e-mail: jikwon@smu.ac.kr]
2 Computer Education, Sungkyunkwan University

 Sungkyunkwan-Ro, Jongno-Gu, Seoul - ROK
[e-mail: jaekim@skku.edu]

*Corresponding author: Jaehyoun Kim

Received February 28, 2018; revised July 4, 2018; accepted July 28, 2018;
published August 31, 2018

Abstract

The software centered world following the fourth industrial revolution is rapidly approaching
us. Countries around the world attach importance to software's ability as one of the key
elements for training future human resources. In order to train software centered human
resources, each university has designated Software Education as an essential curriculum for
not only major but also non-majors. In the past Software Education was an education for a
major, but recent Software Education was changed to the essential education that is
necessary for all living in the software centered world. In the past the curriculum was
focused on software development and implementation-oriented education, but recent
curriculum emphasizes sequential arranging and thinking of problem solving. In order to
reflect trends in recent Software Education in detail, we integrate Software Education with
major concept of Computational Thinking. In this paper, we analyzed the effect of the main
concept of Computational Thinking on Software Education for non-majored learners who
received Software Education based on Computational Thinking (here refers to learners who
major in humanities, social sciences and arts). In addition, research models of satisfaction,
self-efficacy, and occupational change was established as the elements of Software
Education, and it was found that there was a relation between Computational Thinking and
Software Education.

Keywords: Computationl Thinking, Software Education, Algorithms and Procedures,

Learner Satisfaction, Self-Efficacy

A preliminary version of this paper was presented at ICONI 2017, and was selected as an outstanding paper.
This research was supported by the MIST(Ministry of Science and ICT), Korea, under the National Program
for Excellence in SW supervised by the IITP(Institute for Information & communications Technology
Promotion)"(2015-0-00914)

http://doi.org/10.3837/tiis.2018.08.028 ISSN : 1976-7277

4058 Jungin Kwon et al.: A Study on the Design and Effect of Computational Thinking and Software Education

1. Introduction

As the interest in the future society of the knowledge base is heightened, the software
centered world is rapidly approaching us due to the fourth industrial revolution. Countries
around the world attach to software capability as one of the key elements of training future
human resources [1]. Software capability refers to software centered communication ability,
problem solving ability, information utilization technology, and is a core ability for
knowledge based training of training future human resources [1]. In accordance with the
change of the ability of this education, the problem solving ability is improved based on
Software Education in Korea, USA, Japan, Israel, India and UK etc [1].

In recent years Software Education has proposed an Thinking centered curriculum that can
learn the principles of computer science. In the past Software Education was an education for
a major, but recent Software Education was changed to the essential education that is
necessary for all living in the software centered world. At each university, Software
Education has become a necessary education course for not only major but also non-majors.
In the past the curriculum was focused on software development and implementation-
oriented education, but recent curriculum emphasizes sequential arranging and thinking of
problem solving. In order to expand the scope of education and access new Software
Education, we are pursuing a new change in the education field which moved away from
existing software curriculum and methodology.

In order to reflect trends in recent Software Education in education, we combine main
concept of Computational Thinking and Software Education which is generalized by
Wing(2017) [2, 3, 4]. Computational Thinking is a process of thinking about problem
solving ability. It suggests a new direction of Software Education, claiming that everyone
should accustomed and learn to read, write, and calculate as well as learn Computational
Thinking [2, 3, 4].

Therefore, Computational Thinking and curriculum of Software Education should be
convergence in order to constantly discovering future human resources. In order to reflect
this, each educational institution has recently introduced a new vision of Software Education
and is attempting a new change of creative human resources required by future society. As a
part of this change, the methodology of Software Education based on Computational
Thinking is attracting attention. Computational Thinking based Software Education should
utilize a wide range of knowledge from various fields of study and fusion. It should also
improve the ability to solve complex problems. Computational Thinking based Software
Education means comprehensive education that can break down the division of disciplines
and develop integrated insight.

The purpose of this study is to analyze the effect of the main concept of Computational
Thinking for non-majors who received Software Education based on Computational
Thinking majoring in humanities, social sciences, and arts.

In addition, we set up a research model for the satisfaction of Software Education, self-
efficacy, and change of occupation of non-majors and we found that there is a relation
between Computational Thinking and Software Education. We then conducted a hierarchical
regression analysis that influenced Software Education among the core elements of
Computational Thinking. Based on the results, we propose an educational model of
Software Education based on Computational Thinking for non-majors.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 4059

2. Theoretical Background

2.1 Related Research on Computational Thinking

Computational Thinking was first introduced to us in 1996 when Seymour Papert was first
used as an approach to creating geometric ideas and later became known by Wing.
Wing(2017) claim that “Computational Thinking should be defined as thinking for problem
solving, system design, and understanding of human behavior according to the basic
concepts and principles of computer science. Everyone should learn and accustomed
Computational Thinking as well as learn to read, write, and calculate” [2, 3, 4].

CSTA (Computer Science Teachers Association, 2011) defined Computational Thinking
as a process of problem solving [5]. Computational Thinking includes the following
characteristics [5].

 First, we define the problem so that we can use the computer and other tools to solve the
problem. Second, the data necessary for problem solving are logically composed and
analyzed. Third, data is re-expressed through abstractions such as models and simulations.
Fourth, we automate the solution based on procedural steps and algorithmic thinking. Fifth,
we identified analyzed and implemented all possible solutions to select the most efficient of
problem solving procedures. Sixth, we generalize the solution to various problems.

CSTA and ISTE(International Society for Technology in Education) presented Data
Collection, Data Analysis, Data Representation, Problem Decomposition, Abstraction,
Algorithms & Procedures, Automation, Simulation, Parallelization as a key element of
Computational Thinking based on the results of David Barr, John Harrison, & Leslie Conery
(2011) [4, 5, 6].

The nine core concepts of Computational Thinking are shown in Table 1 [4, 5, 6].

Table 1. Computational Thinking Main Concepts

4060 Jungin Kwon et al.: A Study on the Design and Effect of Computational Thinking and Software Education

2.2 Computational Thinking based Software Education

In order to spread software society, software centered universities are selected and the
training of software talent with problem solving ability is strengthened [8]. It also includes
software basic education for non-majors and encourages the development of software
curriculum design and support programs centering on non-majors. However, it is somewhat
unreasonable to think that the curriculum or the curriculum provided so far is the
development of the curriculum or the curriculum for the non-majors. In addition, there is no
education content in the Software Education course based on Computational Thinking,
which has recently been recognized as important.

Therefore, this study aims to design the development of curriculum and curriculum for
Software Education based on Computational Thinking, which is focused on non-majors. The
design goals of the Computational Thinking based Software Education course for non-
majors are as follows [7, 8, 9].

First, it aims to understand the principles of computer science and recognize the
importance of software by real life and academic field. Understands the principles of
computer science and recognizes the importance of software based on practical examples of
real life computer science principles applied [9].

Second, it reflects the characteristics of major field of non-majors. The course focuses on
improving the problem solving ability based on Computational Thinking and focuses on the
Software Education that reflects the characteristics of each major so that non-majors can
solve the problems through software in each major field [8, 9].

Third, we aim to educate students with procedural problem solving skills based on
Computational Thinking. Non-majors are not coding programs to solve problems. It is to
improve the ability that the process of solving problems based on their prior knowledge,
experience, and thinking. This suggests a practical methodology to implement learner 's
sequential thinking directly with software [10].

Fourth, programming can be applied for efficient selection among problem solving
methods. Making software programming language to be applied in order to improve the
efficiency of sequential problem solving [11].

3. Research Method and Procedure

3.1 Course Development

After the design of Software Education based on Computational Thinking for non-majors,
we developed two subjects: ‘Computational Thinking and Software Coding’ and ‘Problem
Solving and Algorithm’.

The development period of the curriculum is from October 2015 to July 2016 and the
overall schedule for the curriculum development is shown in Table 2.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 4061

Table 2. Course Development Schedule

3.1.1 Development of ‘Computational Thinking and Software Coding’ Course

‘Computational Thinking and Software Coding’ is a curriculum to raise awareness of the
principles of computer science, trends in the latest IT technologies and importance of
information society for non-majoring students who are new to software. The main concept of
Computational Thinking was used as a sequential step of the teaching and learning process,
and focused on improving the learners logical thinking ability [12, 13]. The main concept of
Computational Thinking was used as a sequential step of the teaching and learning process
and focused on improving the learners logical thinking ability. In addition, the learner 's thinking
for problem solving was designed as a core concept of Computational Thinking, and it was constructed
to be implemented as a block-based programming language to implement it [12, 13].

‘Computational Thinking and Software Coding’ is designed to learn the basic concepts of
software through the theoretical education to understand the importance of computer science
and Software Education and the principles of computer operation in the beginning of
learning for Software Education of the non-majors. In the middle, the problem solving
procedure and application process based on the concept were constructed.

The curriculum design is shown in Table 3.

3.1.2 Development of ‘Problem Solving and Algorithm’ Course

‘Problem Solving and Algorithms’ include three educational contents. First, learners are
not simply coding the program, but solving the problems presented in the story. Second,
learners make problem solving procedural based on experience, knowledge and thinking.
Third, learners can choose a more efficient methodology [14].

The experience of presenting problem solving procedures in sequence is a great help to
improve the learner's logical thinking ability. Therefore, problem-solving procedure is
expressed in pseudo-code and then configured to be able to be algorithms and learn how to
implement more efficient algorithms [15].

Python languages were used to implement algorithms as tools. 'Problem Solving and
Algorithm' is designed to learn how to select the problem solving procedures learned in
'Computational Thinking and Software Coding' more efficiently.

The curriculum design is shown in Table 3 [8].

4062 Jungin Kwon et al.: A Study on the Design and Effect of Computational Thinking and Software Education

Table 3. Design of Development Subject

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 4063

3.2 Study Subjects and Model Setting

This study is aimed at 205 students attending 'Computational Thinking and Software
Coding' and 'Problem Solving and Algorithm' courses at S university in 2017.

We investigated self-efficacy, satisfaction with educational effectiveness and change of
occupation based on Computational Thinking after learning ‘Computational Thinking and
Software Coding’ and ‘Problem Solving and Algorithm’.

A total of 40 questionnaires were divided on a 6 points scale. The effects of software
coding education on learning satisfaction, self-efficacy, and change of occupation were
investigated based on nine core elements of Computational Thinking.

The research model of this study is shown in Fig. 1.

Fig. 1. Research Model

3.3 Research Result

In this study, the Cronbach α coefficient was used to measure the internal consistency relia
bility of each factor. The measurement reference value was set to 0.6 or more. Table 4 is th
e result of analysis about each average, standard deviation and credibility.

4064 Jungin Kwon et al.: A Study on the Design and Effect of Computational Thinking and Software Education

Table 4. Reliability Verification Results

Automation variables have very weak correlation with most variables or show no

correlation. On the other hand, the Software Education variables are correlated with most
variables and the degree of correlation is very high. The correlation coefficient was highest
0.866 with Algorithms & Procedures and Software Education. The correlation between
Abstraction and Software Education was 0.691.
Thus, Algorithms & Procedures, Abstraction can be considered to have a strong correlation

with Software Education. Correlation analysis result is shown in Table 5.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 4065

Table 5. Correlation Coefficients between Variables

Hierarchical regression analysis was used to analyze which independent variables had the
greatest effect on dependent variables except intervening variables [16]. Hierarchical
regression analysis is one of the types of multiple regression analysis. Hierarchical
regression analysis is an analysis that set the order in accordance with degree which
influenced on dependent variable among several independent variable. The following
hypothesis was set up for hierarchical regression analysis.

4066 Jungin Kwon et al.: A Study on the Design and Effect of Computational Thinking and Software Education

H : The nine key components of Computational Thinking will have a positive impact
on Software Education. Hierarchical Regression model is shown in Fig. 2.

Fig. 2. Hierarchical Regression model

Table 6 is a hierarchical regression model of variables affecting Software Education. In
Model 1, Data Collection (t = 96.761, p = .000) explains Software Education to 97.2%, and
Data Collection affects Software Education. Model 2 was further regressed by Data Analysis
(t = -3.165, p = .000) in addition to Data Collection. It showed 0.1% more influence on
Software Education than Model 1. Model 3 was further regressed by Data Representation (t
= 2.322, p = .034) and was found to affect Software Education. The problem decomposition
of model 4 (t = 1.978, p = .135) showed no effect at statistical significance level. Model 5's
Abstraction (t = -2.877, p = .013) and Model 6's Algorithms & Procedures (t = 6.877, p
= .000) were found to affect Software Education. Model 7's Automation (t = -1.122, p
= .263) did not have any effect at statistical significance levels. Model 8 simulation (t =
6.980, p = 0.000) and model 9 parallelization (t = 2.590, p = .010) were found to affect
Software Education.

The evaluation of relative influence between variables that can improve Software
Education by H hypothesis is based on the absolute value of β, which is the standardization
coefficient of Model 9, which is the final model. In other words, the independent variable
with the greatest absolute value of β, the standardization factor, has the greatest influence on
Software Education among the variables having influence on statistical significance level.
Comparing the absolute value of the standardization coefficient β in Model 9, Data
Collection and Algorithms & Procedures have the greatest influence on Software Education
and Problem Decomposition and Automation have the least influence on Software
Education.

Therefore, sufficient data collection for the problem is needed for the growth of learners'
Software Education. In addition, it is necessary to introduce a teaching - learning process
that can experience sequenced algorithms & procedures in solving problems.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 4067

The tolerance limits are all 0.1 or more, so it can be judged that there is no problem in
multi-collinearity. The Durbin-Watson value is 2.012, which is very close to the reference
value of 2 and not close to 0 or 4, so it is judged that there is no correlation between the
residuals.

Table 6. Hierarchical Regression Analysis

4068 Jungin Kwon et al.: A Study on the Design and Effect of Computational Thinking and Software Education

Therefore, this research model is suitable for the regression model. The results of the
study model reflecting the results of hierarchical regression analysis result can be shown as
Fig. 3.

Fig. 3. Hierarchical Regression Result

3.4 Application of Research Result

Based on the results of hierarchical regression analysis, we implemented Software
Education applying the concept of Computational Thinking. The study period was 205
students in the 1st and 2nd semesters of 2017, and their composition is shown in Table 7.

Table 7. Characteristics of Subjects

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 4069

In order to measure the satisfaction of Software Education, the change of self-efficacy and

occupation of the subjects, pre and post t-tests were conducted. The results are shown in
Table 8.

Table 8. Research Results

As a result, Software Education applying the concept of Computational Thinking showed

a positive change in learning satisfaction, self-efficacy, and future occupation.

4. Conclusion
As each field of society is changed into software by the fourth industrial revolution, it is

aiming to change the talent cultivation, curriculum and occupation. Software Education,
which has been limited to specific fields in the past, is now required education for all
members of society. In order to educate creative software capabilities, core competencies of
future society, Software Education based on Computational Thinking is being implemented
recently for non-majors in each field.

This paper has proved that Data Collection and Algorithms & Procedures are the most
influential factors when applying Computational Thinking to Software Education for non-
majors. Software Education based on Computational Thinking stimulates intrinsic
motivation through learner-learner interaction and active participation by giving individual
responsibility to learners. In addition, the learner's self-efficacy and self-efficacy are
improved by solving problems by finding various ways of learning based on problem solving
ability. Self-efficacy is defined by self-belief in the ability to organize and sustain the
necessary activities for achieving the goal for some work. The higher the self-efficacy, the
higher the level of performance that individuals can achieve by improving the performance
level, goal level, effort level, and degree of immersion level. Computational Thinking has
proven to have an impact.

Therefore, in this study, Software Education was conducted focusing on Data Collection,
Algorithms & Procedures, and Simulation when Software Education for non-majors. As a
result, we could see the positive change of satisfaction, self-efficacy, and future job
occupation of learners.

In the future, we will be advance this study and suggest Software Education systematic
education model for non-majors who got a difficult to Software Education.

4070 Jungin Kwon et al.: A Study on the Design and Effect of Computational Thinking and Software Education

References
[1] Kyunghun, Kim etc., “Creative problem solving information-based education policy direction

navigation key competencies for the future promotion of Koreans,” Korea Institute of
Curriculum and Evaluation Research Report RRC 2012-7, 2012. Article (CrossRef Link)

[2] J. M. Wing, “Computational Thinking,” Communications of the ACM, 49(3): 33-35, 2006.
Article (CrossRef Link)

[3] J. M. Wing, “Computational Thinking and Thinking about Computing,” Philosophical
Transactions of the Royal Society, 366: 3717-3725, 2008. Article (CrossRef Link)

[4] J.M. Wing, “Computational Thinking's Influence on Research and Education for All,” Italian
Journal on Educational Technology (formerly TD Tecnologie Didattiche), 25(2), 7-14, 2017.
Article (CrossRef Link)

[5] “Computer Science Teachers Association & International Society for Technology in
Education,” Computational Thinking Teacher Resources, 2011. Article (CrossRef Link)

[6] D. Bar, J. Harrison and L. Conery, “Computational Thinking: A Digital Age Skill for
Everyone,” Learning & Learning with Technology, Vol. 38, NO. 6, pp. 20-23, 2011.

Article (CrossRef Link)
[7] Barrows, H. S., “How to design a problem-based curriculum for the preclinical years,” New

York: Springer, 1985.
[8] Jungin Kwon & Jaehyoun Kim., “A Study on Design and Development of SW Course based on

Computational Thinking,” in Proc. of Asia Pacific International Conference on Information
Science and Technology(APIC-IST), 2017.

[9] Bell, T., Witten I., & Fellows, M., “Computer Science Unplugged,” Retrieved from 2015.
Article (CrossRef Link)

[10] Hmelo-Silver, Cindy E., “Problem-Based Learning: What and How Do Students Learn?,”
Educational Psychology Review, 16 (3): 235, 2004.Article (CrossRef Link)

[11] Guttag, J. V., “Introduction to computation and programming using Python with application to
understanding data,” Second Edition. Cambridge, MA: MIT Press, 2016. Article (CrossRef Link)

[12] L. Torp and S. M. Sage., “Problems as possibilities: Problem-based learning for K-12
education,” Alexandria, VA: Association for Supervision and Curriculum Development, 2002.

[13] Ornelas Marques, F., Marques, M.T., “ No Problem? No Research, little Learning ... Big
Problem!,” Systemic, Cybernetics and Informatics, Vol.10, No. 3, pp. 60-62, 2012.
Article (CrossRef Link)

[14] B. B. Levin, “Energizing teacher education and professional development with problem-based
learning,” Alexandria, VA: Association for Supervision and Curriculum Development, 2001.

[15] Hey, T., & Papay, G., “The computing universe,” Cambridge, UK: Cambridge University Press,
2014. Article (CrossRef Link)

https://academic.naver.comhttps/academic.naver.com/article.naver?doc_id=58037625/article.naver?doc_id=58037625
https://www.cs.cmu.edu/%7E15110-s13/Wing06-ct.pdf
https://www.cs.cmu.edu/%7Ewing/publications/Wing08a.pdf
http://www.cs.cmu.edu/%7Ewing/publications/Wing17.pdf
http://csta.acm.org/Curriculum/%20sub/CompThinking.html
https://www.iste.org/docs/learning-and-leading-docs/march-2011-computational-thinking-ll386.pdf
https://classic.csunplugged.org/wp-content/uploads/2015/03/CSUnplugged_OS_2015_v3.1.pdf
https://www.researchgate.net/publication/226053277_Problem-Based_Learning_What_and_How_Do_Students_Learn
https://mitpress.mit.edu/books/introduction-computation-and-programming-using-python-second-edition
http://www.iiisci.org/journal/CV$/sci/pdfs/HRE981NS.pdf
http://www.wikipedia.org/

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 4071

Jaehyoun Kim received his B.S. degree in mathematics from Sungkyunkwan University,
Seoul, Korea, M.S. degree in computer science from Western Illinois University and Ph.D.
degrees in computer science from Illinois Institute of Technology in U.S.A. He was a Chief
Technology Officer at Kookmin Bank in Korea before he joined the Department of
Computer Education at Sungkyunkwan University in March 2002. Currently he is a
professor at Sungkyunkwan University. His research interests include software engineering
& architecture, e-Learning, SNS & communication, internet business related policy and
computer based learning.

Jungin Kwon received her Ph.D. in Computer Education at Sungkyunkwan University.
She is currently Assistant professor at Sangmyung University College of General
Education. Her main research area is Computational Thinking, Problem Solving, SW
Education for non-majors, SW Education, ethics, Statistics. Email : jikwon@smu.ac.kr

