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Abstract 
 

As an increasing number of defense methods against control-data attacks are deployed in 
practice, control-data attacks have become challenging, and non-control-data attacks are on 
the rise. However, defense methods against non-control-data attacks are still deficient even 
though these attacks can produce damage as significant as that of control-data attacks. We 
present a method to defend against non-control-data attacks using influence domain 
monitoring (IDM). A definition of the data influence domain is first proposed to describe the 
characteristics of a variable during its life cycle. IDM extracts security-critical non-control 
data from the target program and then instruments the target for monitoring these variables’ 
influence domains to ensure that corrupted variables will not be used as the attackers intend. 
Therefore, attackers may be able to modify the value of one security-critical variable by 
exploiting certain memory corruption vulnerabilities, but they will be prevented from using 
the variable for nefarious purposes. We evaluate a prototype implementation of IDM and use 
the experimental results to show that this method can defend against most known 
non-control-data attacks while imposing a moderate amount of performance overhead. 
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1. Introduction 

Beginning with the appearance of the Morris Worm [1], the exploitation of memory 
corruption vulnerabilities to realize attacks has accumulated nearly 30 years of history. Due to 
their ubiquity, particularly for unsafe languages such as C and C++, and their high availability, 
memory corruption vulnerabilities remain one of the most dangerous vulnerabilities, and this 
condition is not expected to change in the foreseeable future. 

Attacks based on memory corruption vulnerabilities can be divided into control data and 
non-control-data attacks, according to the type of the target data. Control-data attacks 
overwrite control data (such as the return address [2]) using memory corruption vulnerabilities 
(such as buffer overflow and format strings) to direct the target program to an unintended 
control flow (such as new inserted code or existing code in the memory). Non-control-data 
attacks were first described by Chen et al. [3] in 2005. Such attacks overwrite certain 
security-critical non-control data of the target (such as the user identity data, configuration 
data, or decision-making data) to achieve the attackers’ goals without subverting the intended 
control flow. 

In their long struggle against memory attacks, researchers have proposed multiple effective 
defense mechanisms. The vast majority of existing methods are focused on control-data 
attacks, which remain the predominant type. From the StackGuard [4] to ASLR [5], DEP [6] 
and CFI [7], these methods have been deployed in practical systems and greatly limit the 
implementation of control-data attacks. The chance for attackers to realize control-data attacks 
is continually becoming smaller. Inevitably, increasingly more attackers will turn to 
non-control-data attacks. In addition, non-control-data attacks can easily bypass all of the 
above defense methods and hold the same threat as control-data attacks [8]. However, there are 
only a limited number of defense methods aimed at defending against non-control-data attacks 
at present. It is an important strategic opportunity for us to remedy this imbalance before 
non-control-data attacks take the place of control-data attacks in the mainstream. Therefore, 
we focus only on non-control-data attacks in this study. 

We present a method to defend against non-control-data attacks by influence domain 
monitoring (IDM). First, we extract all security-critical non-control data by analyzing the 
source code of the target program to construct the security-critical non-control-data set 
(SCNS). Then, for each variable in SCNS, we locate all possible operations that can modify its 
value. We call these operations the domain borders of this variable, and we can ensure that the 
value of a variable will not change between two adjacent domain borders of this variable. The 
basic theory of IDM is as follows: after finding all domain borders of all variables in the SCNS, 
we equip the monitor code to contain privileged instruction that can lead to a trap in a 
hypervisor after all domain borders and before all operations that use these variables in the 
SCNS as operands. During runtime, the hypervisor recodes the valid value of each variable in 
the SCNS after the domain border and retrieves the current value of the variable before the 
variable is used. This approach produces an alert and aborts the program if the current value is 
not equal to the valid one (indicating the variable has been tampered with by certain invalid 
operations, such as buffer overflow). IDM ensures that all security-critical non-control data 
are defined by valid operations and used with valid values that are defined by valid operations; 
thus, non-control-data attacks will fail because any unintended modification can be detected 
and prevented. The major contributions of our work are summarized as follows: 
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• We are the first to propose a definition for the data influence domain and apply it to 
secure non-control data. 

• We propose a method to extract a complete SCNS. The SCNS provides an important 
reference value for non-control-data protection. 

• We construct a non-control-data-monitoring architecture combined with 
instrumentation and a hypervisor, which ensures a satisfactory monitoring effect and 
self-security.  

• We implement a prototype of IDM for the Intel x86 Linux kernel, which uses Intel’s 
hardware-assisted virtualization technology (Intel VT) [9]. 

• We evaluate the efficacy of our implementation against various types of 
non-control-data attacks and the performance overhead using SPEC CPU2006 
benchmark and nginx. Our evaluation shows that IDM can prevent most 
non-control-data attacks with an average overhead of 36%. 

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3 
defines the threat model and assumptions. Section 4 describes the design of the IDM. Section 5 
discusses key technologies and challenges to realizing the IDM. Then, Section 6 evaluates the 
efficacy and overhead of our implementation. Section 7 discusses the limitations of our current 
design and future work. Finally, Section 8 concludes the paper. 

2. Related Work 
Since Chen et al. [3] first proposed the concept of non-control-data attacks, a series of such 
attacks have been developed by researchers [10-14]. Recently, non-control-data attacks have 
been raised to a new level by data oriented programming (DOP) [14], which provides a 
systematic technique to construct expressive non-control-data attacks. Nevertheless, the 
development of defense mechanisms is far behind the development of non-control-data attacks. 
Existing defense methods can be divided into four types according to their different strategies. 

Memory safety. Many proposed technologies exist whose goal is to add memory safety to 
C/C++. CCured [15] and Cyclone [16] enhance the safety of the C language using 
“fat-pointers” to perform boundary checks for unsafe memory dereference, but these 
techniques are not practical and are incompatible with legacy code. SoftBound [17] and CETS 
[18] use compiler-based instrumentation to provide spatial or temporal memory safety, but the 
high performance overhead (116% average overhead on the SPEC CPU 2000 benchmark) 
hinders their usability. DataShield [19] attempts to reduce the overhead by simply protecting 
sensitive data with boundary checking. However, this approach suffers from the characteristic 
limitations of boundary checkers. For example, it cannot prevent attacks that exploit format 
string vulnerabilities to write one specific memory address directly without covering adjacent 
memory contents. The IDM can prevent this type of attack as it detects attacks according to the 
real value of the variable instead of boundary checking. 

Data-flow integrity (DFI). Castro et al. [8] proposed DFI to protect programs against 
non-control-data attacks. DFI first generates the data-flow graph (DFG) of the target program 
by static reaching definitions analysis and then ensures that the data flow during runtime is 
allowed by the DFG. DFI can defend against a large spectrum of attack vectors, including 
control-data and non-control-data attacks. However, DFI can miss certain attacks because of 
imprecisions of reaching definition identifiers, such as an attack that overflows a buffer in a 
structure to overwrite a security-critical field in the same structure. In addition, it introduces an 
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average 104% time overhead and approximately 50% space overhead. IDM provides accurate 
protection without keeping a complex runtime definitions table and reaching definition set for 
all data, and it does so with a relatively low time and space overhead.  

Data isolation. Isolation mechanisms are generic approaches to protecting critical data. 
These techniques can be divided into software-based [20, 21] and hardware-based methods 
[22, 23, 24]. Without a hardware assistant, software-based methods typically introduce high 
performance overhead [21]. Therefore, some methods sacrifice security for better 
performance, making it possible for information leakage or brute-force attacks to succeed [25, 
26]. IDM does not have this problem because it protects the non-control data without isolation 
assumptions. 

Other methods. Certain other methods also have the capacity to prevent non-control-data 
attacks. One representative method is dynamic taint analysis (DTA) [27, 28, 29]. Such 
mechanisms work on binaries and can detect both control-data and non-control-data attacks. 
Nevertheless, these mechanisms can produce false positives and introduce high performance 
overhead without a hardware assistant. DSR [30] randomizes the representation of data stored 
in memory using an XOR cipher on the contents of memory with a random key, making it 
challenging for attackers to modify the contents correctly. However, DSR is not binary 
compatible as it must recompile the target and relative libraries. In addition, this technique is 
subject to certain information leak attacks [31], as is the case for other randomization methods. 
SIDAN [32] and Gibraltar [12] extract data invariants from source code and verify these 
invariants during runtime; thus, these approaches cannot detect data attacks without violating 
any invariant constraints. Torres et al. [33] attempted to detect non-control-data attacks using 
hardware events. However, the analysis results showed that hardware events are susceptible to 
interference and are less reliable, which leads to false positives and false negatives. 

3. Threat model and assumptions 
Our threat model assumes that attackers can exploit memory corruption vulnerabilities of the 
target program to perform arbitrary reads and writes. We assume that the target program is 
originally benign and that the system has deployed enough defense mechanisms against 
control-data attacks (such as DEP [6], fine-grained CFI [7, 34], and ASLR [5]) so that 
attackers cannot mount any control-flow hijacking attacks and must turn to non-control-data 
attacks. We also assume that the operation system, the hypervisor and hardware are trusted. 

4. Design 
The IDM is designed to protect non-control data against attacks. When attackers have the 
chance to modify only non-control data to realize attacks, they typically exploit the modified 
non-control data in two ways: using it directly to achieve the goal (e.g., the currentuid in Fig. 1 
(a)) or using it to influence other non-control data that cannot be directly modified by known 
memory corruption vulnerabilities via subsequent arithmetic (e.g., the variable b in Fig. 1 (b)).  

The key idea behind IDM is that even if attackers tamper with the non-control data 
successfully by memory corruption vulnerabilities, they cannot use the modified non-control 
data as they intend under the protection of IDM. IDM monitors the influence domain of 
non-control data and ensures that the invalid value of non-control data cannot be used by other 
code directly or transmitted to other non-control data indirectly. 
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 …
currentuid=1;
…
//contain one memory corruption vulnerability
//the attacker modifies currentuid to 0
…

if(currentuid)(…)else
setuid(currentuid);
…

…
a=1;
…
//contain one memory corruption vulnerability
//the attacker modifies a to 0
…
b=a+1;
if(b==2){…}else{…}
…

(a) (b)  
Fig. 1. Two ways to utilize modified non-control data 

4.1 Influence domain 

4.1.1 Definition 
Each variable has its own life cycle, and each can be assigned different values in different 
phases of the life cycle. Taking the code in Fig. 2 (a) as an example, variable a is declared and 
initialized to 1 at t0, and its life circle is from t0 to t4. The state of a in different phases is shown 
in Fig. 2 (b). The value of a can be updated only by the assignment statements and remains 
unchanged between two adjacent assignment statements. For example, a is equal to 1 from t0 
to t1. Based on the above analysis, we give the following three definitions in both temporal and 
spatial scales to describe this characteristic better. 
 t0：int a=1;

      …
      //may exist one memory corruption vulnerability
t1：a=&p;
       …
       //may exist one memory corruption vulnerability
       …
t2：a=1;
       …
       //may exist one memory corruption vulnerability
       …
t3：a=a+1;
       if(a==2){…}else{…}
t4：end

V(a)

Tt0 t1 t2 t3 t4

1

2

&p

(a) (b)  
Fig. 2. Code example 

 
Definition 1: A variable possesses its own memory space once it is declared. We call this 

space the space influence domain (SIDom) of the variable. For variable α , its SIDom is 
represented by ( )SIDom α  and the content of its SIDom is represented by ( ( ))Val SIDom α . 

The size of ( )SIDom α  is determined by the type of the variable α  and will not change 
unless the data type changes during runtime. ( ( ))Val SIDom α  is simply the value of the 
variable α .  

Definition 2: A variable is alive from when it is declared to the end of the procedure that it 
belongs to or to when it is freed. We call this time period the temporal influence domain 
(TIDom) of this variable. For variable α , its TIDom is represented by ( )TIDom α .  
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The ( )TIDom α  is consistent with the life cycle of α . For the variable a in Fig. 2 for 

example, ( ) [ ]0 4,TIDom a t t= . 

Definition 3: In ( )TIDom α , all valid assignment operations of the program divide 

( )TIDom α  into many sub-temporal domains, and ( )( )Val SIDom α  remains unchanged in 
each of them. We call the sub-temporal domains the fixed-value temporal influence domain 
(FTIDom) of α , which is represented by ( )FTIDom α . The fixed value of ( )FTIDom α  is 

represented by ( )( )FVal FTIDom α .  

One ( )FTIDom α  is a sub-influence domain of ( )TIDom α . For a in Fig. 2 for example, 

]0 1,t t , ]1 2,t t , ]2 3,t t  and ]3 4,t t  all are ( )FTIDom a , and the corresponding fixed values 
of them are 1, &p, 1 and 2. 

Taking ( )( )( )iInVal FTIDom i Nα +∈  as the value of α  when it enters ( )iFTIDom α , 

then ( )( )iFVal FTIDom α  is equal to ( )( )iInVal FTIDom α . The value of α  is 

maintained at ( )( )iFVal FTIDom α  until it enters another ( )( ),jFTIDom j N j iα +∈ ≠  

under normal conditions. We take ( )UseVal α  as the value of α when α  is used by any 

instruction in ( )iFTIDom α . According to above three definitions, we can deduce the 
following conclusions: 

In an FTIDom of variable α : 
( )( ) ( )( )i iFVal FTIDom InVal FTIDomα α=                               (1) 

( ) ( )( ) )(iUseVal FVal FTIDom i Nα α += ∈                                (2) 

( )( ) ( )( )( )iVal SIDom FVal FTIDom i Nα α += ∈                            (3) 

In addition, TIDom and FTIDom of variable α  have the following relationship: 
( ) ( ) ( ) ( ) ( )( )1 2 3 nTIDom FTIDom FTIDom FTIDom FTIDom n Nα α α α α += ∈  

 (4) 

4.1.2 Inspiration 
The states of variables in programs are constantly changing. More complex programs are 
associated with more non-control data in the program and a larger set consisting of the various 
states of the non-control data. When considering the entire program as an object to analyze the 
changing process of the non-control data, the approach tends to fail as a result of complexity, 
particularly in the case of large-scale applications, which is one of the most important 
challenges in non-control-data protection. We are inspired by the influence domain and 
attempt to develop a method to break the complex problem into smaller and more manageable 
issues. 

We decompose all non-control-data protection into the corresponding influence domains 
monitoring. Then, one variable's IDM can be decomposed to monitor the SIDom and TIDom. 
The TIDom monitoring can be further decomposed into the FTIDom monitoring. The 
transition process above is shown in Fig. 3.  
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Enlightened by above analysis, we design IDM and provide a new strategy to solve the 
problem of non-control-data protection. IDM must monitor SIDom and FTIDoms for all 
security-critical non-control data of the target program to enforce the non-control-data security 
of the entire program. 

 
 

a

b

c

d

e

i
j k

m

n
SIDom(a)

TIDom(a)

FTIDom1(a)

FTIDom2(a)

FTIDom3(a)

……

FTIDomn(a)
 

Fig. 3. Decomposition and integration procedure of non-control-data protection 

4.2 Defense mechanisms 
Attackers must exploit memory corruption vulnerabilities to modify one non-control datum to 
a particular value if they are to achieve a non-control-data attack. Furthermore, according to 
the thread model and above analysis, we know that the value must be different from the 
use-value of the FTIDom. In this section, we discuss how to defend both methods shown in 
Fig. 1 to use modified non-control data by monitoring the influence domains. 

A. Checking before use (CBU) 
Regardless of the use of the modified non-control data, the data must be read first. 

Therefore, if we can determine that the non-control data to be used by the next instruction have 
been tampered with, then we can prevent the program from executing that instruction, and the 
non-control-data attack will be defeated. Based on definition 3 and conclusion (2), we know 
that the read operation must occur in one FTIDom and that in all cases the value of the variable 
is equal to the fixed value of the FTIDom. Thus, we can perform the following verification to 
defend against non-control-data attacks. 

When the target program runs a read instruction on a variable α  in ( )iFTIDom α , we 

first check whether ( )UseVal α  is equal to ( )( ) )(iFVal FTIDom i Nα +∈ . If the two 
values are equal, the status of the variable α  is regarded as normal. Otherwise, the value of α  
has been modified before this time point by an invalid assignment operation; thus, the target 
program should be aborted, and an alert should be given to the user. 

Taking Fig. 2, for example, if a has been modified to zero between t2 and t3 via a memory 
corruption vulnerability (such as buffer overflow), the Boolean variable in the next statement 
will become false, but the normal result should be true. Then, the attacker can change the 
execution of the program. However, if we add a verification process before t3 to check whether 

( )UseVal a  is equal to [ ] ( )( )2 3,t tFVal FTIDom a  (i.e., 1) and we terminate the program if 

they are not equal, this attack will be defeated. 
B. Updating after definition (UAD) 
To perform CBU, we must know the exact fixed value of every FTIDom of each variable. 

As the value of a variable is dynamically changing during the running of the program, how to 
know the valid fixed value is an important challenge. According to definition 1, the value of a 
variable is stored in the fixed SIDom, and this condition will not change during the entire life 
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cycle of the variable. Consequently, we monitor all valid write operations to the SIDom and 
record the contents written by these operations as the valid fixed value of every FTIDom. 

According to conclusion (1) and definition 3, the fixed value of each FTIDom is simply the 
value written by the assignment statement at the start of the influence domain, that is, 

( )( )( )iInVal FTIDom i Nα +∈ . Therefore, the content in SIDom just after the assignment 
statement is the fixed value of the corresponding FTIDom. IDM monitors all valid assignment 
operations on non-control data and reads the content in SIDom after these operations, then 
treats this content as the fixed value of the FTIDom, which starts with this assignment 
operation. 

According to definition 3, a new FTIDom begins every time an assignment statement 
finishes executing. IDM updates the fixed value of the new FTIDom with the content in the 
SIDom of the variable at this time. 

Combining CBU and UAD, IDM can ensure that all ( )( )( )iFVal FTIDom a i N +∈  come 

from valid assignment statements of the target program and that ( )UseVal a  is always equal 

to the ( )( )( )iFVal FTIDom a i N +∈  during the runtime, which can stop all invalid values 
from being used by the program and defend against all non-control-data attacks. 

4.3 SCNS definition 
As all non-control data have their own influence domain, the performance overhead will be 
high if we monitor all non-control data of the target program, hampering the practicality of 
IDM. Therefore, we must determine which non-control data are closely related to security and 
monitor only their influence domains.  

Chen et al. [3] identified four types of security-critical data that may be subject to 
non-control-data attacks: configuration data, user input data, user identity data and 
decision-making data. Most security-critical non-control data can be found and identified 
according this research. However, we find that certain other critical data will be neglected if 
we use only these standards to locate security-critical data. 

Data are fluid, dynamic and not independent; thus, one datum is often affected by several 
other data. We assume that one variable b is a decision-making datum that is the sum of 
another variable c and constant 1 but that c does not belong to any type of security-critical 
non-control data. Without protection, c may be modified by attackers via memory corruption 
vulnerabilities. In this case, we assume that the original value of c is 0 and that one attacker 
overwrites it to 1 later. Then, the value of b will be assigned to 2 instead of 1 after executing 
the operation b = c+1, which leads to the program selecting an unintended control flow. As 1 
and 2 are both valid values for b and the attacker does not tamper with b directly, this 
non-control-data attack cannot be detected or prevented by protecting b only. This result also 
reminds us that not only the explicit security-critical non-control data (e.g., variable b) but also 
other implicit data that could influence those explicit data directly or indirectly (e.g., variable a) 
should be protected. Another type of non-control data that should be protected is the output 
data of the target program. Currently, many attackers can redirect the output data to a special 
memory location and disclose important private information (e.g., password and user ID) to 
facilitate more complex attacks. Information leakage is one of the most notable challenges for 
software protection. Thus, the output data also should be monitored to enhance security. 

In this study, we further extend the scope of security-critical non-control data and attempt 
to define a complete set that contains all possible security-critical non-control data. 
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Definition 4: We call a set the SCNS if it contains the following non-control data: 
  Configuration data. Including configuration files and file path directives, these data 

specify access control policies and the locations of trusted executables. 
  User identity data. The data that can be used to describe a user’s identification, such as 

the user ID and group ID. 
  Decision-making data. The data (non-control data) that are used to determine which 

branch to run according to its value, such as the Boolean variables.  
  User input data. The data that come from user input operations. 
  Output data. The data that are output by the program during the runtime. 
  The data that can influence the above five types of data directly or indirectly. 

The first four types of security-critical non-control data have been defined precisely by 
Chen et al. We extend the scope with the last two types. Our new definition treats the last two 
types of data as being as important as the others. We can acquire a much more comprehensive 
SCNS with the new definition and avoid the limitations of previous research. 

5. Implementation 
IDM can be separated into two phases: preprocessing and runtime monitoring. In the 
preprocessing phase, we extract SCNS from the LLVM intermediate representation (IR) of 
source files and produce protected executable files by instrumentation and compilation. 
During runtime, we monitor the state of all security-critical non-control data via a lightweight 
hypervisor and handle exception events. The overall architecture of IDM is shown in Fig. 4. 
 

Hypervisor

Guest OS
SCNS

instrumentation 
module

protected 
executable file

target 
process

vmexit events 
handle module

response 
module

source 
code files

influence domain 
monitoring module

Hardware

compile

vmcall

get

get

alert/abort

update

strategy 
db

log file

llvm IR

LLVM&Clang

SCNS 
extract module

llvm IR with 
monitor code address value

 
Fig. 4. Overall architecture of IDM 

 
In this section, we will describe related key methods for IDM implementation. 

5.1 SCNS construction 
We extract SCNS using a combination of three analyses: sensitive instructions analysis, 
sensitive functions analysis and data dependency analysis. We compile the source code into 
LLVM IR and perform the above analysis on the result. There are two reasons to choose 
LLVM IR as the analysis target: first, LLVM IR is well formed, and all operations on variables 
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(e.g., declaration, definition, store and load) are unambiguous and easily analyzed; second, our 
method can be deployed for other languages with LLVM front-ends. 

5.1.1 Extraction 
To identify configuration data and user input data, we adopt sensitive functions analysis and 
taint analysis. Both configuration data and user input data must be accepted by the program 
before joining in the data flow of the program. Therefore, we locate related functions that 
accept configuration data and user input data at first (e.g., file_open, readline, or getchar) and 
treat variables influenced by these functions directly as external taint sources; then, we adopt 
taint analysis to trace the propagation of these variables and treat a variable as a taint if its 
value is affected by existing taints. Finally, we treat all taint variables as security-critical 
non-control data. Taking ghttpd-1.4 as an example, the configuration file ghttpd.conf is read 
by the function fopen in util.bc (the LLVM IR file corresponding to util.c of ghttpd-1.4), and 
we then trace all related data influenced by the data read out from ghttpd.conf and label them 
as security-critical non-control data. 

To extract the user identity data, we first perform sensitive functions analysis to locate 
functions that can modify the UID or GID of the current process, such as setuid and seteuid. 
Then, parameter variables of these functions are used to describe the identity belonging to the 
user identity data; we obtain these variables through parameter analysis. Taking sudo-1.8.3p1 
as an example, in sudo.bc (the LLVM IR file corresponding to sudo.c of sudo-1.8.3p1), the 
sensitive function setresuid is called to set the new ruid, euid and suid according to its three 
parameters i32 %131, i32 %134 and i32 %137. Hence, %131, %134 and %137 are all identity 
data. 

Output data are straightforward to obtain. We first find all functions that can be used to 
perform output operations and recognize all variables that will be output during the runtime in 
parameters according to their definitions. Taking util.bc in ghttpd-1.4 as an example, printf is 
called to output i8 * %97, so %97 is part of the security-critical non-control data. 

 
 1   %a = alloca i32, align 4

2   %b = alloca i32, align 4
3    %ptr = alloca i32, align 4
4    Label:
5            %cond = icmp eq i32 %a, %b
6            br i1 %cond, label %IfEqual, label %IfUnequal     
7       IfEqual:
8            ret i32 1
9       IfUnequal:
10            ret i32 0
11     store i32 3, i32* %ptr 
12     %val = load i32, i32* %ptr
13     switch i32 %val, label %otherwise [
14          i32 0, label %onzero
15          i32 1, label %onone
16          i32 2, label %ontwo ]

 
Fig. 5. Code example to show the decision-making data analysis method 

 
Decision-making data are the most widely distributed security-critical non-control data. 

For collecting decision-making data as comprehensively and completely as possible, we 
traverse the entire program to locate all conditional branch instructions (i.e., the “br” 
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instruction and “switch” instruction in LLVM IR). Then, we analyze arguments of each 
instruction to obtain the decision-making data. As shown in Fig. 5, there is a conditional 
branch “br” in line 6 and a “switch” instruction in line 13, and the arguments “i1 %cond” and 
“i32 %val” determine where to execute next; therefore, both “%cond” and “%val” are 
decision-making data. 

After extracting all five types of security-critical non-control data, we adopt data 
dependency analysis to obtain the sixth type. This type of data can influence other types 
directly or indirectly by binary operations (e.g., add, sub, or mul), bitwise binary operations 
(e.g., shl, and, or, or xor), memory access operations (e.g., load or store) or other instructions 
that can change the values of variables. We call these operations sensitive operations. As 
before, we extract the input data and configuration data using taint analysis. All related data 
can be found by this process; thus, the sixth type of data that we should locate in addition refers 
primary to the data that can affect the user identity data, output data and decision-making data. 
We use backward dependency analysis to achieve this goal. At the beginning, we construct a 
data set that consists of all user identity data, output data and decision-making data. Then, for 
every element of the set, we perform backward analysis starting from the location of the 
element where it is found. When we find a sensitive operation that uses the element as the left 
operand, we add the right operands (non-constant variables) to the data set. The backward 
analysis will be terminated when it traverses the declaration of this variable. We iterate this 
process until every element of the data set has been analyzed. Taking the code in Fig. 5 as an 
example, we have determined that “%val” in line 13 belongs to decision-making data; thus, we 
start backward analysis starting from line 13. In line 12, we find “%val” is the left operand of a 
load operation; thus, we insert the right operand “%ptr” into the set. At this point, “%ptr” also 
belongs to the security-critical non-control data. Through backward dependency analysis, we 
can identify more security-critical non-control data and construct a more complete SCNS.  

5.1.2 Optimization 
In LLVM IR, all local variables are allocated memory by the “alloca” instruction (in stack) or 
the “malloc” function (in heap), and global variables are declared with “global” identifiers. 
However, when a program is translated into LLVM IR, many temporary variables will be 
added into the code used to deliver values (e.g., a value or address of a real variable, or the 
result of a binary or bitwise binary operation) between different instructions acting as registers, 
and they do not exist in the original source code, such as “%cond” in line 5 and “%val” in line 
12 in Fig. 5, which are neither local nor global variables of the program. Multiple temporary 
variables make SCNS complex and redundant. Therefore, we design a method to optimize the 
SCNS constructed in Section 5.1.1. 

First, we extract local and global variables in SCNS and construct a subset for each of them. 
Then, we handle the other temporary variables in SCNS as follows: 

1) Those used to deliver values or addresses of real variables. We regard these 
temporary variables as different expression forms of real variables. If a temporary 
variable is the value or address of a local or global variable, then this temporary 
variable belongs to the same subset as the local or global variable.  

2) Those used to save operation results. We analyze the operands of the operations 
first. We handle temporary variables in operands via method 1); for local or global 
variables in operands, no action is necessary because each of them must belong to one 
subset, which was constructed at the beginning. Finally, we delete the temporary 
variables used to save operation results from the SCNS. 
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By this method, we analyze and classify all variables in SCNS into different classes that 
correspond to local or global variables. Thus, we focus on protecting local or global variables 
instead of temporary variables added by the LLVM compiler. For example, we verify “%a” 
and “%b” instead of “%cond” in Fig. 5. This approach greatly reduces the complexity and 
improves the availability of SCNS. 

5.2 Instrumentation 

5.2.1 Basic method 
For monitoring the influence domain of each element of SCNS during runtime as described in 
Section 4.2, we implement monitor code in the LLVM IR of the target program. According to 
the defense mechanism, the monitor code checks whether the current value of a variable is 
equal to the fixed value of the FTIDom before the variable is used. Thus, we must know the 
fixed value of every variable’s FTIDom and the value of the variable immediately before it is 
used.  

The fixed value of the FTIDom is more challenging to obtain. Different FTIDoms may 
have different fixed values, which can be changed by assignment statements during runtime. 
We must trace the assignment statement to record the fixed value of every FTIDom if we wish 
to know it precisely. LLVM is a load/store architecture, and only the “store” operation can 
modify memory [35]. That is, for one local or global variable, its value is fixed between two 
adjacent “store” operations. Therefore, we need only locate all “store” operations that use the 
variable in SCNS as an operand to divide the variable’s TIDom into certain FTIDoms through 
traversing the LLVM IR.  

When we obtain all “store” operations, the borders of all variables’ FTIDoms can be 
labeled. Then, we insert monitor code after every “store” instruction to read the value of the 
variable at this point, and this value is exactly the fixed value of the FTIDom, which starts with 
this “store” instruction and ends with the next one. 

The value of the variable before it is used can be obtained by inserting code that reads the 
variable before all read operations. Therefore, we traverse the LLVM IR to find all read 
operations on every variable of the SCNS, and insert monitor code before these operations to 
obtain the current value of this variable. 

The verification process can be implemented in the program by inserting additional code. 
However, in this situation, both the fixed value of the FTIDom and the current value are saved 
in the memory of the program; thus, attackers can easily bypass this verification process by 
modifying this content once they have the ability to perform arbitrary reads and writes through 
memory vulnerabilities. In addition, leaving the security mechanism in untrusted programs is 
unwise. Therefore, we prefer to implement the verification process in a lightweight hypervisor, 
and the inserted monitor code simply submits the variable status to the hypervisor. 

We add monitor code by inserting new high-level code into the LLVM IR of the program. 
The monitor code has the following form: 

 
 call void asm sideeffect “vmcall”, 
“{ax},{cx},{dx},~{dirflag},~{fpsr},~{flags}” (i32 %t, i32 * %n, i32 %l)
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The monitor code saves three values “%t”, “%n”, “%l” in registers EAX, ECX and EDX, 
respectively, then executes “vmcall” instruction to trap in the hypervisor. “%n” and “%l” are 
the address and the length of the variable, respectively, and “%t” indicates whether the 
monitor code is an update or verification code, which tells the hypervisor how to handle this 
vmcall event (the details of the process will be described in Section 5.3). 

5.2.2 Handling function calls 
Function calls in programs should be considered separately when instrumented. These called 
functions may have their own security-critical non-control data, and these variables must be 
instrumented and monitored; however, even if the called function does not contain any 
security-critical non-control data itself, it may have data pointer arguments that point to 
security-critical non-control data, which means that variables pointed to by these pointers can 
be modified by this function. Therefore, we must instrument and monitor the called function. 
We handle these functions in the following ways based on their types: 

1) For functions declared in the program itself, as their definitions are also in the source 
files of the program, they have been instrumented in the way described in Section 
5.2.1. Therefore, we treat them simply as use operations on security-critical 
non-control data if they use it as an argument and instrument a verification code 
before the callsite. 

2) For functions in dynamic-link libraries, the best monitoring approach is to analyze 
their source code and then implement monitor code. However, this method requires 
the modification and recompilation of dynamic-link libraries, which will lead to the 
method being incompatible with legacy code. Therefore, we use another method to 
solve this problem. 
a) For functions that use sensitive pointers as arguments, we take two steps. First, 

for one function, we treat it as a use operation on the security-critical non-control 
data pointed to by the sensitive pointer and instrument a verification code before 
the callsite. Second, we analyze its source code (assuming that the dynamic-link 
library is open source) and check whether it has valid write operations on the 
security-critical non-control data. If it does, then the function can modify this 
variable legitimately; thus, we instrument an update code after the callsite and 
treat the current value as the new valid value; otherwise, the function cannot 
modify this variable under normal circumstances, and we simply insert another 
verification code after the callsite to ensure that this variable will not be 
modified during the runtime of the function.  

b) For the other functions, as their execution will not modify any security-critical 
non-control data belonging to SCNS, we simply treat the called functions as 
general code and avoid any additional processing.  

This method makes IDM compatible with legacy code but may result in false negatives 
when attackers exploit memory corruption vulnerabilities in called functions of dynamic-link 
libraries to modify the security-critical non-control data pointed to by the sensitive pointer 
arguments. False negatives can also arise if attackers modify local non-control data belonging 
to these functions themselves but not to SCNS, as we do not delve deeply into the definitions 
of these functions. However, this method limits possible attacks so that these attacks can only 
exploit memory corruption vulnerabilities in dynamic-link libraries and cannot modify 
non-control data in SCNS that are not accessed during their normal execution. 
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5.2.3 Optimization 
We found through experiments that redundant monitor code will be instrumented by the 
method described in Section 5.2.1. The reason is that this method does not consider 
application contexts at run time and lacks overall consideration: the method focuses only on 
security-critical non-control data and regards all inserted code as independent. However, this 
inserted code is not isolated and independent; it is one part of the control-flow or data flow of 
the program. As this redundant inserted code does not contribute to security and only increases 
overhead, we propose an optimization method to remove redundant monitor code based on the 
control-flow and data-flow analysis. The method can be described from two perspectives: in 
one basic block and between different basic blocks. 

1) Optimizations in one basic block: If no function calls or write operations exist on any 
local or global variables between two adjacent read operations on the same 
security-critical non-control data in one basic block, attackers cannot modify this 
security-critical non-control data between two adjacent read operations. Therefore, 
the verification code before the second read operation can be removed. In addition, if 
one assignment operation immediately follows a read operation, the value obtained 
by the read operation must be the value assigned by the assignment operation. Thus, 
the verification code inserted before the read operation can also be removed. 

2) Optimizations between basic blocks: We analyze the control flow and perform 
optimization on every execution path. First, we remove the repetitive monitor code 
directly. For example, if basic block A is the former of basic block B in one path of 
the control flow and there is verification code at the end of A and at the start of B for 
the same security-critical non-control data, the verification code at the start of B can 
be removed. We can also treat any two adjacent basic blocks as a whole and optimize 
them by the method described above to further remove redundant monitor code. 

These optimizations can effectively reduce the number of non-essential verification checks 
without affecting the safety of the method. Take mcfutil.bc as an example, which is the LLVM 
IR file corresponding to mcfutil.c of 429.mcf in SPEC CPU2006. The number of verification 
checks in this file can be reduced by approximately 20% (from 176 to 140) through 
optimization. 

5.3 Runtime monitor 
After the target program is instrumented and recompiled, the protected executable file can be 
produced. Then, during the application runtime, the program will be trapped in the hypervisor 
when it runs the monitor code. The monitor module in the hypervisor handles these events 
according to the monitor code type.  

When an update code arises, the monitor module reads the value of the variable in the 
SIDom that started from the address “%n” to “%n+%l”, and this value is simply the fixed 
value of the current FTIDom. When a verification check occurs, the verification process will 
be performed by the monitor module. First, the process reads the current value of the variable 
from the SIDom and then compares the current value with the fixed value of current FTIDom. 
If these two values are equal, no additional action needs to be taken; if not, an alert is thrown to 
the user, and the program is aborted. 
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Using the runtime monitor, any non-control-data attacks that modify the security-critical 
non-control data are detected and prevented before the modified variable is used in any 
subsequent execution. 

6. Evaluation 
In this section, we evaluate the overhead of our implementation and its effectiveness at 

defeating non-control-data attacks. 
 

6.1 Overhead 
We ran nine benchmarks of SPEC CPU2006 to evaluate the overhead of IDM, six integer 
benchmarks (401.bzip2, 429.mcf, 456.hmmer, 458.sjeng, 462.libquantum and 473.astar) and 
three floating point benchmarks (470.lbm, 444.namd and 450.soplex). In addition, to better 
evaluate the impact for web server programs, we measured the overhead of nginx-1.4.2. 

We ran all experiments on an Ubuntu 12.04 x86-32 system with a 3.4 GHz Intel Core™ 
i7-3770 processor and 16 GB of memory. The kernel version was 3.2.0-29-generic-pae. We 
used LLVM-3.5.0 and Clang-5.0.0 as analysis and compilation tools. In addition, we designed 
and realized a lightweight hypervisor, assisted by Intel VT, that monitored only instructions 
that caused virtual machine (VM) exits unconditionally [9] to reduce the overhead introduced 
by the hypervisor as much as possible.  

We ran each experiment three times and present the average results. 

6.1.1 Space overhead 
For evaluating the space overhead introduced by IDM, we translated all 9 benchmarks and 
nginx-1.4.2 to LLVM IR files and performed SCNS extraction. Then, we instrumented all IR 
files according to SCNS. Finally, we compiled these IR files to binary executables. We 
counted the number of the monitor code insertions and measured the size of these binaries. The 
results are shown in Fig. 6 and Fig. 7.  
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Fig. 6. Statistics on instrumented monitor code 
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Fig. 6 shows that the average number of monitor code insertions in all test cases accounted 

for 4.9% of the original code and that no direct relationship exists between the proportion of 
inserted monitor code and the original code size. This result occurs primarily because IDM 
instruments all monitor code according to SCNS; thus, the amount of inserted monitor code is 
affected by the size of SCNS and the complexity of operations on security-critical non-control 
data in the program. The greater the number of security-critical non-control data contained in 
the target program and the more complex the operations on that data, the greater the proportion 
of monitoring code that is inserted. 

Fig. 7 shows the final sizes of the executable files after instrumentation of the monitor code. 
The largest space overhead is 22.5%, and the average is 13.2%. IDM introduces less overhead 
than DFI [8], which has an average of 50% space overhead. 

6.1.2 Time overhead 
We measured the time overhead of all 9 benchmarks. As IDM uses a hypervisor for effective 
monitoring and the entire guest operating system runs on the hypervisor, IDM is expected to 
affect the performance of entire system. For a better description of the performance overhead 
introduced by IDM, we measured the overhead of these benchmarks in three different 
conditions: the Linux system without the hypervisor, with the hypervisor but with no 
instrumentation and with IDM. The results are shown in Fig. 8. 
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Fig. 8 shows that the lightweight hypervisor introduces a small overhead owing to Intel VT. 
With Intel VT, the hypervisor needs only to monitor root operations and does not handle the 
other events, which greatly reduces the overhead. After IDM is deployed, the target program 
traps into the hypervisor every time it runs to the monitor code; then, the hypervisor must also 
perform updates or verification according to the monitor code type. Therefore, IDM 
introduces a bigger time overhead, averaging 36% relative to the pure Linux system. 
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In addition, through a comprehensive analysis of the proportion of inserted monitor code 

and the time overhead, we found that the time overhead is proportional to the proportion of 
inserted monitor code, as shown in Fig. 9. The larger the proportion of inserted monitor code, 
the greater the time overhead of the program. Therefore, if we wish to reduce the overhead, we 
should focus on decreasing the amount of the inserted code. 

As SPEC CPU 2006 consists of CPU intensive benchmarks, we also measured the time 
overhead of the I/O intensive program nginx. We used webbench-1.5 [36] to measure the 
processing capacity of nginx under the three different conditions used above. Fig. 10 shows 
the measured results. The ordinate axis is the maximum number of concurrent requests 
without any failures over 30 seconds. The results show that the hypervisor has no significant 
effect on nginx and the processing capacity of nginx decreases by 11.4% because of IDM. The 
overhead of nginx is smaller than that of the 9 benchmarks of SPEC CPU2006, indicating that 
the instrumented code has a greater effect for CPU intensive programs than I/O intensive 
programs. 
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6.2 Effectiveness 
We used 8 real attacks, which are listed in Table 1, to evaluate the effectiveness of IDM at 

defending against non-control-data attacks.  
The first 6 attacks were described in [13] and [14], which can be downloaded directly from 

http://huhong-nus.github.io/advanced-DOP/. The ghttpd is a lightweight web server with a 
stack buffer overflow vulnerability reported in version 1.4.0-1.4.3. The attacker exploits this 
vulnerability to overwrite the argument of execv() and run an arbitrary executable file (e.g., a 
non-root shell). The proftpd server uses OpenSSL for authentication. One stack buffer 
overflow vulnerability can be used to overwrite the address used by a public output function to 
leak private data. The nginx server is a high-performance HTTP server. Attacks exploit one 
buffer overflow vulnerability to overwrite the web root directory string from the configuration 
data to leak the key. The orzhttpd server contains one format string vulnerability that can be 
exploited to overwrite the root directory string stored on the heap to leak random function 
addresses. The sudo program allows attackers to run commands as another user on a Unix-like 
operating system. This attack exploits a format string vulnerability to overwrite the user ID to 
obtain root privileges. The wuftpd is a free FTP server software for Unix-like operating 
systems. The attacker can also exploit one format string vulnerability to achieve privilege 
escalation. We implemented the last 2 attacks using techniques described in [3]. NullHttpd is a 
multithread web server on Linux with a heap overflow vulnerability that can be exploited by 
attackers to overwrite arbitrary words in memory [37]. This attack forces NullHttpd to run 
arbitrary commands by corrupting the CGI-BIN configuration string of this server. SSH is a 
secure shell server implementation from OpenSSH.org and has been reported to have an 
integer overflow vulnerability [38]. This attack exploits the vulnerability of overwriting a 
stack variable called authenticated, defined as a Boolean flag, to 1 to indicate that the user has 
been authenticated, allowing the attacker to log in to the system without being authenticated. 

 
Table 1. Real non-control-data attacks defended against by IDM 

No. Software Memory corruption 
vulnerability Non-control-data attack Detected? False 

positives? 
1 ghttpd stack buffer overflow run arbitrary commands √ × 
2 proftpd stack buffer overflow leak private data √ × 
3 nginx stack buffer overflow leak private data √ × 
4 orzhttpd format string leak random information √ × 
5 sudo format string privilege escalation √ × 
6 wuftpd format string privilege escalation √ × 
7 NullHttpd heap overflow run arbitrary commands √ × 
8 SSH integer overflow bypass authentication √ × 
8 SSH integer overflow bypass authentication √ × 
 
The test results are shown in Table 1. IDM can defeat all these non-control-data attacks, as 

these attacks all operate by modifying certain security-critical non-control data that are 
protected by IDM. The reason is that attackers essentially must corrupt certain security-critical 
non-control data in memory to implement real non-control-data attacks. However, when 
protected by IDM, any corrupted value in memory corresponding to the security-critical 
non-control data will fail to pass through verification, thus blocking the attack. Taking attack 8 
as an example, the Boolean variable authenticated is part of the decision-making data, and 
therefore IDM will instrument the update code after every valid assignment operation to 
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maintain the valid value as ( )( )FVal FTIDom authenticated . When attackers overwrite 

authenticated to 1 by an invalid assignment operation, ( )( )FVal FTIDom authenticated  
remains equal to 0. Hence, the verification code instrumented before authenticated is used to 
decide which branch to execute will detect this invalid modification and abort the target 
program. 

Besides, as Table 1 shows, IDM did not produce any false positives in these tests, which 
proved the high usability of this method. 

7. Limitations and future work 
Although the overhead of IDM is smaller than that of certain other methods such as DFI and 
SoftBound, IDM must still be further optimized to improve its usability. Monitor code inserted 
in loops can introduce large time overheads as they will execute many times. Therefore, 
optimizing the inserted code according to the operating characteristic of one loop is one 
important component of planned future work. Furthermore, current IDM provides 
undifferentiated protection for all variables in SCNS. However, not all variables in SCNS are 
equally important for the target program’s security. The corruption of one variable may cause 
the program to crash (e.g., redirect one data pointer to an invalid memory location), leak 
sensitive information, or escalate privilege, among other possible results. Therefore, we plan 
to analyze these security-critical non-control data more meticulously to divide these data into 
different groups according to the extent of the damage they are prone to do, the likelihood of 
the attack occurring and the abnormal conditions that may result. We will then protect 
different variable groups according to different security requirements to reduce the overhead 
while meeting the security requirements. 

IDM may also produce false negatives. We do not analyze and instrument the source code 
of the dynamic-link library to ensure that our method will be compatible with the legacy code. 
Thus, as described in Section 5.2.2, although IDM limits the possibility of non-control-data 
attacks to a great extent, certain attacks that exploit memory corruption vulnerabilities of the 
dynamic-link library may be missed by our method. When the source code of all dynamic-link 
libraries on which the target program depends is available, we can instrument all libraries to 
deploy IDM to reduce the possibility of the above attacks and treat them as private libraries of 
the target. Although this method can effectively avoid false negatives, it also makes IDM less 
practical. We plan to adopt one intraprocedural analysis method to better solve this problem in 
the future. For one function of a dynamic-link library, we will extract security-critical 
non-control data in its own body and also treat all its data pointer parameters as 
security-critical non-control data, considering that these pointers may point to other 
security-critical non-control data outside the function during the runtime of the target. This 
method can provide higher security than is currently available, and the instrumented 
dynamic-link library can be shared by all protected applications. 

In addition, the SCNS extracted by the current method is relatively complete but not 
absolute. Certain new non-control-data attacks that do not depend on any variable in SCNS 
could be proposed. Therefore, IDM and SCNS will be further improved in future work. 
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8. Conclusion 
We presented the IDM method to defend against non-control-data attacks. The data influence 
domain was first defined by us to describe characteristics of a variable during its life cycle, and 
IDM was designed to enforce these characteristics by extracting SCNS and instrumenting the 
target program. Since most non-control-data attacks must modify certain security-critical 
variables to special values by exploiting memory corruption vulnerabilities, IDM can protect 
the software from these attacks. IDM monitors the influence domains of every security-critical 
variable and prevents any modified value from being used by later instructions to realize attack 
goals. As IDM performs all operations on LLVM IR without modifying the source files and 
does not produce false positives, this approach offers high practicability. In addition, we 
evaluated the efficacy of our implementation, and the results showed that IDM can prevent 
most non-control-data attacks with acceptable overhead. 
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