
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 287
Copyright ⓒ 2018 KSII

A parallel tasks Scheduling heuristic in the

Cloud with multiple attributes

Qin Wang1, Rongtao Hou1, Yongsheng Hao1, Yin Wang2, 3
1School of computer and software, Nanjing University of Information Science & Technology,

 Nanjing, 210044, China
[e-mail: 001392@nuist.edu.cn, 001452@nuist.edu.cn, 002004@nuist.edu.cn]

2 School of public administration, Nanjing University of Information Science & Technology,
 Nanjing, 210044, China

3Chizhou weather bureau, Anhui, China
*Corresponding author: Q.Wang, R. Hou and Y. Hao

Received May 11, 2017; revised July 19, 2017; accepted August 30, 2017;

published January 31, 2018

Abstract

There are two targets to schedule parallel jobs in the Cloud: (1) scheduling the jobs as many as
possible, and (2) reducing the average execution time of the jobs. Most of previous work
mainly focuses on the computing speed of resources without considering other attributes, such
as bandwidth, memory and so on. Especially, past work does not consider the supply-demand
condition from those attributes. Resources have different attributes, considering those
attributes together makes the scheduling problem more difficult. This is the problem that we
try to solve in this paper. First of all, we propose a new parallel job scheduling method based
on a classification method of resources from different attributes, and then a scheduling
method-CPLMT (Cloud parallel scheduling based on the lists of multiple attributes) is
proposed for the parallel tasks. The classification method categories resources into different
kinds according to the number of resources that satisfy the job from different attributes of the
resource, such as the speed of the resource, memory and so on. Different kinds have different
priorities in the scheduling. For the job that belongs to the same kinds, we propose CPLMT to
schedule those jobs. Comparisons between our method, FIFO (First in first out), ASJS
(Adaptive Scoring Job Scheduling), Fair and CMMS (Cloud-Minmin) are executed under
different environments. The simulation results show that our proposed CPLMT not only
reduces the number of unfinished jobs, but also reduces the average execution time.

Keywords: parallel tasks, Cloud resources, multiple attributes, job requirements

http://doi.org/10.3837/tiis.2018.01.014 ISSN : 1976-7277

288 Wang et al.: A parallel tasks Scheduling heuristic in the Cloud with multiple attributes

1. Introduction

Recent researches in Cloud include reliability [1], resource virtualization [2], service
selection [3], energy saving [4], cost analysis [5] and so on. This paper focuses on the
scheduling of parallel tasks in Cloud. The parallel tasks scheduling ensures that the tasks of a
job are assigned to different VMs at the same time and executed synchronous. The parallelism
brings a new challenge and it makes the scheduling more difficult. Y. Hao et al. [6] take the job
with many tasks as a “Gang”, and the parallel scheduling is Gang scheduling. In Cloud, related
tasks of the same job run simultaneously on different VMs (Virtual machines). Usually these
jobs hold all the VMs that have been assigned to until all of the job have been finished.

Maximum throughput and minimum execution time with multiple attributes are the two
most important scheduling of parallel tasks [7]. Much work has been done from different
aspects of the scheduling problem and on different platforms. Y. Wang et al. [8] propose
MOWS (Mixed-Parallel Online Workflow Scheduling) for the scheduling of parallel
workflows in a speed-heterogeneous multi-cluster environment. MOWS divides the entire
scheduling process into four phases: task prioritizing, waiting queue scheduling, task
rearrangement, and task allocation. They propose four methods for the scheduling:
shortest-workflow-first, priority-based backfilling, preemptive task execution and All-EFT
(All-Earliest-Finish-Time) task allocation. J. Xu et al. [9] propose a hierarchical task mapping
strategy, which not only focuses on the task mapping between compute nodes (i.e., inter-node
mapping), but also focuses on the mapping within a node (i.e., intra-node mapping). They
propose a hierarchical task mapping strategy, which performs both internode and intra-node
mapping at the same time. Two mapping algorithms is used in the scheduling: (1) a generic
recursive tree mapping algorithm is used to handle both inter-node mapping and intra-node
mapping; (2) a recursive bipartitioning mapping algorithm is used to efficiently partitions the
compute nodes according to their coordinates. L. Liu et al. [10] propose FDMHSV (Fairness of
Dynamic Multiple Heterogeneous Selection Value) to solve the scheduling of parallel jobs
from two aspects: heterogeneity and fairness. They use HPRV (Heterogeneous Priority Rank
Value) and HSV (Heterogeneous Selection Value) for task ordering and processor assignment
to improve the calculation of computation heterogeneity. At the same time, a fairness policy is
proposed to allow each job to be scheduled with a fair opportunity without blocking and
waiting when a new job arrives. K. Huang et al. [11] propose two task-ranking mechanisms
(bottom rank and top rank) and one task allocation method for the two major steps in list-based
workflow scheduling under a parallel computing platform. The scheduling method pays more
attention to the amount of available resources. Most of the past work focuses on the speed of
the resource. Those methods always schedule resources from the computing speed of resources
without considering the supply-demand of bandwidth, memory and so on. In the Cloud, the
VMs in a Cloud center share the resources including the CPU, memory and the bandwidth, this
makes it more important to consider all the attributes. In the paper, we try to consider different
attributes of the resources and the supply-demand balance between the resources and the job.
Our method considers more attributes that makes the scheduling problem more difficult [7].
Different to the previous work, our work is based on a new classification method of the job
which considers the number of resources that ensures the job can be finished as request. Our
objective is to give a scheduling method to ensure that we can maximize throughput and
minimize the execution time of the job. For those targets, first of all, we category jobs into

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 289

different kinds according to the urgent condition, then we give different orders for different
kinds of jobs, and last, a new scheduling method is proposed based on our classification.

The main contributions of the paper include: (1) we give a detailed analysis of parallel
scheduling in the Cloud; (2) a new classification method for jobs is proposed which takes
account of the requirements to different QoSs (Quality of Services) of jobs and the multiple
attributes of resources at the same time; (3) a scheduling order for different kinds of jobs is
given from the analysis; (4) CPLMT is proposed to solve the problem of parallel tasks
scheduling in the Cloud; (5) simulations on a simulated environment and to a real system are
executed to test the performance of our method.

The rest of the paper is organized as follows: section 2 is the related work, section 3
illustrates the framework of our system and the scheduling method of parallel tasks, section 4
is the simulation and the evaluation, section 5 discusses the paper, section 6 is the conclusion
and the future work.

2. Related Work

Past work on parallel tasks has been executed in different areas including clusters, Grid, multiple
processors. The work also has been executed from different aspects. K. Oh-Heum et al. [12] try to
solve the problem of scheduling independent parallel tasks with individual deadlines. To
maximize the total work performed by the tasks which completes their executions before deadlines,
two polynomial-time approximation algorithms are proposed for nonmalleable parallel tasks and
malleable tasks. H. Ting et al. [13] pay attentions to the problem of scheduling low-priority tasks
onto resources already assigned to high-priority tasks. They formulate the problem as a Markov
Decision Process (MDP) whose solution gives the optimal scheduling policy. At the same time,
they discover structures of the problem in the special case of homogeneous availability patterns
that enable a simple threshold-based policy that is provably optimal. Kurowski et al. [14] propose
a simple on-line scheduling policy and generic advices that reduce the negative impact of advance
reservations on a schedule quality for parallel tasks. They also propose novel data structures and
algorithms for efficient scheduling of advance reservations. Y. Hao [15] et al. try to give a
scheduling method under multi-Cloud environment. Y. Xia [16] et al. propose an approach using
parallelized fusion on multi-sensor transportation data for intelligent transportation systems (ITS).
The system consists of four components, which are sensor data input, bootstrapping rough
conversion, hierarchical evidential fusion, and traffic state output. Their computation intensity is
centered on conversion and fusion components, which can be optimized by the algorithm- and
data-centric parallelization, respectively.

The Cloud environment brings both challenges and opportunities to the parallel tasks
scheduling [13,17]: On the one hand, computing intensive Cloud jobs, such as weather model
computing [18], large-scale graph processing, satellite data processing, and Map-Reduce
applications, often contain tasks with synchronization requirements that needs multiple VMs
(virtual machines). On the other hand, the virtualized Cloud environment allows us to manage
tasks more actively. Sometimes, it is possible to migrate the VMs of interrupted backend tasks to
other available VMs instead of waiting indefinitely. Migration, however, comes at an operational

290 Wang et al.: A parallel tasks Scheduling heuristic in the Cloud with multiple attributes

cost due to the data and VM state transferring. It also needs time and resources support. Due to the
parallelism of the job, the migration of one VM may influence more VMs that the tasks of the
same jobs have been assigned to. Thus, judicious decisions must be made when using migration to
improve the performance of backend tasks. This paper does not take account of migration because
of its complexity in parallel scheduling.

Even there is difficult for the scheduling of parallel tasks in a Cloud, recent researchers have
been done from different aspects. Most of work focuses on the performance of different aspects:
the number of finished jobs, the average execution time, the energy consumption and so on. Most
of times, those targets are conflicting with each other, so, a tradeoff always is used to schedule
those jobs. H. Ting et al. [17] study the problem of scheduling parallel (backend) tasks onto
opportunistically available server resources to focus on the tradeoff between migration and
waiting. Their proposed heuristic scheduling policy based on Whittle’s index that greatly reduces
the complexity of the optimal policy while achieving good performance under a variety of
servers. The target of ASQ (Adaptive Scheduling with QoS Satisfaction algorithm) [23] is to
reduce the cost of parallel tasks in a hybrid Cloud environment. For the economy and the
efficiency reasons, the hybrid Cloud environment should be able to automatically maximize the
utilization rate of the private Cloud and minimize the cost of the public Cloud when users submit
their computing jobs to the environment. For the tasks that have to be dispatched to the public
Cloud, the minimum cost strategy reduces the cost of using public Clouds based on the
requirements of tasks such as memory, hard disk and so on. X. Liu et al. [19] propose a
consolidation-based parallel job scheduling algorithm based on a prioritized two-tier virtual
machines architecture for parallel workload consolidation. The algorithm employs tentative run
and workload consolidation under such a two-tier virtual machines architecture to enhance the
popular FCFS (First Come First Served) algorithm. To schedule parallel scientific Workflows, C.
Coutinho et al. [20] use GraspCC-fed: a Greedy Randomized Adaptive Search Procedure that
estimates costs based on two factors: total workflow execution time and financial cost of the
workflow execution. GraspCC-fed is responsible for determining the best configuration for the
environment before a parallel workflow execution by using provenance information for the
estimations. The scheduling of parallel tasks in the Cloud, most of research either focus on the
speed of resources, or the management of the VMs (virtual machine), and those research is from
the view of the computing speed of resources. OMO [29] is used to improve the makespan of
batch jobs by optimizing the overlap between two active consecutive stages. The basic approach
is to let multiple jobs fairly share the system resource, and then focus on the resource allocation
for consecutive stages in each job. OMO considers dynamic factors at the run time and allocates
the resources based on the dependency of stages in every job. In general, those methods always
based on the attributes of jobs, they try to propose a scheduling method that can meet the
requirement of jobs. Those requirements include: QoS requirement to different aspects, energy
consumption, QoE (Quality of Experience) and so on. They do not consider that the different
attributes of resources always influence the scheduling results.

In conclusion, no matter which platforms, most of the work for the scheduling of parallel tasks
is from the request of the user, such as the deadline, priorities and so on. They do not consider the
supply and demand of the whole system. Especially, most methods do not take account of the
dynamic of the system. One job with a long deadline, with time going, it also can be an urgent job
in the system. Our target is to consider the two aspects at the same time, and decide which job
should be executed first. Based on the number of resources that can ensure the job be finished from

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 291

different aspects, such as memory, hard disk, and CPU, we classify jobs into different kinds, and
schedule them with different orders.

3. Scheduling framework of parallel tasks

3.1 Cloud frameworks and scheduling method

Fig. 1 is the system framework of the Cloud. In Fig. 1, the five tasks of the job 1 are assigned to
different VMs (VM 1~ VM 5) and every job may have different requirements to the resource. And
in this paper, we suppose the task that belongs to the same job has the same requirement and the
task belongs to different jobs has different requirement. Fig. 2 is an example of three jobs.

jend is the total number of jobs. All jobs (jjtemp) are listed in the jobs list jlist:
 jlist={j1, j2, …, jjtemp,…, jjend} (1)

The parallelism of the job jjtemp is pjtemp. In Fig. 2, the parallelisms of job 1, 2 and 3 are 5, 4 and 6,
respectively. The parallelisms of all jobs are listed in plist:

plist={p1, p2, …, pjtemp,…, pjend} (2)

VM 1

Cloud

VM vmnum…VM 5VM 4VM 3VM 2

Task 1 Task 2 Task 3 Task 4

Job 1

…………Task 5

Fig. 1. The Framework of Cloud

Task 1
1.5 GHz
500M

2G
30min

Job 1

Task 4
1.5 GHz
500M

2G
30min

Task 3
1.5 GHz
500M

2G
30min

Task 2
1.5 GHz
500M

2G
30min

Task 1
2.5 GHz
1500M

1G
60min

Job 2

Task 4
1.5 GHz
1500M

1G
60min

Task 3
1.5 GHz
1500M

1G
60min

Task 2
1.5 GHz
1500M

1G
60min

Task 1
2.0 GHz
2000M
1.5G

40min

Job 3

Task 4
2.0 GHz
2000M
1.5G

40min

Task 3
2.0 GHz
2000M
1.5G

40min

Task 2
2.0 GHz
2000M
1.5G

40min

Task 6
2.0 GHz
2000M
1.5G

40min

Task 5
2.0 GHz
2000M
1.5G

40min

Task 5
1.5 GHz
500M

2G
30min

Task
CPU

Harddisk
Memory
Deadline

Fig. 2. Example of three jobs with different
attributes

For the job jjtemp, it has pjtemp tasks:

 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = {𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗1 , 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
2 , … , 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, … , 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑝𝑝𝑝𝑝 } (3)

where 𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.

 The requirements of the task 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑝𝑝𝑝𝑝 about different attributes are:

𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑝𝑝𝑝𝑝 = {𝐻𝐻𝐻𝐻𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑝𝑝𝑝𝑝 ,𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑝𝑝𝑝𝑝 ,𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑝𝑝𝑝𝑝 ,𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑝𝑝𝑝𝑝 } (4)

 𝐻𝐻𝐻𝐻𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑝𝑝𝑝𝑝 ,𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑝𝑝𝑝𝑝 , 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑝𝑝𝑝𝑝 and 𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑝𝑝𝑝𝑝 are the hard disk, memory, bandwidth and
the deadline to the requirement of the resource of the task 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖 .

292 Wang et al.: A parallel tasks Scheduling heuristic in the Cloud with multiple attributes

The total amount of VMs is vend. All the VMs are listed in set Vlist
Vlist ={v1, v2, …, vvtemp, …, vvend} (5)

The attributes of the VM vvtemp are :
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = {𝑉𝑉𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑉𝑉𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣} (6)

 𝑉𝑉𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,and𝑉𝑉𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 are the attributes of the hard disk,
memory, CPU and bandwidth of vvtemp.

In this paper, we suppose that all the resources are space-shared, in other words, a VM only
has one task at a time.

Algorithm 1 is the details of calculating 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑝𝑝𝑝𝑝 .𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜. 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑝𝑝𝑝𝑝 .𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the number of
resources that the load of CPU is more than α when the resource is assigned to the job 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑝𝑝𝑝𝑝 .
The upper limit ratio of the VMs of the processing ability is α , CPUload (Line 3, Algorithm 1)
is the value of the load of the CPU when the task 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑝𝑝𝑝𝑝 is assigned to the VM vvtemp. If the
value is more than α, the value of 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑝𝑝𝑝𝑝 .𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is increased by 1 (Line 5, Algorithm 1).
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑝𝑝𝑝𝑝 .𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 records the number of the resources that cannot give enough processing ability

to the task.

Algorithm 1: CptCPU (Vlist, 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑝𝑝𝑝𝑝)

Input: Vlist, 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑝𝑝𝑝𝑝

Output: 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑝𝑝𝑝𝑝 .𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

1. 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑝𝑝𝑝𝑝 .𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 0;

2.For every VM v∈Vlist
3. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑙𝑙(𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑝𝑝𝑝𝑝 ,𝑣𝑣);
4. If(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≥ α)
5. 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑝𝑝𝑝𝑝 .𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑝𝑝𝑝𝑝 .𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 1;

6. Endif
7. Endfor

In the same way to 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑝𝑝𝑝𝑝 . 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑝𝑝𝑝𝑝 . 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑝𝑝𝑝𝑝 . 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑝𝑝𝑝𝑝 . 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 record the
number of resources that cannot satisfy the job from the views of the memory, bandwidth and
hard disk. They have the same calculation method with 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑝𝑝𝑝𝑝 .𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and they are not been
introduced here. The parameters are used in the calculation of them include:
α, β, γ and ϑ are the upper limit ratios of the number of the resources that satisfy the task in

the aspect of the CPU, memory, bandwidth and hard disk;
CPUload, MEMload, BWload and HDload are the loads of the VM v of the CPU, memory,

bandwidth and hard disk when the task 𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑝𝑝𝑝𝑝 is assigned to the VM v;

l(t, v), m(t, v), n(t, v) and o(t, v) are the loads of the CPU, memory, bandwidth and hard disk
when the task is assigned to the resource.

Different to non-parallel tasks, if there are not enough VMs for the parallel tasks, the whole
parallel job cannot be finished. In Fig. 2, for the job 3, if there are only three VMs for the job,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 293

though they can provide enough hard disk, memory and bandwidth, the job cannot be finished
under this case.

According to the number of resources that can satisfy the job, we classify jobs into two
kinds: ujobs and unjobs. ujobs refers to the job that there is only a few resources can satisfy the
tasks of the job. unjobs refers to the job that most of the resources can satisfy the tasks of the
job. We get the classification from the ratio between the number of resources that can satisfy
all the tasks of the job (numjtemp) and the value of the parallelism of the job (pjtemp). If the value
is more than 𝛫𝛫, the job belongs to unjobs, otherwise, the job belongs to ujobs. 𝛫𝛫 is the upper
limit of the ratio between the resource and the parallelism of the job.

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = �
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢, 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
≤ 𝛫𝛫

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢, 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
> 𝛫𝛫

 (7)

At the same time, we will give other detailed classifications from different aspects.
For the job 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗, 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗. 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗, 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗. 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 and 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗. 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 are the overload

value of the job for the CPU, memory, bandwidth and hard disk. The values of them are the
maximum value of the relative values of the task that belong to the job:

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗. 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = max {𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖 .𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜|𝑖𝑖 ≤ 𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗} (8)
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗. 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = max {𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑖𝑖 .𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜|𝑖𝑖 ≤ 𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗} (9)
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗. 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = max {𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖 .𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜|𝑖𝑖 ≤ 𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗} (10)
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗. 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = max {𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑖𝑖 .𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜|𝑖𝑖 ≤ 𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗} (11)
(i) According to the requirement to the capacity of hard disk of the job
 We can get the number of VMs that cannot provide enough hard disk to the job, and it is

denoted by jjtemp.olHD. If jjtemp.olHD is close to the number of VMs, it means that only a few
VMs can satisfy the job jjtemp. We set a boundary parameter ε to express the upper limit of the
number of resources that the resource can provide enough hard disk. If jjtemp.olHD is more than

vende × , we add jjtemp into ulHD, otherwise, we add the job jjtemp to unulHD. Jobs in ulHD mean
there are enough resources to satisfy those jobs, on the country, jobs in ulHD mean there are
only a few resources can satisfy those jobs.

ulHD={jt|jt∈ jlist ∧ jt.olHD> vende × } (12)
unulHD={ jt|jt∈ jlist ∧ jt.olHD<= vende × } (13)

 ulHD refers to the jobs that there are enough resources can satisfy them, on the contrary,
unulHD means the job only has a few resources can ensure them be completed as the request
of the jobs. In the same way, we can category jobs into different sets according to the
requirements of the memory and the bandwidth. 𝜔𝜔 is the upper limit of the number of
resources that can provide enough memory and 𝜂𝜂 is the upper limit of the number of resources
that can provide enough bandwidth. Formulas 14~15 are the two sets that from the view of the
memory of resources, and Formulas 16~17 are the two sets that from the view of the
bandwidth of resources.

(1) According to the requirement to the memory of the job
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = {𝑗𝑗𝑡𝑡|𝑗𝑗𝑡𝑡∈ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 ∧ 𝑗𝑗𝑡𝑡. 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 > 𝜔𝜔 × 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣} (14)

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = {𝑗𝑗𝑡𝑡|𝑗𝑗𝑡𝑡∈ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 ∧ 𝑗𝑗𝑡𝑡. 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 𝜔𝜔 × 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣} (15)
(2) According to the requirement to the bandwidth of the job

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = {𝑗𝑗𝑡𝑡|𝑗𝑗𝑡𝑡∈ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 ∧ 𝑗𝑗𝑡𝑡. 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 > 𝜂𝜂 × 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣} (16)

294 Wang et al.: A parallel tasks Scheduling heuristic in the Cloud with multiple attributes

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = {𝑗𝑗𝑡𝑡|𝑗𝑗𝑡𝑡∈ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 ∧ 𝑗𝑗𝑡𝑡. 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 𝜂𝜂 × 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣} (17)
From the three kinds of categories, we list the jobs that belong to ulHD, ulMEM and ulBW in

ThreeOL, list the jobs that only belong to two of them in TwoOL, and the jobs that only belong
to one of them in OneOL. Others jobs are listed in OtherL. ThreeOL refers to the jobs only
have a few resources to ensure that they can be finished from three aspects: memory, hard-disk,
CPU. TwoOL and OneOL refer to the jobs only have a few resources ensure them can be
finished from two of the three aspects, or one of the three aspects respectively.

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢∩ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢∩ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (18)
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢∩ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢∩ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) ∪

(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢∩ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢∩ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) ∪ (19)
(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢∩ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢∩ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢∩ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢∩ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)∪
(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢∩ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢∩ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)∪ (20)
(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢∩ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢∩ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)

𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗–𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟–𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇–𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 (21)
In the scheduling, first of all, we schedule ujobs, and then we schedule unjobs. For unjobs,

from above analysis, we know that only a few VMs can meet the requirement of the job in
ThreeOL, so we firstly schedule the jobs in ThreeOL, and then we select the job in TwoOL,
OneOL, and OtherL in sequence. jjtemp.tovload (Formula 22) is the total value of the overload
of different attributes.

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗. 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 + 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗. 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 + 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗. 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 (22)

End

Begin

Scheduling()

Check(All)

0

1

0

Empty(ThreeOL) Length(OtherL)Empty(OneOL)Empty(TwoOL)

Cacluating()

Empty(ujobs) 1 1 1 1

0
0

0
0

Fig. 3. The scheduling order of different sets

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 295

 Fig. 3 is the detailed scheduling order of different sets. “Scheduling()“ is in charge of
scheduling of jobs in the same kind. In the next section, we will give detailed information about
the scheduling. ”Empty(X)“ checks that the set X whether is empty, if it is empty, the function
returns true (1), otherwise, it returns false (0). ”Check(ALL)“ checks whether there are more
jobs can be finished before their deadlines.

If two kinds of jobs require different attributes of resources, such as one is
computation-intensive, another is memory-intensive, and then which have a priority is decided
by: (1) the number of jobs belong to computation-intensive and memory-intensive, and (2)
attributes of those jobs and the resources. From Formulas 10~16, we know that the job belongs
to which kinds not only decided by the attributes of jobs, but also related to the resources. An
example is for computation-intensive jobs, if there are many resources with high processing
ability, there are no problems to execute the job (it belongs to ulHD). So, our method can give
the jobs different orders according to the system load, and give more attention to the attributes
of jobs.

3.2 Enhanced parallel tasks scheduling with multiple attributes in the Cloud

There are two steps in the scheduling: (1) selecting a job; (2) assigning the tasks of the selected
job to different VMs.

Algorithm 2 is the detailed information about selecting job:

Algorithm 2: select job(Vlist, jlist)

Input: minvalue=0;
Output: selectj; /* select the job */
1. For every job jobi in jlist
2. temp=mt(jobi, Vlist);
3. If (temp<minvlue);
4. minvalue= temp;
5. selectj= jobi;
6. Endif
7. Endfor
8. Return(selectj)

 The value of temp is decided by vvtemp and jjtemp. The attributes of jjtemp and the requirements
of vvtemp include processing ability, memory capacity, and hard disk capacity and so on. In
Algorithm 2, we give two rules for the scheduling:

 (1) Minimizing the execution time of the job;
 (2) Giving the job that only has a few resources can satisfy a higher priority.
So, we set

𝑚𝑚𝑚𝑚(𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖,𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉) = max (min (𝑓𝑓(𝑡𝑡,𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉))
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖.𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (23)

Where,
-t is a task of jobi;
-min (𝑓𝑓(𝑡𝑡,𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉) returns a set of the minimum execution times of every task in jobi;

296 Wang et al.: A parallel tasks Scheduling heuristic in the Cloud with multiple attributes

-max (min (𝑓𝑓(𝑡𝑡,𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉) returns the maximum of the execution time of the jobs, the execution
time is decide by the largest execution time of the tasks of the job;

-jobi.tovload is the total overload value of the job, see formula (22).
The second problem is how to assign the task of the job (selectj) to different VMs

(Algorithm 3). First of all, we calculate the minimum execution time of every task; then we
select the maximum value in all the minimum execution time as a standard (lines 1-12); For a
task, if we can find a VM that makes the task can be finished before maxminet and the time is
the most nearest to maxminet, we assign the task to the VM ; if we cannot find enough
resources that satisfy the job, we try to find a VM that makes the execution time most nearest
to the maxminet (but more than maxminet) (lines 13-33).

Algorithm 3: assign (selectj, Vlist)

1. Input: selectj, Vlist;
2. Output: selectpos, selectneg;
3. maxminet=0；
4. For every task t in selectj
5. For every VM V in Vlist
6. Cacluate the execution time (et) of the task t on V;
7. If et< maxminet or maxminet==0
8. maxminet=et;
9. selectj=t;
10. Endif
11. Endfor
12. Endfor
13. minneg=0;
14. selectneg=0;
15. minpos=0;
16. selectpos=0;
17. For every task t in selectj
18. For every VM V in Vlist
19. Cacluate the execution time (et) of the task t on V;
20. If et< maxminet or minneg=0
21. minpos= maxminet-et;
22. selectpos=V;
23. Else
24. minneg=et-maxminet;
25. selectneg=V;
26. Endif
27. Endfor
28. If minpos!=0
29. Assign the task t to selectpos;
30. Else
31. Assign the task t to selectneg;
32. Endif
33. Endfor

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 297

In General, our method- CPLMT (Cloud parallel scheduling based on the lists of multiple
attributes) is proposed for the scheduling of parallel tasks. First of all, we judge that the job
belongs to which kind from different aspects of resources and jobs. Formulas 9~17 judge the
job from CPU, memory, bandwidth and hard disk aspects, and according to those formulas a
new classification method is used in formula 18~21. According to those mentioned
classification methods, jobs which have a lower number of resources (from different aspects)
to satisfy always has a higher priority. After we get the scheduling order of jobs, then how to
select the resources is the next important problem. We select resources to jobs according to
Algorithm 2 and 3. Algorithm 2 and 3 are heuristics and try to consider two aspects at the same
time: minimizing the execution time and saving computing resources.

4. Evaluations

In this Section, we will compare our method (CPLMT) with other methods. Section 4.1 gives a
simulation environment based on Matlab. Section 4.2 gives comparisons from different
aspects. Section 4.3 gives results of different method in Methodological cloud center and we
will give the performance of different methods.

4.1 Simulation environments

In this section, we will introduce the simulation environment and the performance metrics of
simulations in this section.

We give a comparison between our method and FIFO (First in First out) [6, 23], ASJS
(Adaptive Scoring Job Scheduling) [23], Fair [22, 23] and CMMS (Cloud-Minmin) [24]. We
select those methods because:

FIFO is widely used in the Cloud and it is easy to use in a real system;
Fair is used in Cloud and it has been applied in some true Cloud platforms;
ASJS is a scheduling method based on a scoring of different attributes, and our method also

focuses on different attributes, so we also give a comparison between them;
Min-min is widely used in Grid and the past work shows that it has advantages under most

cases. It also has been extended to the Cloud and the simulation also shows that it has a good
performance.

The configuration of the resources is used in our simulations: Windows XP on an Intel Core
(2.66 GHz and 2.66 GHz), with 2048 MB of RAM and 600 GB of hard disk.
 Let us suppose that the system has 120 resources. This is a limitation posed by Amazon
EC2 which allows up to 20 “Regular” and up to 100 “Spot” VMs which can be leased under
certain conditions [6], hence the maximum number of VMs is 120. We run the simulation 50
times. The values in all the figures are the average values.
 When the job jjtemp is assigned to the VM Vtlist ={v1, v2…, vpal}, etc. the task ttemp is assigned
to the VM vtemp, the functions of this paper are defined as follows:

app:ds:environment

298 Wang et al.: A parallel tasks Scheduling heuristic in the Cloud with multiple attributes

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = max𝑡𝑡<𝑝𝑝𝑝𝑝𝑝𝑝(
𝑃𝑃𝑃𝑃𝑡𝑡

𝑃𝑃𝑃𝑃𝑡𝑡×𝛼𝛼
) (24)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = max𝑡𝑡<𝑝𝑝𝑝𝑝𝑝𝑝(
𝑀𝑀𝑀𝑀𝑡𝑡

𝑀𝑀𝑀𝑀𝑡𝑡×𝛽𝛽
) (25)

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = max𝑡𝑡<𝑝𝑝𝑝𝑝𝑝𝑝(
𝐵𝐵𝐵𝐵𝑡𝑡

𝐵𝐵𝐵𝐵𝑡𝑡×𝛾𝛾
) (26)

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = max𝑡𝑡<𝑝𝑝𝑝𝑝𝑝𝑝(
𝐻𝐻𝐻𝐻𝑡𝑡

𝐻𝐻𝐻𝐻𝑡𝑡×𝜗𝜗
) (27)

Where,
pal is the parallelism of the job jjtemp;
Pvlist ={Pv1, Pv2…, Pvpal} is the processing ability of CPUs of different VMs;

 Mvlist ={Mv1, Mv2…, Mvpal} is the capacity of memory of different VMs;
 Bvlist ={Bv1, Bv2…, Bvpal} is the bandwidth of different VMs;
 Hvlist ={Hv1, Hv2…, Hvpal} is the capacity of hard disk of different VMs;
 Pjlist ={Pj1, Pj2…, Pjpal} is the requirement to computing speed of different tasks;
 Mjlist ={Mj1, Mj2…, Mjpal} is the requirement to the memory capacity of different tasks;
 Bjlist ={Bj1, Bj2…, Bjpal} is the requirement to the bandwidth of different tasks;
 Hvlist ={Hj1, Hj2…, Hjpal} is the requirement to the hard disk of different tasks.
Today, because of the cheap of the harddisk and the easy management of harddisk, we do not
consider the requirement to the harddisk.
 We set 1∂ = , 1β = , 1δ = in the simulation. In other words, the VM can give all of its ability to
the task. In fact, the user can set its value as wishes. 0.8ε = , 0.8ω = , 0.8η = , it means that, if
there are more than 80% resources cannot provide enough resources according to a special
QoS, the job will be inserted into an urgent set of the QoS.

Four evaluation parameters are selected in our simulations:
(1) AVE: average execution time, it includes the waiting time and the computing time;
(2) AWT: average waiting time;
(3) UFJ: the number of unfinished jobs;
(4) SIN: the total number of instructions of finished jobs.

Table1. Parameters about Cloud
Attributes VMs Jobs

Memory (G) [1, 5] [1, 5]
Processing ability [1, 6] [5, 45]

Bandwidth (100M/s) [1, 20] [1, 20]
VMs number 120 [1, 6]
Parallelism - [1, 8]

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 299

Fig. 4. The UFJ of different arrival rates

Fig. 5. The reduced rate of UFJ of CPLMT to different methods

Fig. 6. The AWT of different methods

300 Wang et al.: A parallel tasks Scheduling heuristic in the Cloud with multiple attributes

Fig. 7. The AVE of different methods

4.2 Simulation results

The parameters in our simulation are selected as Table 1. They follow uniform probability
distribution. The memory of the VM is changed from 1G to 5 G. The processing ability of
every VM has a range from 1 to 6 (1 is the processing ability of a standard resource). The
bandwidth of every VM is a random number between 1 and 20. The memory and the
bandwidth of every job have the same range with the value of VMs. The number of
instructions of every task has a range of [5, 45] (5 means that a task needs 5 standard time units
to execute it on a standard machine). The deadline of every job is a random integer in [1 6].
 We set 1.5κ = , because if there are not enough resources for the job, the job should be
executed as soon as possible (formula 7). The parallelism of jobs is a random integer number
between 1 and 8. The simulation results are shown in Figs. 4~10. The X-axis denotes the
average arrival rates of parallel jobs. It denotes the average number of jobs that arrive in a
standard time unit.

Fig. 4 is the UFJ of all the five methods. Y-axis is the total number of unfinished jobs. The
values of all the methods have an increasing trend with the increase of the arrival rate, because
the load of the system becomes larger when the arrival rate gets large, no matter which
scheduling method has been selected. CPLMT always has the smallest value of UFJ in all the
methods. Fair and FIFO do not consider the requirement of the future coming jobs, so both of
them have a larger value in UFJ. CMMS always scheduling the fast resource from the
computing speed, so, for the coming jobs, they may have not enough resources to ensure that
they can be finished as request. CPLMT always makes the urgent jobs first in the scheduling,
so it saves resources and ensures finishes more jobs than others.
 Fig. 5 is the reduced ratio of UFJ of CPLMT to all the other methods. Y-axis is the ratio
under different arrival rates. All reduced ratios are more than 5%. To CMMS and ASJS, the
reduced rate keeps dropping as the arrival rate gets larger. The values drop from 50% to 10%.
To FIFO and Fair, the reduced rates get larger before arrival rate is more than 20, and then the
values drop slowly. In all the cases, to CMMS, FIFO, ASJS and Fair, UFJ of CPLMT average
reduces 32.73%, 19.68%, 32% and 14.14% respectively. CPLMT always schedules the
“urgent” job first, so it has the smallest value in UFJ.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 301

 Fig. 6 is the AWT of all the methods and Y-axis is the value of AWT. Totally, all the value
jumps when the arrival ratio becomes larger. ASJS always has the largest value of all the
method. FIFO and Fair are in the middle and FIFO is more than Fair about 0.1 (time unit).
CPLMT and CMMS have the same value basically when the arrival rate is less than 19, and
then the AWT of CPLMT increases quickly than CMMS.
 Fig. 7 is the AVE of all the methods and Y-axis is the value of AVE. The values of AVE of
CMMS, ASJS and FIFO keep steady. Others have an increasing when the arrival rate is
changed larger. ASJS always has the largest value of all the methods and followed by FIFO.
CMMS has the smallest value of AVE of all the methods. Fig. 8 is the reduced ratio of AVE of
CPLMT to different methods. Y-axis is the value of the reduced ratio of AVE under different
arrival rates. To ASJS and FIFO, CPLMT average reduces AVE more than 20% of all the
cases. The value of AVE of CMMS always is less than CPLMT. When the arrival rate is a
lower value, the AVE of Fair is less than CPLMT. Because Fair fits the condition when the
arrival rate is a low value, under this condition, Fair shares more resources to reduce the
execution time. Such as a job with the parallelism is 4, when the arrival rate is a low value, it
can share 8 VMs even 12 VMs, it ensures reducing the execution time; but when the arrival
rate is a high value, it does not work well, because sharing more leads to no enough VMs for
the coming jobs. The AVE of CMMS is always less than the value of CPLMT, so, in the
following paper, we will give more analysis between our method and CMMS.

We add a new parameter to compare CMMS and CPLMT:
 /ratt AVER FJR= (28)

Where,
AVER is the increased ratio of AVE of CPLMT to AVE of CMMS;
FJR is the enhanced ratio of the number of finished jobs of CPLMT to the number of

finished jobs of CMMS.
If the value of ratt is less than 1, it means that, to CMMS, the enhanced ratio of the number

of finished jobs of CPLMT is more than the increased ratio of AVE, so it worth using more
time for the job. Fig. 9 is the value of ratt (Y-axis) under different arrival rates. The values are
less than 1 and it shows the longing execution time is worth in the scheduling. It ensures more
jobs can be finished before their deadline.

Fig. 8. The reduced rate of AVE of CPLMT to different methods

302 Wang et al.: A parallel tasks Scheduling heuristic in the Cloud with multiple attributes

Fig. 9. The value of rrat of different methods

Fig. 10. The SIN of different methods

Fig. 11. The enhanced rate of SIN of CPLMT to different methods

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 303

Fig. 10 is the SIN of all the methods and Y-axis is the value of SIN. All the values of

different methods drop gradually with the increasing of the arrival rate. CPLMT always has
the largest value in all the five methods, and followed by Fair and FIFO. CMMS and Fair
always have the smallest values in the five methods. Fig. 11 is the enhanced ratio (Y-axis) of
SIN of CPLMT to other methods. All the values are more than 1.5% in Fig. 10. To the value of
SIN of CMMS, FIFO, ASJS and Fair, SIN of CPLMT average enhances 8.91%, 3.81%, 8.17%
and 2.97% respectively.

CPLMT performances well in parallel scheduling because: (1) it takes account of the
requirement of tasks; (2) it takes account of the attributes of the VM; (3) the job with only a
few VMs can satisfy are scheduled first; (4) the job with shorter execution time be scheduled
first. CPLMT has the lowest value in UFJ and the highest value in SIN; it also has the relative
good performance in other parameters. FIFO does not take account of the details of the VMs
and the job, so it has a higher value in AVE and AWT in the simulation. Fair scheduler in
parallel scheduling works well when the workload of the system is in a low level, when the
workload becomes larger, it does not show good performance as expectation. ASJS always
tries to find the best resource, so it always longs the waiting time and it also brings the wasting
of the resource, so that it leads to the increasing of AWT, AVE and UFJ. The target of CMMS
is to short the execution time, so it has the shortest execution of all the methods; but at the
same time, CMMS also has the lowest value in SIN and UFJ.

4.3 Analysis results in a methodological Cloud computing center

Methodological computing [18, 28] is a very important area in parallel computing. The target
of our methodological computing center is to provide resources for the methodological
computing for the teachers and students in our university [18]. There are many large jobs in the
system and most of jobs need much time. The system is built by blade servers and blade
servers are connected by a high bandwidth network. From the log of the methodological
computing center, we know that:
(1) The input file size has a range from 1G to 20G.
(2) The bandwidth of the resource is changed from 1G/s to 10 G/s.
(3) The system can provide 24 cores CPU (maximum for students) or 48 cores CPU

(maximum for teachers). So, the processing ability of every node is defined as 24 SP
(standard machine: meaning the processing ability of a standard in a standard time unit) or
48 SP.

(4) The instruction number, the deadline and the parallelism of the job is a random in [24,
240], [1, 6] and [1, 8] respectively.

(5) Now, the load of the system is low and the average arrival rate is about 40 jobs per. time
unit (day).

(6) The system can provide 120 computing nodes totally.
 Most of time, the user knows that the system whether satisfies the memory of the program,
so in the simulation, we also suppose the system can support enough memory for every user.
We get the result of different methods when the number of jobs gets 10000.

app:ds:blade
app:ds:server

304 Wang et al.: A parallel tasks Scheduling heuristic in the Cloud with multiple attributes

Table 2. Simulation on Methodological Cloud
 CMMS FIFO ASJS Fair CPLMT

UFJ 3908 3096 3868 3073 2904
AWT 0.2674 0.6990 1.7414 0.7036 0.1807
AVE 3.2606 4.8396 4.6626 3.0218 3.2571

SIN(e+05) 6.6135 7.9834 6.6937 8.0382 8.1211

 Table 2 Is the result of our simulation. CPLMT has the lowest value in UFJ, AWT and SIN,
at the same time, CPLMT has a middle value in AVE. So, CPLMT ensures that most of the
jobs being finished and keeps the execution time with a relatively low value. Because the
system has a low load value, so Fair also has a good performance (as in the section 4.2, Fair
will lose its advantage when the system load becomes larger).

5. Discussion

Q. Kalim et al. [25] also give the classifications of CPU-intensive jobs, Memory-intensive
jobs, I/O-intensive jobs and mixed jobs. They give the classifications method which is based
on the number of instructions of different operators. A task is classified as a CPU intensive
task, if the job contains arithmetic operators like addition, subtraction, multiplication, and
division more than 40%. For memory intensive jobs, assignment operators like equal and
comparison operators are determined. If these operators occur more than 40% in the incoming
task, then the job is classified as a memory intensive task. Furthermore, files read and write
operations are counted. If the job contains more than 40% file read and write operations, then
the job is classified as an I/O-intensive task. The job is classified as a mixed task, if it does not
belong to any of the above mentioned categories. Those definitions are good for non-parallel
jobs. It works but not very well for parallel tasks because of the parallelism of the job. Those
definitions are not related to the resource. An example is a system where every resource has
high processing ability; even a CPU-intensive job has no problems in the scheduling. If there is
only one I/O-intensive task, the I/O-intensive tasks also have no problem in the read and write
operations of the file. So the job needs not to be scheduled first. In this paper, taking account of
the resources that can be used by the parallel tasks, we classify jobs into different kinds
according to the requirement of the jobs and the QoS of VMs. In our method, a job is a
CPU-intensive job (the job belongs to the set ujobs, see section 3) only when the number of the
VMs that can satisfy the parallel tasks of a job is less than a specific ratio of the total number of
VMs. Our method pays more attention to the number of VMs that ensure the job can be
finished under the request of different attributes. Our method categories jobs into different
kinds of urgent jobs according to the supply-demand of different attributes, this makes us more
easy to decide the right scheduling order of resources. At the same time, we also consider the
how to select the right resources to save wasting resource in the scheduling.

In the paper, we examine the requirements of the task include: hard-disk, memory, CPU and
bandwidth. In a true system, we can consider some of them or add some other attributes in the
scheduling. With the help of the classification, we schedule some jobs first, which only has a
few resources can execute them as the request of the job. In this way, we try to finished more
jobs. We also hope we can reduce the waiting time of finished jobs; this is the other targets of
our scheduling method.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 305

6. Conclusions and future work

This paper proposes a new scheduling method for parallel tasks based on the classification
according to the attributes of the resource and the requirement of the job. Jobs are inserted to
different sets according to different classification standard. Different sets have different
priorities in the scheduling. Simulations from different aspects are executed to test the
performance of our method. The simulation results show that our method can finish more jobs
than others and at the same time, it also keeps the execution time in a lower value than others.

 In the future work, we hope we can consider both performance and energy consumption at
the same time [26, 27]. Energy consumption has become a hot topic in the Cloud. We hope we
can find scheduling method has good performance both for the user and in the energy
consumption. Job migration brings challenge in Cloud, especially for the parallel scheduling,
because a migration of a task influences the task belonging to the same job. We also hope that
migration can help the parallel scheduling in the big data processing platform [29] or under
multi-Cloud environment [30]. This is the other problem that we try to research in the future.

Acknowledgments

The work was partly supported by the National Natural Science Foundation of China (NSF)
under grant (NO. 41475089, NO. 71673145) , and Open Fund Project (No. NSS1403) of State
International S&T Cooperation Base of Networked Supporting Software, Jiangxi Normal
University. Thanks to Dr. Yongsheng Hao (yongshenghao@yahoo.com), who helps me to
improve the paper in different aspects.

References

[1] X. Qiu, Y. Dai, Y. Xiang, and L. Xing, “A hierarchical correlation model for evaluating reliability,
performance, and power consumption of a cloud service,” IEEE Transactions on Systems Man &
Cybernetics Systems, Vol. 46, No.3, pp. 401-412, 2016. Article (CrossRef Link).

[2] C. Liuhua, S. Patel, S. Haiying and Z. Zhongyi, “Profiling and Understanding Virtualization
Overhead in Cloud,” in Proc. Parallel Processing (ICPP), 2015 44th International Conference on,
Beijing, pp. 31-40, 2015. Article (CrossRef Link).

[3] A. Goscinski, and M. Brock, “Toward dynamic and attribute based publication, discovery and
selection for Cloud computing,” Future Generation Computer Systems, Vol.26, No.7, pp. 947-970,
2010. Article (CrossRef Link).

[4] W. Wang, Y. Jiang, W. Wu, “Multiagent-Based Resource Allocation for Energy Minimization in
Cloud Computing Systems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
Vol.47, No.2, pp. 205-220, 2017. Article (CrossRef Link).

[5] E. Filiopoulou, P. Mitropoulou, A. Tsadimas, C. Michalakelis, M. Nikolaidou and D.
Anagnostopoulos, “Integrating cost analysis in the cloud: A SoS approach,” in Proc. Innovations
in Information Technology (IIT), 2015 11th International Conference on Dubai, pp. 278-283, 2015.
Article (CrossRef Link).

[6] Y. Hao, G. Liu, R. Hou, Y. Zhu, J. Lu, “Performance Analysis of Gang Scheduling in a Grid,”
Journal of the Network and Systems Management, Vol. 23, No. 3, pp. 650-672, July 2015.
Article (CrossRef Link).

[7] J. Paudel, J. N. Amaral, “Hybrid parallel task placement in irregular applications,” The Journal of
Parallel & Distributed Computing, Vol. 76, 94-105, 2014. Article (CrossRef Link).\

http://dx.doi.org/10.1109/TSMC.2015.2452898
http://dx.doi.org/10.1109/ICPP.2015.12
http://dx.doi.org/10.1016/j.future.2010.03.009
http://dx.doi.org/10.1109/TSMC.2016.2523910
http://dx.doi.org/10.1109/INNOVATIONS.2015.7381554
http://dx.doi.org/10.1007/s10922-014-9312-x
http://dx.doi.org/10.1016/j.jpdc.2014.09.014

306 Wang et al.: A parallel tasks Scheduling heuristic in the Cloud with multiple attributes

[8] W. Yi-Rong, H. Kuo-Chan, W. Feng-Jian, “Scheduling online mixed-parallel workflows of rigid
tasks in heterogeneous multi-cluster environments,” Future Generation Computer Systems,
Volume 60, pp. 35-47, 2016. Article (CrossRef Link).

[9] W. Jingjin, X. Xuanxing, L. Zhiling, “Hierarchical task mapping for parallel applications on
supercomputers,” The Journal of supercomputing, Vol. 71, pp. 1776–1802, 2015.
Article (CrossRef Link).

[10] L. Liu, G. Xie, L. Yang and R. Li, “Schedule Dynamic Multiple Parallel Jobs with
Precedence-Constrained Tasks on Heterogeneous Distributed Computing Systems,” in Proc.
Parallel and Distributed Computing (ISPDC), 2015 14th International Symposium on Limassol,
pp. 130-137, 2015. Article (CrossRef Link).

[11] H. Kuo-Chan, T.Ying-Lin, L.Hsiao-Ching, “Task ranking and allocation in list-based workflow
scheduling on parallel computing platform,” The Journal of Supercomputing, Vol. 71, No.1, pp.
217–240, 2015. Article (CrossRef Link).

[12] K. Oh-Heum, C. Kyung-Yong, “Scheduling parallel tasks with individual deadlines,” Theoretical
Computer Science, Vol. 215, No.1–2, pp. 209-223, 1999. Article (CrossRef Link).

[13] T. He, S. Chen, H. Kim, L. Tong, KW. Lee, “Scheduling Parallel Tasks onto Opportunistically
Available Cloud Resources,” in Proc. 15st IEEE International Conference on Cloud Computing,
2012. Article (CrossRef Link).

[14] K. Kurowski, , A. Oleksiak, W. Piątek, J Węglarz, “Hierarchical scheduling strategies for parallel
tasks and advance reservations in grids,” Journal of Scheduling, Vol. 16, No. 4, pp. 349-368, 2011.
Article (CrossRef Link).

[15] Y. Hao, M. Xia, N. Wen, “Parallel task scheduling under multi-Clouds,” Ksii Transactions on
Internet & Information Systems, Vol. 11, No. 1, 2017. Article (CrossRef Link).

[16] Y. Xia, X. Li, Z. Shan, “Parallelized Fusion on Multisensor Transportation Data: A Case Study in
CyberITS,” International Journal of Intelligent Systems, Vol. 28, No. 6, pp. 540-564, 2013.
Article (CrossRef Link).

[17] H.Ting，C. Shiyao, H. Kim, L. Tong, “To Migrate or to Wait: Bandwidth-Latency Tradeoff In
Opportunistic Scheduling of Parallel Tasks,” in Proc. 31st Annual IEEE International Conference
on Computer Communications: Mini-Conference, 2012. Article (CrossRef Link).

[18] Y. Hao, L. Wang, M. Zheng, “An adaptive algorithm for scheduling parallel jobs in meteorological
Cloud,” Knowledge-Based Systems, Vol. 98, pp. 226-240, 2016. Article (CrossRef Link).

[19] L.Xiaocheng, Z. Yabing, Y. Quanjun, P. Yong , Q. Long, “Scheduling parallel jobs with tentative
runs and consolidation in the cloud,” Journal of Systems and Software, Vol. 104, pp. 141-151,
2015. Article (CrossRef Link).

[20] Rafaelli de C. Coutinho, Lúcia M.A. Drummond, Yuri Frota, Daniel de Oliveira, “Optimizing
virtual machine allocation for parallel scientific workflows in federated clouds,” Future
Generation Computer Systems, Vol. 46, pp. 51-68, 2015. Article (CrossRef Link).

[21] R. S. Chang, C.-Y. Lin, and et al, “An Adaptive Scoring Job Scheduling algorithm for grid
computing,” Information Sciences, Vol. 207, p. 79-89, 2012. Article (CrossRef Link).

[22] Hadoop fair scheduler, http://hadoop.apache.org/common/docs/r0.20.1/fair_scheduler.html.
Article (CrossRef Link).

[23] W. Wang, Y. Chang, and et al, “Adaptive scheduling for parallel tasks with QoS satisfaction for
hybrid Cloud environments,” The Journal of Supercomputing, Vol. 66, No. 2, pp. 783-811, 2013.
Article (CrossRef Link).

[24] L. Jiayin, Q. Meikang, Mi. Zhong, Q. Gang, Q. Xiao, G. Zonghua, “Online optimization for
scheduling preemptable tasks on IaaS Cloud systems,” Journal of Parallel and Distributed
Computing, Vol. 72, No. 5, pp. 666-677, 2012. Article (CrossRef Link).

[25] Q. Kalim, M. Babar, H. K. Jawad and A. M. Sajjad, “Task partitioning, scheduling and load
balancing strategy for mixed nature of tasks,” The Journal of Supercomputing, Vol. 59, No. 3, pp.
1348-1359, 2012. Article (CrossRef Link).

[26] Z. Longxin, L. Kenli, X. Yuming, M. Jing, Z. Fan, L. Keqin, “Maximizing reliability with energy
conservation for parallel task scheduling in a heterogeneous cluster,” Information Sciences, Vol.
319, pp. 113-131, 2015. Article (CrossRef Link).

http://dx.doi.org/10.1016/j.future.2016.01.013
http://dx.doi.org/10.1007/s11227-014-1324-5
http://dx.doi.org/10.1109/ISPDC.2015.22
http://dx.doi.org/10.1007/s11227-014-1294-7
http://dx.doi.org/10.1016/S0304-3975(97)00178-3
http://dx.doi.org/10.1109/CLOUD.2012.15
http://dx.doi.org/10.1007/s10951-011-0254-9
http://dx.doi.org/10.3837/tiis.2017.01.003
http://dx.doi.org/10.1002/int.21592
http://dx.doi.org/10.1109/INFCOM.2012.6195718
http://dx.doi.org/10.1016/j.knosys.2016.01.038
http://dx.doi.org/10.1016/j.jss.2015.03.007
http://dx.doi.org/10.1016/j.future.2014.10.009
http://dx.doi.org/10.1016/j.ins.2012.04.019
http://hadoop.apache.org/common/docs/r0.20.1/%20fair_scheduler.html
http://dx.doi.org/10.1007/s11227-013-0890-2
http://dx.doi.org/10.1016/j.jpdc.2012.02.002
http://rproxy.nuist.edu.cn:2013/content/?Author=Kalim+Qureshi
http://rproxy.nuist.edu.cn:2013/content/?Author=Babar+Majeed
http://rproxy.nuist.edu.cn:2013/content/?Author=Jawad+Haider+Kazmi
http://rproxy.nuist.edu.cn:2013/content/?Author=Sajjad+Ahmed+Madani
http://rproxy.nuist.edu.cn:2013/content/g2xk5n267j6u3j23/
http://rproxy.nuist.edu.cn:2013/content/g2xk5n267j6u3j23/
http://rproxy.nuist.edu.cn:2013/content/0920-8542/
http://dx.doi.org/10.1007/s11227-010-0539-3
http://dx.doi.org/10.1016/j.ins.2015.02.023

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 1, January 2018 307

[27] Y. Xia, M. Zhou, X. Luo, S. Pang and Q. Zhu, “A Stochastic Approach to Analysis of
Energy-Aware DVS-Enabled Cloud Datacenters,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, Vol. 45, No. 1, pp. 73-83, 2015. Article (CrossRef Link).

[28] Y. Xia, T. Zhang T, S. Wang, “A Generic Methodological Framework for Cyber-ITS: Using
Cyber-infrastructure in ITS Data Analysis Cases,” IOS Press, 2014. Article (CrossRef Link).

[29] W. Jiayin, “Building Efficient Large-Scale Big Data Processing Platforms,” Graduate Doctoral
Dissertations, 2017. Article (CrossRef Link).

[30] Y. Hao, M. Xia, N. Wen, R. Hou, H. Deng, L. Wang, Q. Wang, “Parallel task scheduling under
multi-Clouds,” KSII Transactions on Internet and Information Systems, Vol. 11, No.1, pp. 39-60,
2017. Article (CrossRef Link).

Qin Wang received his MS Degree of Engineering from Nanjing normal university in 2005.
Now, he is an engineer of Information management department, Nanjing University of
Information Science & Technology. His current research interests mainly focus on the
resource scheduling on different platforms.

Rongtao Hou received his PHD Degree of Computer science from Northeastern University
in 2001. Now, he is a professor of School of computer and software, Nanjing University of
Information Science & Technology. His current research interests include distributed and
parallel computing, mobile computing, weather forecast model and so on.

Yongsheng Hao received his MS Degree of Engineering from Qingdao University in 2008.
Now, he is an engineer of Information management department, Nanjing University of
Information Science & Technology. His current research interests include distributed and
parallel computing, mobile computing, Grid computing, web Service, particle swarm
optimization algorithm and genetic algorithm. He has published more than 20 papers in
international conferences and journals.

Yin Wang received his MS Degree of Engineering from Anhui University in 2003. Now, he
is an engineer of Chizhou weather bureau, and a student of Nanjing University of Information
Science & Technology. His current research interests mainly focus on the resource scheduling
on different platforms.

http://dx.doi.org/10.1109/TSMC.2014.2331022
http://dx.doi.org/10.3233/FI-2014-1061
http://scholarworks.umb.edu/doctoral_dissertations/348
http://dx.doi.org/10.3837/tiis.2017.01.003

