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Abstract 
 

With the rise in popularity of photographic and video cameras, an increasing number of fields are now 
using thermal imaging cameras. One such application is in the diagnosis of breast cancer, as thermal 
imaging provides a low-cost and noninvasive method. Thermal imaging is particularly safe for pregnant 
women, and those with large, dense, or sensitive breasts. In addition, excessive doses of radiation, 
which may be used in traditional methods of breast cancer detection, can increase the risk of cancer. 
This paper presents one method of breast cancer detection. Breast images were taken using a thermal 
camera, with preliminary experiments conducted on Cambodian women. Then the experimental results 
were analyzed and compared using Shannon entropy and logistic regression. 
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1. Introduction 

Breast cancer is one of the more prolific types of cancer, with a high incidence and mortality 
rate [1] [2], accounting for approximately 25% of cancers in women worldwide [3]. According 
to 2012 data from the United Kingdom, for stage 1 through stage 3 breast cancer, the 1-year 
survival rate is more than 97%, and for stage 4, the rate is 71% [4]. Moreover, patients’ 5-year 
survival rate plummets from 99% in those detected with stage 1 cancer to 15% in those 
detected with stage 4 cancer [4].  

The variation in prognosis and survival rates of breast cancer patients is highly dependent 
upon early detection of this disease [5, 6]. Various diagnosis methods have been developed to 
detect breast cancer in the early stages. For example, the breast self-examination method 
requires participants to check for lumps in the breasts by palpating the breast tissue. It is not 
only a low-cost method, but also no risk of excessive radiation exposure; however, the 
accuracy is typically lower than that of other methods, which can lead to increased healthcare 
costs [5, 7]. Screening for breast cancer using mammography, which magnifies particular parts 
of the breasts using low-energy X-rays, is another diagnostic method that decreases mortality 
rates and allows diagnosis of early stage breast cancer. While the compression can cause 
discomfort or pressure, it should be painful for most women [6]. Ultrasonography is relatively 
inexpensive and does not expose participants to ionizing radiation; however, it typically does 
not effectively detect calcifications [8]. Magnetic resonance imaging (MRI) can also be used 
to detect breast cancer tumors, but the overall costs are considerably high for both the 
equipment and maintenance [9]. Therefore, new methods are required to safely diagnose 
breast cancer at a low cost. 

Recently, there has been considerable interest in small low-cost thermal cameras, 
particularly because they can be utilized for medical research with the development of more 
advanced sensor technology and image processing techniques [10]. Moreover, current 
advances in smartphone technology allows users to easily obtain thermal images, and 
advances in thermal cameras present the possibility of  breast cancer diagnosis using mobile 
devices [11]. Furthermore, pregnant women can be diagnosed without exposure to radiation. 
However, due to the complexity of thermal breast cancer images, it is difficult to analyze and 
diagnose these images reliably. 

Numerous studies [12–15] using thermal images for breast cancer detection have verified 
the feasibility of this technique. In [12] and [13], thermal images were analyzed with statistical 
features, and were classified using the support vector machine (SVM) and fuzzy algorithms, 
respectively. In [14], wavelet transformation was used to decompose thermal images to detect 
tumors. From this, principal component analysis (PCA) was used to compact the features. 
Finally, an artificial neural network (ANN) was used to classify normal and abnormal images. 
The authors used high-resolution thermal images and achieved an accuracy of 90.48%, but 
image data were not classified with clinical decision. In [15], breast regions were obtained 
from thermal images using the Hough transform algorithm, after which histogram and 
co-occurrence features were extracted to analyze the distribution of images. The authors used 
ANN to classify normal and abnormal images with an accuracy rate of 96.12%. However, 
these methods have not been verified against clinical data; therefore, they can only be used as 
diagnostic aids to help clinicians. In addition, more expensive cameras are needed to provide 
high-resolution images.   
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In this paper, the red, green and blue (RGB) histograms and co-occurrence feature vectors 
were estimated from thermal images using ANN. In addition, this method was compared 
between the left and right breast, using discrete wavelet transform (DWT) with Shannon 
entropy. The remainder of the paper is organized as follows. In Section 2, the preprocessing of 
thermal images is described, in which breast regions were extracted while eliminating the 
background. Section 3 describes the methods of histogram analysis, and its features, as well as 
a co-occurrence matrix, entropies with wavelet transform, and RGB channels. In Section 4, 
experiments are presented. Finally, Section 5 discusses and concludes the paper. 

2. Preprocessing of thermal images 
Fig. 1 shows thermal images obtained from FLIR A320 [16] and iPhone FLIR One [17] using 
different resolutions. In general, thermal images obtained from healthy subjects had a uniform 
distribution of heat, whereas those obtained from unhealthy patients had a relatively uneven 
distribution [18]. 

 

2.1 Background Elimination 
The typical background temperature greatly differs from that of the human body. Therefore, 
the background in thermal images should be removed to focus on the regions of interest (ROI). 
Fig. 2 shows a flow chart of the background elimination method. First, the red channel was 
extracted from the images. Then, Gaussian filter was used to draw edges from images using a 
Canny edge detector. Finally, the Hough transform was used to reinforce this calculated edge. 
Fig. 3 shows each RGB channel of a thermal image. The red channel was selected to eliminate 
the background as it provided the best results of Canny edge algorithm among all of the 
channels. Fig. 4 shows a comparison of detected contours when the Gaussian filter was both 

   
(a)                                              (b) 

   

(c)                                              (d) 

Fig. 1. Thermal images obtained from (a) (b) FLIR A320 and (c) (d) FLIR One.  
(a) a healthy, (b) a patient, (c) a helathy, (d) a patient 
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applied and not applied. Finally, Fig. 5 shows a final foreground image after eliminating 
background. 

 

 
 

       
(a)                                            (b)                                            (c) 

Fig. 3. RGB channels of a thermal image. (a) red channel, (b) green channel, (c) blue channel 

  
(a) (b) 

 

   
(c) (d) (e) 

Fig. 4. Contour detection from red channel using a Gaussian filter, a Canny edge algorithm and 
Hough transform. (a) red channel where the Gaussian filter was not applied, (b) detected contour, (c) 
red channel where the Gaussian filter was applied; (d) detected contour, (e) strengthened contour 

   

 
Fig. 2. Flow chart of background elimination 

Red channel Gaussian filter Canny edge 
algorithm

Hough 
transform

Background 
elimination
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2.2 Region of Interest Identification 
Fig. 6 shows a flow chart of auto ROI detection. Images were separated into three bands (red, 
green, and blue) and transformed into gray scale. Then, auto ROI detection was conducted and 
estimated four times by each channel. 
 

 
After a single channel was extracted, the edge was drawn using the Gaussian filter and the 

canny edge algorithm. Finally, two circles were extracted using the Hough transform. Fig. 7  
shows an example of the difference between a Gaussian filter and no filter applied. With no 
filter applied, ROIs were extracted at the wrong position, while ROIs were extracted at the 
correct position using a Gaussian filer. Two parameters were set to improve the ROI detection 
rate: the radius for the Hough transform and the distance between the circles. The radius for 
the Hough transform parameters were set by the Euclidian distance, ranging from 100 to 200 
pixels in a thermal image. In addition, the minimum Euclidian distance between the left and 
right centroid circles was set to 50 pixels. 

Extract each 
channel Gaussian filter Canny edge 

algorithm
Hough 

transform
Auto ROI 
detection

 
Fig. 6.  Flow chart of ROI detection  

              
                    (a)                                                       (b) 

Fig. 5.  Foreground images after eliminating background.  
(a) an original image; (b) a foreground image 
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3. Feature extraction and analysis 
Fig. 8  shows histograms of a healthy subject and a patient. The histogram shows the 
frequency of pixels in the ROI (i.e., the probability distribution function in the intensity of the 
images). Twelve color features were used for classification including mean, variance, 
skewness, and kurtosis of each RGB channel. However, breasts that are not cancerous could 
have a higher temperature in certain areas (e.g., because of menstrual period or other diseases). 
Fig. 9  shows the vertical co-occurrence matrixes of thermal images from a healthy subject and 
a patient. Both distributions of the co-occurrence matrix had a linear shape, and minute 
fluctuation among pixels could be estimated from the co-occurrence matrices. Twenty features, 
including energy, entropy, contrast, homogeneity and correlation of horizontal, vertical, 
diagonal, and anti-diagonal directions from gray channel, were used for classification. 

 
(a) 

 
(b) 

Fig. 7.  Comparison when a Gaussian filter is not applied (a) and is applied (b) 
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3.1 Wavelet Transform 
Color-based features (RGB channels) cannot be exploited to analyze spatial and frequency 
characteristics. Thus, Wavelet Transforms have been used to analyze both the spatial and 
frequency domain of one-dimensional signal and two-dimensional images [19]. In this paper, 
a DWT was applied when extracting features from breast images. Four sub-bands were 
obtained from one level of DWT. The Low-Low (LL) sub-band was a coarse approximation of 
the source image, and Low-High (LH), High-Low (HL), and High-High (HH) sub-bands were 
detail coefficients that included horizontal, vertical, and diagonal details, respectively. LH, HL, 
and HH sub-bands of breast images were obtained as features, and their Shannon entropies 
were calculated. Fig. 10 shows the decomposed sub-bands of the breast cancer image. 
 

              
(a)                                                                  (b) 

Fig. 8.  Comparison of histogram between healthy subject and a patient.  
(a) healthy subject; (b) patient 

              
           (a)                                                                 (b) 

Fig. 9.  Comparison of vertical co-occurrence matrixes between a healthy subject and a patient. 
 (a)  a healthy subject; (b) a patient 
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3.2 Shannon Entropy 
To compare uncertainties between left and right breasts, dominant features should be chosen. 
Shannon entropy [20] was used to analyze the complexity of an image. In this paper, Shannon 
entropy was used as a feature to compare the left and right breasts. Shannon entropy was 
estimated as follows: 
 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  −�𝑝 log2
𝑝
𝑞 , (10)   

 

where p and q represent the distribution of pixels and maximum entropy, respectively. 
Shannon entropies were obtained from RGB and gray channels, and of HL, LH, and HH bands 
decomposed by DWT.  

Table 1 shows the experimental results of entropies estimated by the green and gray 
channels of images obtained from two healthy subjects and one patient. In the case of the 
patient, the difference in the green channel was 0.23, which was larger than that of the gray 
channel (0.12). Thus, the green channel was determined to be the most suitable channel among 
the RGB and gray channels. 
 

Table 1. Results of estimating entropy from green and gray channels 

Subject 
Entropy 

Note Green channel Gray channel 
Left Right Left Right 

Patient 0.85 0.62 0.86 0.74 Right breast cancer 
Healthy subject 1 0.8 0.8 0.8 0.78  
Healthy subject 2 0.83 0.82 0.81 0.82  

 
Table 2 shows the experimental results of entropies calculated by HL, LH, HH bands 

decomposed using DWT obtained images from two healthy subjects and one patient. All of the 
wavelet bands were used as a classification feature due to the non-existence of a dominant 
sub-band. 

 

   
(a)                        (b) 

   
 (c)                          (d) 

 
Fig. 10. Decomposition of a breast cancer image. (a) LL, (b) LH, (c) HL, (d) HH 
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Table 2. Results of estimating entropy from wavelet bands 

Subject 
Entropy 

Note HL LH HH 
Left Right Left Right Left Right 

Patient 0.31 0.52 0.32 0.56 0.32 0.42 Right breast 
cancer 

Healthy subject 1 0.51 0.49 0.52 0.47 0.39 0.41  
Healthy subject 2 0.44 0.41 0.36 0.46 0.56 0.38  

4. Experimental Results 

4.1 Experiments 
In this paper, 250 thermal images were collected from one female patient and 125 healthy 
subjects with ages ranging from 16 to 67. As shown in Fig. 11, the thermal images were 
captured at 320 × 240 (FLIR A320) and 80 × 60 (FLIR One) pixel resolutions. All subjects 
were instructed to capture images twice with arms raised and lowered. Matlab and OpenCV 
Library were used for analyzing these data. 

4.2 Results 
Table 3 shows the ROI detection rate estimated from red, green, blue and gray channels of 

images captured by FLIR A320 and FLIR One. The ROI detection result of the green channel 
was the highest rate at 84.55% (FLIR A320) and 77.6% (FLIR One). Therefore, the green 
channel was used to extract further ROI. 

 

  
(a) 

             
           (b)                                                                 (c) 

Fig. 11. Experimental setup. (a)  overall, (b) front, (c) back 
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Table 3. ROI detection rate from red, green, blue and gray channels 

Device 
ROI detection Rate (%) 

Red channel Green channel Blue channel Gray channel 
FLIR A320 56.09 84.55 79.67 77.23 
FLIR One 65.6 77.6 68 65.6 

 
Table 4 shows the ROI detection rate estimated from images that are applied a Gaussian 

filter. The result shows that the accuracy of filtered images was larger than that of the non 
filtered images. Thus, the Gaussian filter was applied to the images for ROI detection.. 

 
Table 4. ROI detection rate from images applied a Gaussian filter 

Device 
ROI detection Rate (%) 

No filter Gaussian filter 
FLIR A320 77.24 84.55 
FLIR One 71.2 77.6 

 

Fig. 12 shows the distribution of entropies estimated by the green channel. The red dot and 
empty dot represent entropies of a patient and healthy subjects, respectively. Entropies of the 
left and right breasts of a patient, who had breast cancer in the right breast, were 0.85 and 0.62, 
respectively. A proportion of the entropies were 0.73, while an average proportion of entropies 
of healthy subjects was 0.96. A patient who has breast cancer can be separated from others as 
shown in Fig. 12. 

 
Fig. 12. Entropy distribution from a green channel 
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Fig. 13 shows the distribution of entropies in the left and right breast, as estimated with 
DWT. The black diamond and empty diamond represent the entropy proportions of a patient 
and healthy subjects, respectively. Red and yellow diamonds represent a breast cancer patient 
whose arm was raised and dropped, respectively. Entropy proportions between the left and 
right breasts of two images of a patient who had breast cancer in the right breast were 1.26, 
1.28, 1.08 and 1.67, 1.73, 1.31, respectively (LH, HL, HH). The result show that breast cancer 
cannot be diagnosed using only Shannon Entropy with DWT. However, subjects who have 
breast cancer can be separated from healthy subjects due to with different entropies from those 
of healthy subjects.  

 
 

Table 5 shows the experimental results of logistic regression using vector features 
obtained in section 3.2.2. 217 images were used for classification with a ten-fold cross 
validation. The sensitivity and specificity values were 98.6% and 50%, respectively.  

 
Table 5. Confusion matrix for logistic regression 

 

 
 

Weka Results 
Patient Healthy subject 

Clinical Decision Patient 1 1 
Healthy subject 3 212 

 
Fig. 13. Distribution of entropies proportion of wavelet bands. 
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5. Discussions 
This paper have presented a method of breast cancer diagnosis, based on several methods 
using thermal images. It used extracted ROIs after background extraction, which was then 
compared to various features estimated from the left and right breasts using Shannon entropy. 
Although the number of subjects in this experiment was low, to allow for precise diagnosis and 
to select individual features, a larger number of subjects in future work will make it possible to 
show improved accuracy from learning algorithms. A number of misdiagnosed images 
occurred due to other factors, such as the subjects’ menstrual period and other diseases, which 
result in additional heat. Some features showed similar results to breast cancer. In the future, 
this method will be improved to achieve a high accuracy rate using low-resolution thermal 
images. 
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