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Abstract 
 

On large-scale data analysis platforms deployed on cloud infrastructures over the Internet, the 
instability of the data transfer time and the dynamics of the processing rate require a more 
sophisticated data distribution scheme which maximizes parallel efficiency by achieving the 
balanced load among participated computing elements and by eliminating the idle time of each 
computing element. In particular, under the constraints that have the real-time and limited data 
buffer (in-memory storage) are given, it needs more controllable mechanism to prevent both 
the overflow and the underflow of the finite buffer. In this paper, we propose an auto regulated 
data provisioning model based on receiver-driven data pull model. On this model, we provide 
a synchronized data replenishment mechanism that implicitly avoids the data buffer overflow 
as well as explicitly regulates the data buffer underflow by adequately adjusting the buffer 
resilience. To estimate the optimal size of buffer resilience, we exploits an adaptive buffer 
resilience control scheme that minimizes both data buffer space and idle time of the processing 
elements based on directly measured sample path analysis. The simulation results show that 
the proposed scheme provides allowable approximation compared to the numerical results. 
Also, it is suitably efficient to apply for such a dynamic environment that cannot postulate the 
stochastic characteristic for the data transfer time, the data processing rate, or even an 
environment where the fluctuation of the both is presented. 
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1. Introduction 

As growing the Internet-scale federated cloud infrastucture, real-time distributed data 
processing platforms have gained momentum [1][2]. Especially, data intensive application 
such as  high energy physics (HEP) experiments [3], online sequence alignment in 
Bioinformatics [4], Internet of Things [5] as well as real-time mobile cloud computing (MCC) 
[6][7] are centralizing the computing resources, services, data, and specific applications. 
Those devices produce unbounded measured dataset and it should be transfered to the 
autonomous storage and interacted with the target applications. Bulk data transfer protocols 
[17][19] leverage the efficient data sharing between remote sites. Also, the cloud pub/sub 
message middleware [8] or federated data synchronization platform [9] provide the solutions 
to share the data stream as near real-time.  

Combining such the data to the Cloud computing platform, the balanced load distribution 
among the participating computing elements and the elimination of the idle computing 
elements are essential to minimize the total completion time (makespan) [10]. Especially, the 
in-memory computing paradigms that emphasize the ability to replace data in a finite memory 
buffer for high availability rather than constantly fetching them from slower storage, it 
requires a more sophisticated data scheduling scheme since the buffer capacity plays a major 
constraint on the parallel performance [11][12]. In particular, under conditions that the 
instability of data transfer time and the dynamics of data processing rate are presented, 
keeping an optimal level of data holdings in the buffer is a critical issue to minimize both 
memory space and the number of idle processes. During the last few decades, incorporation 
between data transfer time and data processing rate is well cultivated as a divisible load theory 
(DLT) paradigm [13][14]. The approaches have been based on centralized sender-driven data 
push models which focus on finding the optimal distribution ratio based on the closed-form 
formula or linear programming model under the deterministic assumptions that a sender (a 
master or a data source) has global and static knowledge about the data transfer time and the 
processing rate of all receivers (workers or computing sites).  

However, current trend toward large scale distributed environment is characterized as 
dynamicity and elasticity that mean  users are possible to compose their own resource pool by 
adding or dropping the computing elements. Especailly the dynamic resource provisioning 
such as auto-scaling features [15] or spot instance bidding concept [16] increase the necessity 
of the adaptable data provisioning mechanism in the aspects of the monetary or time-critical 
application. Such the collective computing model, the data processing rate presents stochastic 
behavior which depends on the number of computing elements, the capacity of the each 
computing element, and the granularity of the dataset. On the wide area network, moreover, it 
is more realistic that the data transfer time implies uncertainty which is introduced by sharing 
the link on geographically dispersed computing domains. For such large-scale computing 
model, the static assumptions of the sender-driven approaches are not able to tackle the 
practical issues as well as the robustness of the optimal solution does not be assured. 
Furthermore, under the limited buffer constraint is given, the complexity for finding the global 
solution is in fact NP-hard [14].  

The principal motivation of our work is the desire to solve the problem based on 
decentralized receiver-driven data pull model. In particular, when the data transfer time and 
the data processing rate are fluctuated over time. As an opposition to the conventional 
centralized data distribution model, in this paper, we use the term – auto regulated data 
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provisioning model on which, each receiver keeps an optimal level of reserved data in its finite 
data buffer and continuously replenishes the buffer with new data to prevent the buffer 
emptiness. So, the sender simply functions as a data server that responds to the data requests 
from the receivers. Such a decentralized data provisioning model makes it easy to manage the 
load distribution since each receiver can control the amount of the data in the buffer for itself 
by determining when and how much data should replenish. Our previous work about such the 
data provisioning service was shortly delivered in [26]. In this paper, we fully describe the 
system architecture of our data provisioning model as well as the sufficient analytical results 
with more elaborate mechanism of the proposed schemes. This paper makes the following 
contributions: 

• We propose an auto regulated data provisioning model based on receiver-driven data 
pull  mechanism. we place a data provisioning service (DPS) on each receiver side. 
The key feature of the service is to keep a certain amount of input data in the local data 
buffer by continuously replenishing the input data from the data source.  

• We introduce the notion of buffer resilience and provisioning function which govern 
the overall performance of the data provisioning service. Based on these performance 
factors, we provide a synchronized data replenishment mechanism (SDRM) that 
makes it possible to implicitly avoid the data buffer overflow as well as explicitly 
regulate the buffer underflow by adequately adjusting the buffer resilience under the 
given provisioning function.  

• We exploit an adaptive buffer resilience control (ABRC) scheme in order to find the 
optimal buffer resilience that minimizes both the buffer space and the waiting 
demands based on directly observed sample path analysis without any knowledge of 
the stochastic characteristics of the data replenishment time or the data processing 
rate. 

The rest of this paper is organized as follows: section 2 provides research background and 
related works. Section 3 describes an auto regulated data provisioning model and its 
components. In section 4, we present the synchronized data provisioning mechanism and its 
analytic model. In section 5, we provide the adaptive buffer resilience control scheme 
including the criteria for finding optimal buffer resilience. Also, we validate the effectiveness 
of the proposed model and evaluate the performance with different scenarios in section 6. 
Finally, we summarize and conclude in section 7. 

2. Background and Related Works 
We consider large scale data analysis applications on geographically distributed computing 
domains with multiple remote data sources as shown in Fig. 1. The local data centers store 
huge size of divisible dataset that is contained in batch storage or real-time produced by 
internet connected devices in real-time. The computing elements such as private clouds or 
public clouds provide a big data platform including the parallel processing methods and user’s 
application toolkit on a large set of physical or virtual machines(VM). So, the data sources 
should continuously provide a piece of input dataset among the computing domains as well as 
move the results back to the data sources.  
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Fig. 1. Distributed data analysis environment with remote data sources  

 
On the business domain, big data analytics is a rapidly growing field for processing huge size 
of in-house dataset [1][2][15]. The main approaches focus on batch processing paradigms 
using the distributed databases or the distributed file systems to provide almost linear 
scalability and fault tolerance. Recently, the memory computing based on resilience 
distributed data (RDD) concept [11][15] shows brilliant future of the real-time data analysis. 
However, they take little account of optimally importing or exporting the external data with on 
widely distributed area. 
To enhance the end-to-end transfer performance, Fine-graned and Scalable TCP (FaST) [17], 
GridFTP [18] with striped transfer channels, on-demand secure circuits and advance 
reservation system (OSCARS) [19], or even the application-layer data throughput prediction 
and optimization service using multiple parallel TCP streams [20] are suggested. However, 
they focus on the improvement of end-to-end throughput without any considerations of 
storage constraints or real-time data processing rate on the target applications. 

The balanced load distribution scheme incorporating the data transfer time and the data 
processing time is originated from divisible load theory [10] that divides the total load into the 
participating nodes based on closed-form optimization technique as a sender-driven data push 
model. Such data scheduling approaches have evolved with diverse assumptions for making it 
similar to real systems such as network topology, worker’s heterogeneity, number of 
scheduling rounds or communication mode [12]. However, these approaches assume a 
deterministic model that the sender has global and static knowledge about the data transfer 
time and the processing rate of all receiving nodes as well as the unlimited data buffer on the 
nodes. Improved approaches for overcoming the assumptions such as adaptive strategies [14] 
on resource unaware platform, or memory space constraints at the sink nodes [15] are 
suggested. However, the periodic scheduling nature in the sender-driven model makes it 
difficult to fully reflect the dynamic environment and the complexity to get the global solution 
is in fact NP-hard [14]. 

On the other hand, the receiver-driven data pull model is more practical and suitable for the 
unpredictable environments [20][21]. Pilot job systems such as DIANE [22] and DIRAC [23] 
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are applied implementations. Such the data pull mechanism makes it possible to achieve the 
automatic load distribution since the receiver requests actively.  

Furthermore, the complicated workflow jobs and their scheduling on federated clouds are 
cultivated well to apply on the practical applications. An autonomic management of the 
end-to-end execution for data-intensive application workflows in dynamic software-defined 
resource federation [23], a graph model that takes both QoS of Web services and QoS of 
network into a geographically distributed cloud datacenters [24], and a topology based 
workflow scheduling algorithm named Resource Auction Algorithm (REAL) [25] are 
proposed. However, those approaches do not touch the data provisioning scheme for reducing 
the data transfer time on the receivers. So, those inevitably introduce unnecessary data 
placement time. Consequently, in such a model, the volume of data, the location of sender, and 
the number of receivers become main causes to degrade the efficiency of the parallel 
throughput. 

3. Auto Regulated Data Provisioning Model 
In this section, we describe the proposed decentralized data provisioning model that has the 
data provisioning service in each receiver side. Under the assumption that a data object is a 
self-described and discrete processing unit which is a small part of the divisible dataset in an 
arbitrary data source, we describe the following components of the model in detail. 

3.1 Architectural Model 

Data Analysis Home - On the data source, we deploy a data analysis home (DAH) for each 
dataset. The DAH is responsible for distributing the input data objects and collecting the 
output data objects. As shown in Fig. 2(a), it has a preprocessing stage for partitioning the 
dataset into small input data objects and a post-processing stage for ordering and merging the 
output data objects into permanent storage. In addition, the DAH has a demand process which 
simply functions as a data server for responding to the requests from data provisioning 
services. When a request comes to the demand process, the DAH unloads an output data object 
(if has) and responds with a new data object to the requester. 

Data Analysis Platform – In the computing domain, a data analysis platform (DAP) is 
composed of a set of independent application processes for processing the data objects on 
multiple computing nodes. As shown in the right part of the Fig. 2(b), each application process 
has an infinite loop procedure - data placement process to locate the input data object and a 
data processing process to produce the output data object repeatedly. Since the data placement 
state is on the idle state of the process, it should be eliminated or regulated. 
Data Provisioning Service - On each computing domain, we deploy a data provisioning 
service (DPS) - the core part of the model. The DPS is responsible for the data provisioning 
process from the DAH to the DAP. So, the DPS should respond the request from the 
application processes as well as collect the output data objects. On the other hand, the DPS 
should replenish the input data object from the DAH as well as return the collected results. To 
manage such application data, the DPS has a finite input buffer and a demand queue as shown 
in the Fig. 2(b). The input buffer stores input data object and forwards them to the application 
process. Also, the requests from the DAP is managed by the demand queue. 

In order to guarantee efficient operation, the DPS should determine how many data objects 
should be kept in the data buffer and when it should replenish the input data objects and return 
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the output data object from/to DAH. Since the data buffer is finite, determining those 
performance factors is essential to preventing the underflow (in that case, the DAP introduces 
idle processes) or the overflow (in that case, the input data object is blocked) of the data buffer. 

In the following section, we present the operation mechanism of the DPS for regulating 
such unwanted states. 

3.2 Synchronized Data Replenishment Mechanism 
In this section, we provide the operation mechanism of the DPS with the analytic model. In 
particular, the synchronized data replenishment mechanism (SDRM) for managing the data 
buffer and the demand queue is described in detail. Prior to analyzing the behaviors of the DPS, 
we premise the following assumptions: (A1) We represent a data object as a discrete 
processing unit which is a small part of divisible input dataset. So, the occupancy of the data 
buffer means the number of data objects in the buffer.  (A2) We assume the output data object 
is relatively smaller compared to the input data object. So, the output data object is 
piggybacked to the demand requests. (A3) The data replenishment time includes the transfer 
time and the waiting time for obtaining a single data object from the remote DAH. We assume 
that the data transfer time is predominant from remote DAH to the DPS but negligible within 
local domain (from the DPS to the DAP). So, the waiting processes in DAP is occurred only 
when the data buffer is empty. Furthermore, we define the notations of the main and auxiliary 
parameters on the Table 1. Based on the assumptions and definitions, we model an arbitrary 
DPS as a discrete event system which is combined by the following two stochastic processes:  

(i) Data demand process - When a request event arrives in the demand queue, the 
DPS responds with a data object in the data buffer. If the buffer is empty, the 
event should wait in the demand queue until the buffer has been filled. As shown 
in Fig. 2(b), we denote the rate notations of the number of arrival and departure 
processes in the demand queue during (0, t) as α(t) and β(t) receptively.  

(ii)  Data provisioning process - When the DPS sends a request event to the DAH, a 
new input data object comes to the data buffer after elapsing the replenishment 
time. As shown in Fig. 2(b), we denote the rate notations of the number of arrival 
and departure processes in the data buffer during (0, t) as γ(t) and α(t) receptively.  

 
Fig. 2. The proposed system architecture of the data provisioning model 
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To avoid data buffer overflow, the DPS synchronizes aforementioned two processes - (i) and 
(ii), e.g., as soon as a demand process is completed, the DPS triggers a replenishment process. 
So, after elapsing the replenishment time, the number of data objects in the data buffer is 
restored the same as the previous state. Note that the DPS will never be operated if the data 
buffer is initially empty. So, we introduce buffer resilience (Z) which represents the reserved 
number of data objects. Before starting the SDRM, the DPS determines the size of the buffer 
resilience, Z, and prepares data objects as much as Z using replenishment process.  
Let I(t) and B(t) be the number of stored data objects in the data buffer and the number of 
demand requests in the demand queue at time t respectively. Then, I(0) = Z and B(0) = 0 by the 
initial condition, as well, by the arrival and departure processes of the data buffer and the 
demand queue, we can identify the occupancies of those at time t as I(t)= Z+γ(t)−δ(t) and B(t)= 
α(t)− β(t), (see Fig. 2(b)). On our synchronized mechanism, since the two departure processes 
occur at same time, the β(t) and the α(t)are identical. Thus, we get the following relation:   
 

𝐼𝐼(𝑡𝑡) −𝐵𝐵(𝑡𝑡) = 𝑍𝑍 + 𝛾𝛾(𝑡𝑡) − 𝛿𝛿(𝑡𝑡) − 𝛼𝛼(𝑡𝑡) + 𝛽𝛽(𝑡𝑡) = 𝑍𝑍 + 𝛾𝛾(𝑡𝑡) − 𝛼𝛼(𝑡𝑡).                 (1) 
 

I(t) > 0 implies B(t) = 0, (if the data buffer is not empty, the demand queue always empty), on 
the other hand, B(t) > 0 implies I(t) = 0 (the demand requests should stay in the demand queue 
when the data buffer is empty). As well, both are non-negative integer, we obtain I(t) and B(t) 
from (1) as   

𝐼𝐼(𝑡𝑡) = max[𝑍𝑍 − 𝑁𝑁(𝑡𝑡), 0],                                                       (2) 
𝐵𝐵(𝑡𝑡) = max[𝑁𝑁(𝑡𝑡) − 𝑍𝑍, 0],                                                       (3) 

where we denote N(t) as the provisioning function of the DPS, which is defined by 
aforementioned two arrival rates:   
 

𝑁𝑁(𝑡𝑡) = 𝛼𝛼(𝑡𝑡) − 𝛾𝛾(𝑡𝑡), 𝛼𝛼(𝑡𝑡) > 𝛾𝛾(𝑡𝑡), 𝑡𝑡 > 0.                                           (4) 

Table 1. Definition of the main and auxiliary parameters and their notations 
Notations Definitions 

Z The buffer resilience that represents the reserved number 
of data objects.  

I(t) and EI(z) The number of stored data objects in the data buffer at t 
and its average occupancy when Z=z 

B(t) and EB(z) The number of demand requests in the demand queue at t 
and its average occupancy when Z=z 

N(t) The provisioning function at t 
PPR The processing to provisioning ratio 
F(z) The provision cost function  
Z* The optimal buffer resilience 

Fn(z*) The optimal (minimum) provisioning cost function on the 
iteration n 

υ 
The weight factor between data buffer and the demand 
queue which makes trade-off between memory cost and 
the waiting time penalty 

ν  The step size in every iteration  
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The provisioning function N(t) and aforementioned buffer resilience Z are important 
parameters to govern overall performance of the DPS. Furthermore, we can identify that the 
N(t) is represented as a general queuing system of which arrival rate is data demand rate and 
the service time is the replenishment time, since the arrival rate α(t) and the departure rate γ(t) 
of the N(t) are defined by random variables which are correspondent to the data demand rate 
and the replenishment rate of the DPS. So, for the N(t), we define the processing to 
provisioning ratio (PPR) which is represented by  
 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛾𝛾(𝑡𝑡)
𝜇𝜇(𝑡𝑡) , 𝛾𝛾(𝑡𝑡) > 0, 𝜇𝜇(𝑡𝑡) > 0, 𝑡𝑡 > 0,                                           (5) 

where the γ(t) means the average demand rate from DAP and the µ(t) is the maximum data 
replenishment rate from DAH during (0, t). The PPR is similar to the CCR (computation to 
communication ratio) [14] which is a qualitative measure widely used on distributed 
applications but it is different in that the PPR is characterized by the stochastic variables. On 
the other hand, the buffer resilience Z can be used as the qualitative index of the maximum 
buffer size for regulating both the occupancy of the data buffer and the demand queue.  

Consequently, under the given N(t), the proposed SDRM makes it possible to automatically 
avoid data buffer overflow by determining the buffer size as much as the buffer resilience 
since the I(t) is bounded to the Z as shown in (2). In addition, it is possible to explicitly regulate 
B(t) by adjusting Z since B(t) appears when N(t) > Z as shown in (3). So, the remaining 
problem is how to determine the optimal buffer resilience. We provide the methodology with 
cost minimized function for the optimality criteria in the following section. 

4. Adaptive Buffer Resilience Control Scheme 
As shown in previous results, I(t) and B(t) are only dependent on the provisioning function  N(t) 
and the buffer resilience Z. So, it is possible to provide the designated quality of service by 
adjusting the buffer resilience under given N(t). In this section, firstly, we define the 
provisioning cost function and the criteria for finding optimal buffer resilience. Secondly, we 
develop an adaptive buffer resilience control (ABRC) algorithm which can find directly the 
optimal buffer resilience on the sample path of the occupancy of the data buffer and the 
demand queue under the N(t) is unknown.  

    4.1 Provisioning Cost Model and Optimality Criteria 
In steady state, the N(t) can be modeled as a general queuing system of which the average data 
demand rate is γ and the maximum data replenishment rate is µ. So, the stability condition of 
the data buffer is PPR= γ/µ < 1.  

On the stability condition, the physical meaning of I(t) is the memory space for storing the 
data objects at time t. Supposing EI(z) is the average occupancy of the data buffer when Z =z, it 
can be represented by the average memory cost for reserving the application data. As shown in  
(2), the smaller z is given, the smaller I(t) is guaranteed since the N(t) is independent from z. So, 
we should keep the buffer resilience as small as possible to minimize the average memory cost. 
On the other hand, the B(t) reflects the number of idle processes which do not participate in the 
data processing process. Denoting EB(z) as the average occupancy of the demand queue when 
Z = z, the larger z is given, the smaller B(t) is guaranteed as (3). So we should keep the buffer 
resilience as large as possible to minimize the waiting time of the demands. Since the two 
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criteria have negative relationship in terms of Z, we formulate provisioning cost function, F(z) 
that is composed of a weighted sum of the two criteria as  

 
𝐹𝐹(𝑧𝑧) = (1 − 𝜐𝜐)𝐸𝐸𝐼𝐼(𝑧𝑧) + 𝜐𝜐𝐸𝐸𝐵𝐵(𝑧𝑧), 0 < 𝜐𝜐 < 1,                                 (6) 

 
where the υ is a weighted factor to the demand queue. So, by customizing the υ, users can 
make trade-off between memory cost and the waiting time penalty. Consequently, we can 
identify that the optimal buffer resilience, Z* 

 
is the size of the buffer resilience that minimizes 

the provisioning cost function, F(Z*
 
= z). It is determined by dF(z)/dz = 0 since the F(z) is 

convex to z in positive area.  
For example, supposing the provisioning function, N(t) follows M/M/1 queuing model 

which means that there is a single server (DAH), the demands follows the Poisson arrival 
pattern, and the data replenishment time is exponentially distributed. Denoting the probability 
distribution function (PDF) of the N(t) is P(N = n), then, the PDF of both {I(t), t > 0} and {B(t), 
t > 0}is given by  

𝑃𝑃(𝐼𝐼 = 𝑛𝑛) = � 𝑃𝑃(𝑁𝑁 > 𝑍𝑍),                     𝑛𝑛 = 0
𝑃𝑃(𝑁𝑁 = 𝑍𝑍 − 𝑛𝑛), 𝑛𝑛 = 1,2, … ,𝑍𝑍,                                          (7) 

𝑃𝑃(𝐵𝐵 = 𝑛𝑛) = � 𝑃𝑃(𝑁𝑁 > 𝑍𝑍),                     𝑛𝑛 = 0
𝑃𝑃(𝑁𝑁 = 𝑍𝑍 + 𝑛𝑛), 𝑛𝑛 = 1,2, … ,𝑍𝑍.                                         (8) 

 
Denoting ρ as the PPR of the N(t), the state probability of N(t) is PN(n)= (1 − ρ) ρn 

, n> 0. Then, 
from (7) and  (8), the state probabilities of I(t) and B(t) are represented by PI(n) = PN(Z− n)= (1 
− ρ) ρZ-n 

, 0 < n> Z and PB(n)= PN(n + Z)= (1 − ρ) ρn+Z, n > 0 respectively. Hence, the 
provisioning cost function defined by (6) is  

 
𝐹𝐹(𝑧𝑧)𝑀𝑀𝑀𝑀1  =  (1 −  υ)𝐸𝐸𝐼𝐼(𝑧𝑧) +  υ𝐸𝐸𝐵𝐵(𝑧𝑧)                                                                           (9) 

                           =  (1 −  υ)(∑ (1 − 𝜌𝜌)𝜌𝜌𝑍𝑍−𝑛𝑛𝑍𝑍
𝑛𝑛=1 ) +  υ(∑ (1 − 𝜌𝜌)𝜌𝜌𝑛𝑛+𝑍𝑍∞

𝑛𝑛=1 )  

                           =  (1 −  υ) �𝑧𝑧 − 𝜌𝜌(1−𝜌𝜌𝑧𝑧

1−𝜌𝜌
� +  υ �𝜌𝜌

𝑍𝑍+1

1−𝜌𝜌
�. 

 
By calculating (dF(z)M/M/1/dz)= 0, we can obtain the optimal buffer resilience Z*  

that minimize 
the provisioning cost function as  

𝑍𝑍∗ =
ln (1 − υ)

ln (𝜌𝜌)
.                                                                      (10) 

4.2 Adaptive Buffer Resilience Control Algorithm 
Assuming that the stochastic behavior of N(t) is known and stationary, we can obtain the 
minimum provisioning cost and the optimal buffer resilience by dF(z)/dz = 0 since the F(z) is 
convex to z in positive area. In practical, however, it is difficult to identify the stochastic 
behavior of N(t) as well as the notion of the steady state is hard to justify under the fluctuation 
of both data demand rate and data replenishment time. So, a more practical scheme is 
necessary. We develop an adaptive buffer resilience control (ABRC) algorithm by estimating 
dF(zn)/dz based on perturbation analysis of directly observed sample path over nth 

finite time  
area. We can then obtain (n + 1)th 

optimal buffer resilience zn+1 through an iterative form on [27] 
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𝑍𝑍𝑛𝑛+1∗  =  𝑍𝑍𝑛𝑛∗ − 𝜈𝜈𝑓𝑓(𝑍𝑍𝑛𝑛+1∗ ),𝑛𝑛 = 0,1, …                                                (11) 

 
where ν is the step size and fn(z*) is an estimate of dF(z*

n)/dz for nth iterations which is 
calculated by  

𝑓𝑓(𝑍𝑍𝑛𝑛∗)  = 𝑑𝑑𝑑𝑑(𝑍𝑍𝑛𝑛∗ )
𝑑𝑑𝑑𝑑

 = (1 −  υ) �𝑑𝑑𝐸𝐸𝐼𝐼(𝑍𝑍𝑛𝑛∗)
𝑑𝑑𝑑𝑑

� +  υ �𝑑𝑑𝐵𝐵𝐼𝐼(𝑍𝑍𝑛𝑛∗)
𝑑𝑑𝑑𝑑

�.                                 (12) 

 

To obtain the 𝑓𝑓(𝑍𝑍𝑛𝑛∗), we apply the results of [30], in which work the authors derived the 
infinitesimal perturbation analysis (IPA) estimate of the occupancy of a finite buffer with 
respect to buffer size by approximating the G/G/1 finite queuing system as stochastic fluid 
model. The estimate turned out to be the sum of all intervals of the surplus periods of the buffer 
since the arrival and departure process are independent from the buffer size.  

In our model, supposing the N(t) follows G/G/1 queuing system, the 𝐸𝐸𝐼𝐼(𝑍𝑍𝑛𝑛∗) and the 𝐸𝐸𝐵𝐵(𝑍𝑍𝑛𝑛∗) 
are the same results since the N(t) is independent from z. So, the derivative of 𝐸𝐸𝐼𝐼(𝑍𝑍𝑛𝑛∗ ) is ap-
proximated by the sum of all intervals of the I(t)> 0 periods in each iteration as  

 
𝑑𝑑𝐸𝐸𝐼𝐼(𝑍𝑍𝑛𝑛∗ )

𝑑𝑑𝑑𝑑
 = 1

𝑇𝑇
∑ 𝑑𝑑

𝑑𝑑𝑑𝑑
𝐽𝐽
𝑗𝑗=0 ∫(𝑍𝑍 −𝑁𝑁(𝑡𝑡))𝑑𝑑𝑡𝑡 = 1

𝑇𝑇
∑ 𝜂𝜂𝑗𝑗
𝐽𝐽
𝑗𝑗=0  .                                   (13) 

 
where 𝜂𝜂𝑗𝑗 is the 𝑗𝑗𝑡𝑡ℎ

 
surplus period of the data buffer during (0, T), 0>j> J, and 𝜂𝜂𝑗𝑗 ≤ 𝑇𝑇 (see 

Fig.3). Similarly, the derivative of 𝐸𝐸𝐵𝐵(𝑍𝑍𝑛𝑛∗ ) with respect to z over (0, T) is 
 

𝑑𝑑𝐸𝐸𝐵𝐵(𝑍𝑍𝑛𝑛∗)
𝑑𝑑𝑑𝑑

 = 1
𝑇𝑇
∑ 𝑑𝑑

𝑑𝑑𝑑𝑑
𝐾𝐾
𝑘𝑘=0 ∫(𝑁𝑁(𝑡𝑡) − 𝑍𝑍)𝑑𝑑𝑡𝑡 = 1

𝑇𝑇
∑ 𝜉𝜉𝑘𝑘𝐾𝐾
𝑘𝑘=0  .                                    (14) 

 
where 𝜉𝜉𝑘𝑘  is the 𝑘𝑘𝑡𝑡ℎ

  
surplus period of the demand queue over (0, T), 0>k>K, and 𝜉𝜉𝑗𝑗𝑘𝑘 ≤ 𝑇𝑇 (see 

Fig. 3). Hence, the estimated derivative of the provisioning cost function over [0,T] yields  

𝑓𝑓(𝑍𝑍𝑛𝑛∗)  = 1
𝑇𝑇
�(1 − υ)∑ 𝜂𝜂𝑗𝑗 −  υ∑ 𝜉𝜉𝑘𝑘𝐾𝐾

𝑘𝑘=0
𝐽𝐽
𝑗𝑗=0 � .                                   (15) 

 

 
Fig. 3. A generic sample path on the data buffer and the demand queue during (0, T). 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 11, November 2016                            5281 

 

The result of (15) implies the simplicity of the ABRC scheme which only identifies the empty 
states of the data buffer and the demand queue in order to update the buffer resilience for each 
iteration. The pseudo expression of the ABRC scheme is shown in Algorithm 1. On the 
initialization (line [1– 2]), the ABRC parameters, ABRCINIT=(initial buffer resilience, step size, 
measured interval) and the weighted factor are configured. Then the DPS can the derivatives 
of the data buffer and the demand queue (ti, tb) by observing the empty epochs to add up the 
surplus periods until the current time t reaches the measured interval T (line number [5 – 15]). 
At the end of the interval (line [16]),  the estimate of the provisioning cost, fn(z) yields and 
finally the current buffer resilience, Zcurrent is updated by comparing the previous buffer 
resilience Zprevious in the line [17 -23]. 

5. Performance Evaluation 
In this section, we present our simulation platform and the evaluations of the proposed model. 
We utilize SimJava [29] modeling package as a discrete event simulation tool. The evaluations 
are composed of three parts. First, we verify the effectiveness of the ABRC scheme by 
comparing with numerical results. Second, we compare the ABRC scheme with static buffer 
resilience scheme which does not apply the adaptive method. Finally we show the 
applicability of the ABRC scheme in the general distributed, unsteady and fluctuated 
environment of demand arrival rate and the replenishment time.  

Algorithm 1. Adaptive Buffer Resilience Control (ABRC) 
1:  Set ABRCINIT=(𝑍𝑍0, 𝜈𝜈,𝑇𝑇) and 𝜐𝜐 
2:  𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  =  𝑍𝑍0 

3:  while DPS is running do  
4:      𝑡𝑡𝑝𝑝 = 0, 𝑡𝑡𝑏𝑏 = 0, 𝜏𝜏 = 0,𝑇𝑇𝑛𝑛 = 𝑡𝑡 + 𝑇𝑇, 𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  =  𝑍𝑍𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑡𝑡   

5:      while 𝑡𝑡 <  𝑇𝑇𝑝𝑝  do 
6:         if 𝐼𝐼(𝑡𝑡) = 0 then 
7:            𝑡𝑡𝑝𝑝 = 𝑡𝑡𝑝𝑝 + (𝑡𝑡 − 𝜏𝜏) 
8:         else if 𝐵𝐵(𝑡𝑡) = 0  then 
9:            𝑡𝑡𝑏𝑏 = 𝑡𝑡𝑏𝑏 + (𝑡𝑡 − 𝜏𝜏) 

10:         else if 𝐼𝐼(𝑡𝑡) > 0  then 
11:           𝜏𝜏 = 𝑡𝑡 
12:         else if 𝐵𝐵(𝑡𝑡) > 0  then 
13:           𝜏𝜏 = 𝑡𝑡 
14:         end if 
15:     end while 
16:     𝑓𝑓 = {(1 − 𝜐𝜐)𝑡𝑡𝑝𝑝 − (𝜐𝜐) × 𝑡𝑡𝑏𝑏}/𝑇𝑇 
17:     𝑍𝑍𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑡𝑡  =  𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − ⌈ 𝜈𝜈 × 𝑓𝑓⌋ 
18:     if 𝑍𝑍𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑡𝑡 >  𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 then 
19:        Increase current buffer resilience to 𝑍𝑍𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑡𝑡 
20:     else if 𝑍𝑍𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑡𝑡 < 𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 then 
21:        Decrease current buffer resilience to 𝑍𝑍𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑡𝑡 
22:     else 
23:        Keep current buffer resilience 
24:     end if 
25:  end while 
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5.1. Verification of ABRC scheme  
Under the provisioning function N(t) follows the M/M/1 queuing model, we firstly 

examine the f(z)and the Z on three different PPRs as 0.88, 0.92 and 0.96. The initial parameters 
of ABRC are configured as υ = 0.5 and the ABRCINIT is Z0 = 1, the step size 𝜈𝜈 = 5, and the 
measured interval on each iteration T = every 750 arrivals of the demands. We performed total 
52 iterations. Fig. 4(a) shows the estimates of the derivative of the provisioning cost on each  
iteration. When the value is negative, the buffer resilience of the next iteration is increased as 
much as the integer value of the product of the estimate and the scale size, e.g. ⌈𝜈𝜈𝑓𝑓𝑛𝑛∗⌋. In 
contrary, if the value is positive, the buffer resilience is decrease as much as ⌈𝜈𝜈𝑓𝑓𝑛𝑛∗⌋. It 
corresponds to the line [17 -23] in Algorithm 1. On the plot, the fluctuation of the estimates 
becomes large when the PPR is increased. As the iterations are repeated, however, we are able 
to observe that the range of the fluctuation decrease. These results reflect the change of the 
buffer resilience in Fig. 4(b). We can observe that each trial finds the proper level of the buffer 
resilience as the iteration is repeated even though the initial buffer resiliencies are fixed to one. 
Furthermore, those flexibly adjust the buffer resilience in according to the current density of 
the provisioning function on each iteration.  

(a) Estimates of the f(Z*
n), v=5, T=750 

 

 
(b) Buffer resilience on each iteration,v=5, T=750 

 
Fig. 4. Estimates of the derivative of the provisioning cost and the adjusted buffer resilience 
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In order to compare to the numerical results, we conduct more experiments with different 

initial configurations as 𝜈𝜈 = 3, 5, 7 and T = 500, 750, 1000 on six different PPRs. Fig. 5 shows 
the average buffer resiliencies and the average provisioning cost. In the plots, the optimal 
values were calculated by (9) and (10). As shown in Fig. 5(a), the average buffer resilience of 
the most trials are placed near to the optimal values (black squares) regardless of the initial 
configurations. However, when the PPRs are closed to 1, the gap to the optimal value tends to 
be large in every trial. When compared to the optimal values, in the case the measured interval 
is small (T = 500) or step size is large (𝜈𝜈 = 7), the buffer resilience is over-estimated, in 
contrary, when the measured interval is large (T = 1000) or step size is small (𝜈𝜈 = 3), the buffer 
resilience is under-estimated. On the same configuration, Fig. 5(b) shows the average 
provisioning cost of the trials. When the PPRs are increased, the gap to the optimal value is 
more observed and the values are larger than those of the optimal ones. These errors are caused 
by the frequent appearance of the bursty demand and the replenishment rate on high PPR. The 
error appears much more since the sensitivity of the burst traffic increase when the step size is 
large or the measured interval is small.  

(a) Average buffer resilience  
 

 
(b) Average provisioning cost  

 
Fig. 5. Comparison of the buffer resiliencies between the numerical results and the ABRC 

v
v
v

v
v

v
v
v

v
v
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5.2. Comparison of the static buffer resilience scheme  
In this scenario, we compare the average occupancies of the data buffer and the demand queue, 
and the average provisioning cost on different configurations - cases as the DPS with ABRC 
scheme (proposed ABRC), the DPS with static buffer resilience (SBR), and a case without DPS 
itself (non-DPS). In the SBR cases, the buffer resilience is fixed to the initial value. We set 
four different initial buffer resiliencies as SBR(Z0 = 5), SBR(Z0 = 10), SBR(Z0 = 15), and 
SBR(Z0 = 20). In the case of the non-DPS, the buffer resilience is zero (Z0 = 0) since it has no 
space to store the data objects. For the initial parameters of the proposed ABRC, we set υ= 0.5 
and the ABRCINIT = (Z0 = 1, 𝜈𝜈 = 5, T = 750).  

Fig. 6(a) compares the average occupancy of the data buffer on six different PPRs. In case 
of the non-DPS, the average occupancy is always zero since it does not use the data buffer.  
SBR(Z0 = 10), SBR(Z0 = 15), and SBR(Z0 = 20). In the case of the non-DPS, the buffer 

 
(a) Average occupancy of the data buffer     (b) Average  occupancy of the demand queue 

 

 
(c) Average provisioning cost  

 
Fig. 6. Comparison of the average occupancy of the data buffer and the demand queue, and the 

average provisioning cost among Non-DPS, SBRs, and proposed ABRC 

v
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resilience is zero (Z0 = 0) since it has no space to store the data objects. For the initial 
parameters of the proposed ABRC, we set υ= 0.5 and the ABRCINIT = (Z0 = 1, υ= 5, T = 750).  
Fig. 6(a) compares the average occupancy of the data buffer on six different PPRs. In case of 
the non-DPS, the average occupancy is always zero since it does not use the data buffer. On 
the other hand, those of the SBRs are decreased proportionally when the PPR is increased. It 
occurs since the data buffer needs restoration time to recover the initial state. When the PPR is 
high, the average occupancy is more decreased since the restoration time takes longer than that 
of the small PPR. On contrary, the proposed ABRC case increases the average occupancy of 
the data buffer when the PPR is increased. It is because that the ABRC scheme adjusts the 
buffer resilience in order to minimize the provisioning cost function on each PPR. Intuitively, 
we can identify that the SBRs belong to the over-provisioned state if the average occupancies 
are larger than those of the ABRC case, otherwise, those are in the under-provisioned state.  

The average occupancy of the demand queue in Fig. 6(b) shows the inverse phenomenon 
to the data buffer. In case of the non-DPS, the average occupancy is always larger than others 
in all PPRs. On the other hand, those of the SBRs are increased proportionally when the PPR is 
increased. It occurs since the empty probability of the data buffer is increased when the PPR is 
high. In the case of the ABRC, the average occupancy is increased to the PPRs. Contrary to the 
state of the data buffer, the SBRs belong to the over-provisioned state if the average 
occupancies are smaller than that of the ABRC case, otherwise, those are in the 
under-provisioned state. Using the Fig. 6(c), we can synthetically explain the above 
observations. The plots show the average provisioning costs of the trials. The proposed ABRC 
case keeps the smallest values over all PPRs. Meanwhile, the SBRs are close to the minimum 
cost only on specific points according to their initial buffer resiliencies such as Z0=5 at (0.86, 
0.88, 0.90), Z0=10 at (0.92, 0.94), Z0=15 at (0.94, 0.96), and Z0=20 at 0.96, respectively. On the 
non-DPS case, it cannot achieve the minimum costs at all PPRs. To sum up, by minimizing the 
average provisioning cost, the proposed ABRC scheme enables to guarantee the optimal 
buffer resilience that synthetically satisfies both the data space and the waiting demands 
during run-time.  

5.3. Adaptivity of the ABRC scheme  
In this scenario, we examine the adaptability of the ABRC scheme on the condition that the 
arrival of demands fluctuates on run-time as well as the replenishment time has different 
variations. In addition, the weighted factors are customized. We prepared three different cases 
(case-1, case-2, and case-3) as shown in Table 2. The demand arrival rate is divided to three 
stages (s1, s2, and s3) where the s2 occurs from 100 to 150 iterations. In addition, the case-1 

 

Table 2. Parameters for the three cases, where we denote uni(a, b) as uniform distribution with 
mean = a and variation = b and exp(a) as exponential distribution with mean = a 

Cases Stage 𝝊𝝊 𝟏𝟏/𝝀𝝀 𝟏𝟏/𝝁𝝁 

Case-1 
s1 
s2 
s3 

0.7 
uni(10,10) 
uni(9.5,9.5) 
uni(10.5, 10.5) 

Exp(9) 

Case-2 
s1 
s2 
s3 

0.9 
uni(10,10) 
uni(9.5,9.5) 
uni(10.5, 10.5) 

Exp(9) 

Case-3 
s1 
s2 
s3 

0.9 
uni(10,10) 
uni(9.5,9.5) 
uni(10.5, 10.5) 

Uni(9,9) 
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has smaller weighted factor (υ= 0.7) compared to the case-2 (υ= 0.9). On the other hand, 
case-2 has the larger variation of the replenishment time (exp(9)) compared to case-3(uni(9, 
9)).  Fig. 7 shows the results of the average size of the buffer resilience and the average 
occupancies of the data buffer and the demand queue on each iteration. About all cases, the 
magnitude of the buffer resilience on s2 is larger than those of the s1 and s3 since the demand 
arrival interval is decreased. On the other hand, Fig. 7(a) and Fig. 7(b) show the effect of the 
weighted factor. Even though those have the same demand arrival and replenishment time, the 
buffer resilience of the case-2 is larger than that of the case-1 since the weighted factor of the 
case-2 is larger than that of the case-1. It leads to the smaller demand occupancy of the case-2 
compared to the case-1 whereas the larger data buffer occupancy. In addition, Fig. 7(b) and 
Fig. 7(c) present the effect of the variation of the replenishment time. The buffer resilience of 
the case-3 is much smaller than that of the case-2, even though those have the same demand 
arrival rate and weighted factor, since the variation of the replenishment time of the case-3 is 
smaller than that of the case-2. Thus, the case-3 enables to achieve the similar demand occu-
pancy with much less buffer resilience compared to the case-2. Total average of the buffer 
resilience and the occupancies are compared in Fig. 7(d). The results show that proposed  
ABRC scheme is possible to adaptively control the buffer resilience without any knowledge of 
the stochastic characteristics of the data replenishment time and the data processing rate. 
Furthermore, the ABRC scheme gives user the opportunity to enhance the service quality 
(reducing the waiting time of the application processes) by undertaking the data buffer usage 
cost.  
  

 
 

Fig. 7. Comparison of the states of Zn, EI(Zn), EB(Zn)  on each iteration.  
 

(a) Zn , EI(Zn), EB(Zn) on each iteration under the case-1 (b) Zn , EI(Zn), EB(Zn) on each iteration under the case-2

(c) Zn , EI(Zn), EB(Zn) on each iteration under the case-3 (d) Total average of the cases



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 11, November 2016                            5287 

7. Conclusion 
This paper presents a decentralized data provisioning model which enables the auto regulated 
load balancing as well as the reduction of the data transfer time in terms of the receivers. Under 
the limited buffer capacity and unpredictable situation of demand rate and the replenishment 
time, the proposed synchronized data replenishment mechanism (SDRM) makes it possible to 
implicitly avoid the data buffer overflow as well as to regulate the buffer underflow by 
adequately adjusting the buffer resilience. To find the optimal buffer resilience even under 
such unsteady environment, the adaptive buffer resilience control (ABRC) scheme is 
exploited, which minimizes both the buffer space and the waiting demands based on directly 
observed sample path analysis without any knowledge of the stochastic characteristics of the 
provisioning function. The evaluations verify that the proposed ABRC scheme shows good 
approximation compared to the numerical results as well as it seeks the optimal buffer 
resilience automomously even though the specific probability law of the provisioning function 
is not postulated. Furthermore, the ABRC scheme gives user the opportunity to enhance the 
service quality by undertaking the data buffer usage cost. In the paper, we assumed that a 
single data provisioning server (DPS) which are able to be supported when the processing to 
provision rate (PPR) is less than 1. If the provisioning rate can not keep up with the processing 
time, (e.g, highly data intensive with parallel application), we need to consider a scalable DPS 
architecture with clustered provisioning servers on the single data center. Even the case, we 
think our adaptive resilience control scheme will work properly since each of the DPS operates 
as a autonomously regulated manner. Another restriction on the proposed scheme is that, the 
demand and the replenishment size are a single type and provided by the linear estimation. We 
will do further work for the batch patterns of the demand size, the replenishment size, or both. 
Such the batch replenishment scheme will reduce the replenishment time under the condition 
that the additional request cost (setup time) is imposed. In that case, finding the optimal batch 
size is another issue to enhance the performance of the data provisioning service. We are 
interested in the nonlinear estimation techniques to cope with such kinds of the bursty shape of 
the provisioning function and to find optimal batch size as well as the optimal buffer 
resilience. 
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