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Abstract 

 
Recently Service Function Chaining (SFC) is promising to innovate the network service 
mode in modern networks. However, a feasible implementation of SFC is still difficult due 
to the need to achieve functional equivalence with traditional modes without sacrificing 
performance or increasing network complexity. In this paper, we present a configurable 
network service chaining (CNSC) mechanism to provide services for network traffics in a 
flexible and optimal way. Firstly, we formulate the problem of network service chaining and 
design an effective service chain construction framework based on integrating 
software-defined networking (SDN) with network functions virtualization (NFV). Then, we 
model the service path computation problem as an integer liner optimization problem and 
propose an algorithm named SPCM to cooperatively combine service function instances 
with a network utility maximum policy. In the procedure of SPCM, we achieve the service 
node mapping by defining a service capacity matrix for substrate nodes, and work out the 
optimal link mapping policies with segment routing. Finally, the simulation results indicate 
that the average request acceptance ratio and resources utilization ratio can reach above 85% 
and 75% by our SPCM algorithm, respectively. Upon the prototype system, it is 
demonstrated that CNSC outperforms other approaches and can provide flexible and 
scalable network services.  
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1. Introduction 

Nowadays, legacy network services (or functions) are mainly introduced by a wide 

spectrum of specialized appliances or middleboxes (e.g. Firewalls, Deep Packet Inspection 
(DPI), Intrusion Prevention/Detection System (IPS/IDS)). However, as shown in Fig. 1(a), 
traditional service models are limited to accommodate diverse requirements, since that these 
hardware-based and proprietary appliances are costly and difficult to manage in an optimal 
fashion or to scale up and down with shifting demands [1]. Even worse, the ossified way of 
deployment, which has network services inserted on the data-forwarding path between 
communicating peers, makes it impossible to reuse and change the service components. 

Recently, two new networking concepts, namely Network Functions Virtualization (NFV) 
[2] and Software Defined Networking (SDN) [3], have emerged aiming at cost reduction, 
increase of network scalability and service flexibility. Compared to legacy network, the 
integration of “SDN+NFV” eases the network function innovation via Service Function 
Chaining (SFC) [4], which is being used to steer flows through appropriate network 
functions and enforce network service policies (as shown in Fig. 1(b)). Taking network 
security service for example, each network application may require a certain set of security 
functions (e.g. virtual Firewalls and IDSes) and these security services can be dynamically 
chained in a particular sequence in order to satisfy the security requirements of application 
data flows. Particularly, the mechanism of controlling routing through the specified security 
service is also called Security Service Chaining (SSC) [5]. It is anticipated that with the 
advantages of capital expenditures (CAPEX) and operating expenses (OPEX), SFC 
methodology will inevitably become popular in handling network service functions in the 
near future.  
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(a) The legacy network environment (b) The network environment of SDN/NFV 
Fig. 1. A typical site of network service model in different networks 

 
However, in addition to packet forwarding, network service can buffer, inject or block 

certain packets, as well as proxy entire connections. When these services are used in an SFC 
environment, their actions and properties require careful design and extension. On the other 
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hand, under limited network resources constraints, such as processing, storage of nodes and 
link bandwidth, service functions process should be conducted carefully to fully utilize 
network resources. Therefore, making SFC in networks with virtual service is even a more 
difficult task and proposes some challenges for network administrators.  

In this paper, a Configurable Network Service Chaining (CNSC) mechanism based on 
“SDN+NFV” is proposed to in order to achieve efficient and coordinated control of service 
functions over a network. The main contributions of this paper are as follows: 

 We formulate the problem of network service chaining and propose a new framework 
for SFC construction by employing SDN, NFV and segment routing. 

 We model service path computation involved in CNSC as an integer linear 
programming problem. As the problem is a NP-hard, a heuristic algorithm based on 
network utility maximization is developed to approach the optimal solution. 

 We evaluate the efficiency of proposed service path computation method, and validate 
the usability and feasibility of our CNSC mechanism through a realization prototype. 

Roadmap: Section 2 states related works. Section 3 describes the network service 
chaining problem. Section 4 presents a new framework for constructing network service 
chains, and discusses some implementation issues in SDN and NFV. Section 5 shows the 
experiments and evaluation; Finally, Section 6 concludes this paper. 

2. Related Work 
The integration of “SDN+NFV” eases the network service innovation via outsourcing 

network functions and constructing dynamic service function chains. The main work related 
with these research can be summarized as follows: 
A. Service Function Chaining Architecture 

IETF has taken initiatives towards developing the formal architectures for SFC. The SFC 
architectural approach proposed by IETF (Quinn and Elzur [6]) suggests implementation of 
data-plane for supporting network function forwarding. Qazi et al. [7] present a SIMPLE 
policy enforcement layer based on SDN to efficiently steer middlebox-specific traffic. With 
OpenFlow protocol [8] (McKeown et al.), Zhang et al. [9] propose a scalable framework 
(called StEERING) for dynamically routing traffic through any sequence of middleboxes. 
Fayazbakhsh et al. [10] develop FlowTags architecture to integrate FlowTags-enhanced 
middleboxes into SDN networks. Further, Gember-Jacobson et al. [11] design a control 
plane called OpenNF that can provide efficient and coordinated control for reallocation of 
flows across network functions. Xia et al. [12] address an efficient optical service chaining 
architecture for network function virtualization in data centers.  
B. Service Description and Provision  

Service function chain is an abstracted view of a network service that specifies the set of 
required service functions as well as the order in which they must be executed. First step 
towards implementation of a service chain is to describe and provide network services. In 
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aspects of service description, Sun et al. [13] summarize the research on service description 
languages and enforcement of orchestration policies. Monsanto et al. [14] design a 
composing language (Pyretic) that can implement network functionality by controlling the 
flow space of switch in a programmatic manner. In terms of service provision, Shin et al. [15] 
propose a click-inspired programing framework, called FRESCO, which supports 
development of modular function programs in an independent SDN controller. Martins et al. 
[16] provide a ClickOS platform to implement virtual network functions so that network 
service functions can be migrated from hardware devices to software environment. 
C. Service Function Composition Path 

A service function composition path (SFCP) is a core mechanism used by service 
chaining system to express the result of applying more granular policy and operational 
constraints to the abstract requirements of a service function chain. Baumgartner et al. [17] 
address the optimization model of mobile core network virtualization. Cheng et al. [18] 
design a matchmaker supporting composition of higher-level policy modules which operate 
at a higher layer of the controller stack. Wang et al. [19] develop a combinatorial 
optimization model to describe the optimization problem of dynamic function composition. 
Li Y. et al. [21][20] propose a unified service chaining framework that jointly controls and 
optimizes the resource allocation in SDN/NFV networks. Li T. et al. [21] abstract the service 
path selection as a grey system theory problem and propose a service composition algorithm 
to steer network traffics. Hartert et al. [22] provide a declarative and expressive approach to 
program service functions forwarding in carrier-grade networks. 
D. Research Analysis of Service Function Chaining  

Various solutions mentioned above so far have addressed the unique and unprecedented 
challenges imposed by service function chaining. However, these research works are still not 
perfect and there are some problems for further study as follows:  

(a) The architectural approaches still lack analytical models and performance analysis 
techniques for the proposed solutions. Besides, it is also necessary to emphasize on optimal 
mapping model of network services to the underlying physical resources, especially 
considering QoS and SLA constraints. 

(b) The composition path methods are confronted with the service configuration 
complexity [23]. Especially, to optimize network overall performance, it is difficult to solve 
service function composition problem which usually is a NP hard problem. 

Therefore, our work below is enlightened by existing work but is different from them. We 
make an attempt to address the above challenges in SFC architecture. First we develop a 
service architecture which can more automatically implement SFC by the instruction of 
service policies. Then, we theoretically formulate SFC as a constraint programming and 
provide an optimal mechanism to complete service function chain by a heuristic algorithm. 
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3. Problem Overview 
The objective of this section is to define the problem of applying the service function 

chaining in SDN/NFV networks. 

3.1 Description of Service Function Chaining 

Service Function Chaining is a technology or system that efficiently manages the virtual 
service functions and steers the network traffics through required service functionality. Fig. 
2 shows an SFC architecture where data flows from its employees are forced to traverse the 
security functions such as LB (Load Balancer), IDS, DPI and firewalls. For example, there 
are two types of service chains, one for host H1 and H2: LB→IDS→ Firewall, and the other 
one for host H3: DPI→Firewall. 
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Fig. 2. A architecture of service function chaining  

 
SFC technology possesses some characteristics as follows: 
Composability: Due to the standardization of service components and the unified 

interfaces of various service, SFC can satisfy users’ diversity demand by compositing 
different network service elements, as shown in the SFC work logic of Fig. 2. Note that, the 
composition model may be a linearly sequence chain or a forking one. 

Configurability: Each authorized service provider can readily develop and deploy 
various software-based instances in commodity servers through NFV technology. It is 
possible that one service has more than one instance in the network, such as the IDS service 
with two instances “IDS1”and “IDS2” in Fig. 2. Therefore, operators can select suitable 
service instances to configure the service function chain. For example, SFC1 
“LB→IDS→Firewall” are implemented by configuring different service instances 
distributed in the network. 

Reusability: A service instance can be shared by multiple service chains. Likely the LB 
instance in node S1 are used by both traffic1 and traffic2 in Fig. 2. In addition, if a new user 
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wants a set of services which is different from the former one, SFC just needs to reuse some 
components and adds (or deletes) some ones, and combines them into a new chain for the 
user. 

3.2 Atomic Service and Service Chain Policy 
A. Atomic Service Introduction 

A service function means a network or application which is used singularly or in concert 
with other service functions within a service chain to enable a service offered by a network 
operator. The generic term “L3-L7 services” is often used to describe many service functions. 
A non-exhaustive list of security service functions includes: Firewalls, IPS/IDS, DPI, server 
load balancers, network virus and malware scanning, Data Loss Prevention, etc. 

A service function is called an Atomic Service (AS) in CNSC. To simplify development 
of AS, CNSC provides own script language to assist operators in composing ASes from 
elementary modules. The description language requires the definition of six different 
variables per instance of modular element: (i) Type, (ii) Input, (iii) Output, (iv) Attributes, (v) 
Action, and (vi) ID. The Type presents the class of atomic service. The Input/Output denotes 
the input/output items for an AS. The Attributes are a set of properties for configurations 
which may contain parameters, performance level, resource cost, etc. The Action represents 
operation that this AS will perform based on some conditions. The ID is a number generated 
to identify individual AS instances. Based on the definition of six variables, we can define 
an AS instance as a six-tuple < Type, Input, Output, Attributes, Action, ID>. For example, 
Fig. 3 illustrates a toy example for atomic service instance written in XML format. The AS 
type is Firewall which monitors the traffic pattern like <dst_port:~80 and dst_IP: 
192.168.0.0/16>, and discards all the packets matching the above pattern when detecting 
malicious profiles. 

<atomic service>
<type>Firewall</type>
<input>All flows </input>
<output>Normal flows</output>
<attrs>
       <logic:and>                     

                                   <property name="dst_port">
~80

</property>
<property name="dst_IP">

192.168.0.0/16
</property>
<property name="Performance level">

High
</property>

        </logic:and>
</attrs>
<action>discard</action>
<ID>NDSC_Firewall_001</ID>

</atomic service>  
Fig. 3. The instance of atomic service “Firewall” 

 
B. Service Chain Policy 

Generally, a Service Chain Policy (SCP) defines the required atomic services and 
associated order (ASi→ASi+1) that must be applied to packets and/or frames, as shown in the 
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work logic layer of Fig. 2. A service chain policy does not specify the network location or 
specific instance of atomic services (e.g. firewall 1 vs. firewall 2). We gives the following 
definition for a service chain policy.  

Definition 1 Service Chain Policy: { }1,2, ,kA k K= =  , 

{ }1,2, ,j jDemand J==  , and { }, , 1,2, ,t tt destinationsour business tce T== < > > , 

( , ,K J T +∈N ) represent atomic services set, demands set and network traffics set, 
respectively. A service chain policy is represented as follows:  

( ), , , ,,SCP T S D T S D< > ∈ ∈ ∈                       (1) 

where atomic services set   is a list of AS identified by function types and each service 
has several AS instances. Network traffics set   contains different traffic delivery patterns, 
where traffic t is defined by the source address ( tsource ), destination address ( tdestination ), 
and business class ( tclass ). Demands set   defines specific performance profiles, such as 
the performance levels of ASes.  

Each SCP varies with the difference of traffic patterns and the required services. 
Therefore, a Chain IDentifier (CID) is assigned to mark the service chain police, and the 
service chain classifier can use CID to determine SCP classification and the service path of 
traffic through the physical network. 

3.3 Instantiation of Service Function Chaining 

The instantiation of SFC focuses on mapping between service chain policy and physical 
network in an optimal way, as shown in Fig. 2. The main process involves with the atomic 
service instances selecting and traffic steering among network nodes respectively. In essence, 
the instantiation of SFC can be abstracted as the Service Path Computation (SPC) problem 
[24], where this process should be conducted carefully to fully utilize the network resource. 
For example, we should distribute flows among different service instances and links for load 
balance. Selecting service path optimally on demand is more difficult than that in the current 
networks with the shortest path strategy where only node resource is considered. This 
complexity is caused by that it is time-consuming for searching optimal service nodes which 
can provide the instance of each required atomic services, and it is also difficultly in 
selecting suitable links due to the changes of occupied resources. 

Our primary objective is to find out how service chain policies should be employed so 

that the network utility is maximized. Hence, based on the optimization mathematical model, 

we formulate service path selection problem as a centralized joint network Resources 

Utilization Maximization (RUM) problem with some constraints, as follows: 
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where f  is a feasible configuration of network resources and   is the set of all feasible 
configuration. SN  and SL  are respectively the node set and link set. ( )Roccupied *  
denotes the occupied resources on any node or link, and ( )Rcapacity *  denotes the 
resources capacity of any node or link. In what follows, we formulate the service path 
selection problem as a graph problem, and propose a heuristic algorithm that achieves a 
proper service instance selection and traffic path steering. 

4. Solution Formulation 
In this section, we present CNSC mechanism to response the requests of network service 

chain police. 

4.1 System Architecture of CNSC 

Based on the main ideas of SDN, the basic idea of our framework is decoupling network 
control from forwarding hardware, which promises to simplify network management and 
enables service innovation through network programmability and service function 
orchestration. In order to implement CNSC in a flexible and efficient way, an administration 
layer is designed to configure and reconfigure service chain policies. Furthermore, because 
of the topology-independent of function virtualization technology, we consider a NFV 
method to provide network services in the data forwarding plane, which can provide service 
functions with no limit to where they are located. The components of CNSC framework are 
illustrated in Fig. 4. In following content, we detail the role of every component of 
architecture. 
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Fig. 4. Framework architecture of CNSC 
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A.  Control Plane 
We design the control plane based on SDN controller, such as ONOS [25]. As shown in 

Fig. 4, there are three parts in the control plane. One is the Network Resource Database 
(NRD) which is responsible for collecting information about network topology and current 
traffic engineering information and providing information for CNSC computation. Another 
one is the Service Path Computation Module (SPCM), being responsible for computing the 
service paths, and the third one is Demand Analysis Module (DAM) which is responsible for 
accepting service demands from network users (including data centers, enterprises, 
telecommunication operators, etc.) and provides the analysis results for administration plane 
to generate service chain policies.  

As a core role in our framework, SPCM computes a proper service path for subscriber’s 
requests. Then the proper service function path that chains all of the required service 
instances is announced to the source nodes (such as gateways). Finally, the source node 
steers the traffic toward the next node in the service chain by encapsulating the path 
information into the corresponding packets’ header. The detail content will be described in 
section 4.2. 
B. Administration Plane 

The administration plane can be viewed as a sub-plane of controller, which aims at 
simplifying the construction operation of CNSC. There are two roles in administration plane: 
one is to maintain the registration information of services and provide information inquiry 
for SCP decision by the Atomic Service Database (ASD). The other one is to configure the 
specific service chain policies according to service demands. 

ASD is used for storing AS information distributed across a network. Through the 
information exchange between the administrator and the controller, ASD can acquire the 
information announced by various service providers, which contains instance information of 
services (e.g. names, function descriptions, versions, sizes, etc.) and location information of 
service nodes obtained from local routing tables, which means that the service providers turn 
on the function in service-providing nodes. 

The administrator begins to configure the service chain policy after receiving the service 
request analysis results from the controller. The results include the data traffic state, 
description of services, or needs for some services in a default order. The administrator 
inquires ASD for looking up proper services and chooses services that satisfy subscriber’s 
request to achieve the construction of SCP described in section 3.2. Fig. 4 shows different 
SCPs in administration plane, one of which is SCP1 for the traffic through Load Balance 
(LB), DPI, and Firewall. And then these candidate SCPs are delivered to the service path 
computation module for specifying the service path. 
C. Forwarding Plane 

The forwarding plane can mainly be divided into three parts: Data-Forwarding Nodes 
(DFN), Service-Providing Nodes (SPN) and NFV platforms. Data-forwarding nodes are 
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used for only delivering the traffics among nodes and Service-providing nodes connected 
with NFV platforms can forward the traffics both among different nodes and between nodes 
and their corresponding platforms. 

NFV platforms provide a virtualization-based method for service implementation. These 
NFV platforms can be deployed on universal x86 hardware servers instead of a special and 
expensive device, on which services are embedded through virtual machines at a low cost. 
As shown in Fig. 4, each service runs on one virtual machine, as a result, every service is 
independent from each other owing to isolation of virtual machines. The administrator just 
needs to manipulate the virtual machines when he wants to add or delete services.  
D. Service Path Expression 

As stated above, the path control information from the SPCM is encapsulated into packets’ 
header so that the traffics conforming to the character of CNSC can be steered. In order to 
reduce the size of path information and improve security, we adopt the Path IDentifier (PID) 
and Service IDentifier (SID) which are proposed in [21]. A single path with in a domain can 
be identified by a sole PID consisting of node number and path number. The node numbers 
can represent different nodes without repeat in a specific domain, and path numbers can 
denote the links that connect to the nodes. And SID is a service number representing 
different services implemented on NFV platforms.  

As shown in Fig. 4, SCP1 is configured with the sequence of services: LB, DPI and 
Firewall which are named SID1, SID2, and SID3, respectively. According to the service 
path computation algorithm, the controller finds out a service path for SCP1 which is 
identified by CID1 and marked as solid red line with arrows. Then, the services composition 
of CID1 is mapped to path information which is composed of PIDs and SIDs, shown as: 
{CID1, PID1, SID1, PID2, PID3, SID2, PID4, PID5, SID3, PID6}. 

4.2 SPCM Algorithm Modeling 

The algorithm used in SPCM enables the joint embedding of individual service chain 
policy on a substrate network in an optimal way, which can achieve traffic routing 
optimization (in terms of load balancing, average delay, maximum node resources utility, 
etc.), while satisfying a correct traversal of service functions for each flow. 

In this section, we abstract the service path computation problem as optimization problem 
and present an SPCM algorithm based on integer linear programming that efficiently finds a 
routing with a guarantee on the maximum network utility, while satisfying all constraints of 
network service chain policy. Before modeling SPCM algorithm, we present the related 
symbols used in this paper and list them for querying conveniently in Table 1.  
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Table 1. Notations of Service Path Computation Problem 
Symbol Annotation 

C  One network service chain policy, and , ,C C CC T S D∀ < >  

CT  
The network traffic pattern of C  and sou des= , ,C

C C CT N N B , where sou
CN , des

CN , CB  are the source address, 

destination address and business class of C , respectively 

CS  
The atomic service request set of C  and ( ){ }1= , , 2,3 , _C C C C

g g gS a a g Lengt Ca h− =∈   where _Length C  is 

the number of atomic services in C  

CD  
The demand indicators set of C  and { }node link= ,C

C CD d d  where node
Cd (or link

Cd ) is the node (or link) demand 

indicators of C  

node
Cd  

{ }node kNI
C Cd d k +∈ ∈N

 
where kNI  is the node indicator. We focus on the processing, storage and switching 

(throughput) capability of network nodes, such that there is { }node proc stor thro= , ,C C C Cd d d d   

link
Cd  

{ }link kLI
C Cd d k +∈ ∈N  where kLI  is a link indicator. We focus on the link delay, packet loss rate and bandwidth 

indicators such that there is { }link delay loss band= , ,Cd d d d . Many other indicators can be added in our algorithm easily 

SG  The physical substrate network topology and S S S( , )G N L=  

SN  The set of substrate nodes with ( )S S1, 2, ,in N i N∈ =   ( * is the set cardinality ) 

SL  The set of substrate links with ( ) ( )S S, , ,i j i j i jl n n L n n N n n∈ ∈ ≠  

k

i

NI
nvol  The volume of indicator kNI  on substrate node in   

( ), j

k

i

L
l n

I
n

vol  The volume of indicator kLI  on substrate link ( ),i jl n n  

U  The network utility generated by placing demands of network service chain 
N
inu  The network utility generated by substrate node in  

( )
L

,i jl n n
u  The network utility generated by substrate link ( ),i jl n n  

( )S C  The set of network service chain policy in network 

cC  The c-th network service chain policy in network and ( )cC S C∈  

( )cA C  The set of atomic service of cC  and ( ) ( )( )_1 2, , _, , c
c
g c cLength C Lengtha A CC g A C∈ = =  

( )cL C  The set of service path of cC  and ( ) ( )( ),c c c c
g h c g hl a a L C a a∈ ≠  

r

i

A
nδ  A binary parameter indicating, if node in  hosts a service of type rA , 1r

i

A
nδ = ; else 0r

i

A
nδ =  

,c g
ix  A binary variable indicating, if service c

ga  is mapped into substrate node in , , 1c g
ix = ; else , 0c g

ix =  

( )
( ),

,

c c
g h

i j

l a a

l n n
f  

A binary variable indicating whether service path ( ),c c
g hl a a  passes through substrate link ( ),i jl n n . 

( )
( ) { },

,
0,1

c c
g h

i j

l a a

l n n
f ∈  

When the service path computation demands set ( )S C  are obtained in advance, an 

integer linear optimization model can be posed whose feasible solution defines a routing that 
satisfies all network constraints. During service path computation, we select proper substrate 
nodes with required atomic service instances and substrate links for each chain cC , such that 
the total network utility can be improved as much as possible. We formulate model of SPCM 
problem as follows:  
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( )
( )( )

( )
( )

( )
( ) ( )( )( )

,

S S

,N L
,

,
,

,

max   ,
i

c c
g hc g

i i j
i j

jc c c
c ci g c g h c

l a a
i n l n n

C S C C S Cn N a C L l a a C
l n n

A l n n L

U x f x u f ua β
∈ ∈∈ ∈ ∈ ∈

= +∑ ∑ ∑ ∑ ∑ ∑     (3) 

S

,. .     1
c
g

i

i

ac g
i n

n N

s t x δ
∈

=∑ , ( ) ( ), c
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g hc g

i j

l a a
i l n n

x f ∈ , ( ) ( ) ( ) ( )S , , , ,c c c
i c g c g h cn N C S C a A C l a a L C∀ ∈ ∈ ∈ ∈      (10) 

The above Equations (3)-(10) represent the integer linear programming formulation of the 
service path computation problem, which are consisted in two parts : the objective part 
described by Equations (3) and the constraints parts described by (4)-(9). We explain them 
specific meaning as follows:  
A. Constraints 

(a) Service uniqueness: Equations (4) and (5) guarantee that for every network service 
chain only one service instance of each type is placed, and that the placement is on a unique 
substrate nodes that are capable to host the respective network service.  

(b) Capacity constraints: Equation (6) represents the resource volume constraint of the 
physical nodes. Equation (7) represents the bandwidth resource constraints of the physical 
links. The QoS (delay and packet loss rate) of service path for each service chain is bounded 
by Equation (8). 

(c) Flow conservation constraints: Equation (9) represents that the volume that a flow is 
sent and received must be one. But for middle nodes, the volume that a flow enters a node 
equals the volume that a packet exits from it. In addition, Equation (10) is the variables 
integer constraints. 
B. Objective 

The main objective of service path computation is to find a set of substrate nodes and 
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links and design optimal routing approach so as to maximize the resources utility U  of 
substrate network. In this paper, we use the utility function of selected service nodes and 

links to denote network utility as shown in Equation (3), where ,α β ( + =1α β ) are 

combination factors. In the selection procedure, the more sufficient the resources volume of 

network node and link are, the more utility can be generated by them. Thus, node utility N
inu  

and link utility ( )
L

,i jl n n
u  is defined as:  

( )( )

,
,

NN exp

c g k

c
c g c

i k

i

S

NI
i c g

C a C
n NI

C A
k

nk

x d
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vol
ω

∈ ∈

 
 

= − 
  
 

∑
∑

∑
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in N∀ ∈                 (11) 
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i j ii j
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n n
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LIl n n
k l n nc
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  
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  
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∑ ∑
∑

∑
, ( ) S,i jl n n L∀ ∈  

(12) 
In equations (11) and (12), we use the ratio between demand volume and actual volume 

on nodes (or links) to express the sufficient degree of each resource indicator. The smaller 
the ratio value, the more sufficient the resource is. Then, the affine coefficients N

kω  (or L
kω ) 

are used to combine the different indicator ratio values, where there is N 0kω ≥  and 
N 1kk

ω =∑  (or L
kω ). Finally, we use an exponential function ( )exp *  to transmit the 

combination ratios so that the utility value N
inu  (or ( )

L
,i jl n n

u ) increases with the sufficient 

degree of network resources. 

4.3 Optimal Solution of SPCM Algorithm 

The optimization problem formulated above belongs to the class of Integer Linear 
Programs (ILP). In general, this problem is NP-hard, and it is extremely difficult to obtain its 
solution. Here, to quickly compute good solutions, we propose a heuristic approach to 
construct a feasible service path scheme for SPCM algorithm. This heuristic approach 
framework consists of two parts: node mapping based on service capacity matrix and link 
mapping with segment routing policies. 
A. Node mapping based on service capacity matrix 

In the node mapping stage, we design a selection mapping algorithm (Algorithm 1) based 
on node service capacity matrix. It works as follows:  

First, we define the service capacity matrix for nodes in network. 
Definition 2. Service Capacity Matrix: Given a substrate network S S S( , )G N L= , the 

service capacity matrix of SN  is formulated as Nod
,[ ]i r N Rm ×=M  where ,i rm  is the service 
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capacity of node ( )S S, 1,2, ,i in n N i N N∈ = =
 that can provide for the type of atomic 

service rA . Each service capacity ,i rm  can be calculated by 

,
N
i

r

i

A
i nnrm u δ×=                                  (13) 

where N
inu  is utility value of node in  and can be obtained by Eq.(11), and k

i

A
nδ  is a binary 

parameter for indicating whether there is service rA  on node in . 

Second, we construct a service request matrix Req
,[ ]r r R Rq ×=M  for policy cC . ReqM  

is a diagonal matrix, i.e.  

,

1, if =  and 
=

0, el
;

s
=

e

c
r g

r r

A ar r
q





,  ( ) ( )( )1,2, ,c
g c ca A C g A C∈ =          (14) 

Third, we calculate the selection matrix sel
,=[ ]i r N Re ×M  which contains the required 

services for policy cC  as:  
sel Nod Req= ×M M M                                (15) 

Each column vector of matrix selM  is denoted as ( )T
1, ,= , ,r r N re e e



 ( )1,2, ,r R=   such 

that sel
1= , , Re e  M
 

 . If 0re =


, service rA  cannot be used for policy cC ; else, node in  

is a candidate node for policy cC  when 0re ≠


 and ( ), ,0i r i r re e e≠ ∈


. 

Finally, we select the optimal nodes for the policy cC  based on the matrix selM . For 
each ( )c

g ca A C∈  and = c
r gA a , we choose node in  as the service node for service c

ga  

when the in  satisfies the condition that is  

( ){ }sel
, , ,arg max , 0,  satisfies Eq. 6i r i r i r r r ii

e e e e e n= ∈ ≠
gg gg

                 (16) 

We use the symbol sel
,i gn  to represent the corresponding node of the sel

,i re . All the selected 
nodes compose the service nodes set NΩ , as follows:  

( ){ }N sel
, 1,2, ,i g cgn A C=Ω = 

                        (17) 

As stated as above, we further describe the process of node mapping in Table 2 
 

Table 2. Node mapping procedure of SPCM algorithm 
Algorithm 1. Node Mapping based on Service Capacity Matrix 

1. Compute the service capacity matrix NodM  (Eq.(13)); 
2. Compute the service request matrix ReqM  (Eq.(14)); 
3. Compute the selection matrix selM  (Eq.(15)); 
4. for each c

ga  in sorted ( )cA C  do 

5.   sel
gn Null= ; // initialization of selected node set 

6.   for each ( )1, ,rA r R=   do; 

7.    if =c
g ra A  and 0re ≠



 then do 

8.       While ( sel
gn Null= and re Null≠



) 

9.         { }sel
, , ,arg max , 0i r i r i r r ri

e e e e e= ∈ ≠
gg gg

; 

10.         sel
,i i gn n ; // node in  is selected as spare service node of atomic service c

ga  

javascript:void(0);
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11.         if sel
,i gn  satisfies the constraints Eq.(6) 

12.           sel sel
,i g gn n  

13.         else  
14.           re



= sel
,\r i re e



; // element sel
,i re  is deleted from vector re



 
15.         end if 
16.       end while 
17.       sel N

gn Ω ; // node sel
gn  is added into set NΩ  

18.    else 
19.       sel N

gn Ω  

20.     end if 
21.   end for 
22. end for 
23. for each sel

gn  in NΩ  

24.    if sel
gn Null=  

25.       Output mapping failure 
26.    end if 
27. end for 
28. return Output mapping success result NΩ  

 
B. Link Mapping with Segment Routing 

In the link mapping stage, we design a link mapping algorithm (Algorithm 2) based on 
Segment Routing (SR) [26] to find the optimal routing scheme. SR provides enhanced 
packet forwarding capabilities while keeping a low configuration impact on networks. The 
basic idea of SR is to prepend packets with a stack of labels which is called segments and 
encapsulated in a segment routing header. A segment including node segment and adjacent 
segment represents an instruction. There, we focus on node segments that can be used to 
define paths in a network topology.  

Initially, we introduce the definition of segment routing path [22] and use the segment 
routing path for describing the link mapping of service chain.  

Definition 3 Segment Routing Path (SR-path): Given two nodes ( )S,s t N s t∈ ≠ , a 
SR-path from s  to t  is a non-empty sequence of forwarding graphs  

( ) ( ) ( ) ( )1 1 2 1, , , , , , , ,i i iFG s n FG n n FG n n FG n t−  

such that the destination of a forwarding graph is the source of its successor in the sequence. 
Also, the source of the first forwarding graph and the destination of the last forwarding graph 
respectively correspond to the source and the destination of the SR-path. A forwarding graph 

( )1,i iFG n n−  describes a flow between a pair of nodes ( )S
1 1,i i i in n N n n− −∈ ≠  in the 

network, which is a non-empty directed acyclic graph rooted in 1in −  and converged towards 

in . Three SR paths from source node s to destination node t are illustrated in Fig. 5.  
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Fig. 5. Three different SR-paths based on the forwarding graphs 
 

In Fig. 5, the shadow nodes represent nodes that the segment routing policy requires to 
pass through. The arrow lines indicate the optional connected paths between the adjacent 
forwarding nodes. For example Fig. 5(b), the routing policy requires to pass through three 

nodes (i.e. s, a, t) and the SR path consists of ( ),FG s a  and ( ),FG a t . The path set of 

( ),FG a t  includes three optional paths namely a c t→ → , a d t→ →  and 

a b d t→ → → . 
The aim of the service chaining policy is to force a traffic to traverse a particular sequence 

of service nodes. Thus, we can use the SR-path to represent the service path. Through the 
node mapping, the set of nodes providing the corresponding service for policy cC  is 

obtained from Eq. (17), i.e. ( ){ }N sel
, 1,2, ,i g cgn A C=Ω = 

. Let sou
cCN , des

cCN  be the source 

and the destination node of cC , and the SR-path of the service chaining policy cC  is shown 
as  

( ) ( ) ( ) ( )( )sou sel sel sel sel des
,1 1 2 , 1 , ,, , , , , , , , ,

c ccC i i g i g CCi AFG N n FG n n FG n n FG n N− 

        
(18) 

Then, we calculate the forwarding path for each forwarding graph ( )sel sel
, 1 ,,i g i gFG n n− . 

According to the substrate network S S S( , )G N L= , we design a K shortest-path algorithm to 
construct a connected path between sel

, 1i gn −  and sel
,i gn  for each forwarding graph 

( )sel sel
, 1 ,,i g i gFG n n− .  

First, based on the link bandwidth demand of policy cC  (noted as 

( )( )_ cband dem nd La C ), we construct the constraints through Eq.(7) as follows: 

( )( ) ( )( ) ( )
b n

,
a d_ _,

i j
i j l nc n

band load band demand C vol ln n L+ ≤ , ( ) S,i jl n n L∀ ∈       (19) 

where the parameter ( )( )_ ,i jband loa l n nd  is the bandwidth occupation of link ( ),i jl n n . 

We delete links which do not satisfy the constraint of Eq. (19) from the SG  and get the 
sub-graph S S S

1 1( , )G N L=  where 1
sl L∀ ∈  satisfies the constraint of Eq. (19). 

Furthermore, based the link utility of Eq.(12), we calculate the utility value for each link 
by  
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, ( ) 1, s
i jl n n L∀ ∈

(20) 
where delay

cTh  and loss
cTh  are the thresholds of delay and loss packet rate required by policy 

cC , respectively. Using ( )
L

,i jl n n
u−  as link weight value in S

1G , we can obtain the weighted 

graph w
1G .  

And then, we assume that on graph w
1G , a K Shortest-Path algorithm (KSP) is used for 

searching traffic routing between sel
, 1i gn −  and sel

,i gn . KSP is an extended version of the 
shortest path algorithm. Being different from the shortest path algorithm, KSP can calculate 
K alternative paths between the starting point and end point, and form the shortest path group 
to meet the user's choice demand.  

K shortest-path algorithm can achieve K paths which are denoted as { }=1,2 ,gP Kκ κ  . 

From the path set, we can select an optimal path FG
gP  as the path between sel

, 1i gn −  and sel
,i gn , 

and FG
gP  satisfies 

L loss loss delay delG yF aarg max ,
g g g

g g gg gg

g
P P P

l l c l c
l l l

u vol d vol dP
κ κ κ

κ κ κκ κ κ
κ

∈ ∈ ∈

  = 


≤
 

≤ ∑ ∑ ∑ , =1,2 , Kκ 
    (21) 

Eq. (21) means that gP κ  where the links has the maximum of utility summation and 

conform to the conditions of (8) is selected as the path for forwarding graph ( )sel sel
, 1 ,,i g i gFG n n− . 

Finally, we calculate each path FG
gP ( ( )1,2, , cg A C=  ) for each forwarding graph and 

connect all paths as the SR-path of policy cC  as follows:  

( ){ }L FG 1,2, ,g cAp g CΩ = = 
                        (22) 

In summary, we represent the process of link mapping in Table 3. 
 

Table 3. Link mapping procedure of SPCM algorithm 
Algorithm 2. Link Mapping with Segment Routing 

1. Input the selected service node set NΩ ; 

2. Input the network topology S S S( , )G N L= ; 
3. Represent the SR-path by forwarding graph as Eq. (18); 
4. for each ( )sel sel

, 1 ,,i g i gFG n n−  in SR-path do 

5.    Compute sub-graph S S S
1 1( , )G N L=  by Eq. (19); 

6.    Compute weighted graph w
1G  by Eq. (20); 

7.    Solve path FG
gP  for forwarding graph ( )sel sel

, 1 ,,i g i gFG n n−  by Eq. (21); 

8. end for 
9. for each FG

gP  in LΩ  

10.    if FG
gP Null=  

11.       Output mapping failure 
12.    end if 
13. end for 
14. return Output mapping success result LΩ  as the SR-path of policy cC  
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5. Experiments and Evaluation 
In this section, we first evaluate the performance of SPCM algorithm. Then we implement 

CNSC mechanism in a prototype to illustrate its usability and efficiency. 
5.1 Experimental Details 

We perform simulation experiments on two topologies to assess the efficiency of SPCM 
algorithm. The one is a real topology called Internet2 OS3E [27] which is used for advanced 
scientific researches in USA and contains 34 nodes and 42 links. The other one is a synthetic 
topology which is generated by GT-ITM tool [28]. The synthetic topology is a power-law 
random network graph with 100 nodes and the average node degree is set 6. The real 
topology is meant to assess the efficiency of our approach on practical situations, while the 
synthetic topology is used to measure the behavior of our approach on complex networks. We 
implement the proposed algorithms in C++ and execute on a computer equipped with an 
Intel(R) Core(TM) i7 CPU 2.67GHz processor with 2 cores, and 4GB of RAM. 

In the substrate network, we assume each node can be used as the service-providing node. 
The number of service function classes is set 10 and all kinds of services can be uniformly 
deployed on each node. For the simulation, the parameters for network resources and each 
service function are randomly generated with a uniform distribution as follows:  

(a) We consider four network resources namely three node resources (processing, storage, 
throughput) and one link resource (bandwidth). The volume of each network resource with 
each node (or link) is uniformly distributed between 500 and 1000.  

(b) We consider two QoS attributes of each link (i.e. delay and packet loss rate). The 
number of each attribute uniformly ranges from 1 to 5. For each service instance, the required 
volume of each network resource are uniformly distributed between 1 and 10.  

(c) The service chain requests arrive in a Poisson process. The number of atomic service 
instances in each service chain is denoted as “Length_C”. It means that each service chain has 
Length_C different service functions. For each test scenario of “Length_C”, we generate 10 
different requests and then report the average value of the all test cases. 
5.2 Simulation Results 

In the subsection, we measure the efficiency of our approach by analyzing the request 
acceptance ratio and network resources utilization ratio as follows. And for comparison 
purposes, we also evaluate the performance of different algorithms. 

A. Results of request acceptance ratio 
The Request Acceptance Ratio (RAR) is defined by the ratio between the number of 

successfully accepted service chain policies and the number of total service chain request (R), 
which is calculated by 

1
( )

lim
R

cc

R

C
RAR

R
δ

=

→∞
= ∑                              (23) 
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where ( ) 1cCδ =  if the service chain request cC  is accepted by network, otherwise 
( ) 0cCδ = . 

Fig. 6 illustrates the evaluation results of request acceptance ratio with different length of 
service chain on the two experimental network topologies. Firstly, RAR under the same value 
of Length_C decreases with the increase of the number of service chains in each substrate 
network. The reason is that the network load is improved when the number of service chains 
becomes greater. Secondly, the larger Length_C is, the smaller RAR is. Because the longer 
service chains need more atomic service instances which means that more nodes and links are 
acquired. Finally, comparing Fig. 6(a) and Fig. 6(b), we can find that RARs on two 
topologies have the similar variation trend, which can be attributed to the heuristic search 
strategy of SPCM algorithm. The solution of SPCM algorithm may be approximate optimal 
or local optimal and usually complete requests of short service chains in a single node. 
Moreover, the RAR means of the synthetic and real network are respectively 90.4% and 
87.8%, so RAR of the synthetic topology is generally better than that of the real topology. It is 
due to that the synthetic topology with more connectivity is helpful to find suitable service 
path for requests.  

  
(a) RAR results on the real topology (b) RAR results on the synthetic topology 

Fig. 6. The results of request acceptance ratio on two topologies 
 

B．Results of resources utilization ratio 
The Resources Utilization Ratio (RUR) is defined by the average ratio between the 

occupied volume of each resource ( occupied
kivol ) and the total volume of each resource ( Total

kivol ) 
on all nodes and links, which is calculated by 

( )( )
( )( )S S

S S

occupied
+

Total1 1+

1 1

1
k

N L K ki i

i kN L K k kiii k

vol R
RUR

volR

d

d
= =

= =

 
 =
 
 
∑ ∑

∑ ∑
          (24) 
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where k ( =1,2, ,k K ) is resource types, SN and SL  are the total number of nodes and 
links, respectively. ( ) 1k

iRδ =  if node (link) i has k  type of resource, otherwise 

( ) 0k
iRδ = . 

Fig. 7 shows the evaluation results of resources utilization ratio on the two experimental 
network topologies. We observe that RUR increases along with the number of service chains 
in each topology, and the service chains with smaller length value (Length_C) can obtain 
higher RUR. This is because the short service chains are more easily configured by selecting 
less nodes and links. Meanwhile, when the number of service chains is 105, RURs under 
different parameters (i.e. Length_C=2, 4, 6, 8) in the real network are 0.81, 0.75, 0.66, 0.65, 
respectively, while RURs in the synthetic network are 0.88, 0.85, 0.803, 0.785, respectively. 
By mean calculation, the RUR average values in the real and synthetic network are 71.8% 
and 82.9%, respectively. Thus, the synthetic network achieves higher resource utilization 
compared with the real topology.  

 

  
(a) RUR results on the real topology (b) RUR results on the synthetic topology 

Fig. 7. The results of resources utilization ratio on two topologies  
 

C. Comparison of different methods 
In this section, we compare our SPCM algorithm with other three algorithms, denoted as 

“Random”, “Naive” and “SCIM” respectively. Here, “Random” way means randomly 
selecting nodes and links for service path of each service chain. “Naive” approach simulates 
a manual service chain placement which installs each service chain upon a node, and after 
the current node’s resource is exhausted, the next node is started. “SCIM” proposed by [18] 
uses the simulated annealing algorithm to find the service path. The evaluation results of 
different methods in the real topology are shown in Fig. 8, Fig. 9 and Fig. 10. And the 
computing results for “Naive” approach can be chosen as the performance benchmark. 
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Firstly, Fig. 8 shows the results of RAR with different service chain length. When the 

increase of number of service chains makes the network overload, RAR continues to 
decrease. SPCM and SCIM can always outperform than other two methods, and SPCM 
performs better than SCIM when the number of service chains is greater than 104. The 
reason is that SPCM can globally allocate network resources so that the service chain 
requests are able to be accepted as much as possible. With the comparison of Fig. 8(a) and 
Fig. 8(b), we can obtain that the longer the service chains are, the more obvious the 
advantage of our SPCM method is.  

 

  
(a) RAR results with Length_C=2 (b) RAR results with Length_C=4 

  
Fig. 8. The results of request acceptance ratio with different methods  

 
 

Secondly, the results of RUR with different service chain length are illustrated in Fig. 9. 
Since SPCM and SCIM can cooperatively manage and schedule the network resources, they 
can achieve approximate performance on RUR and lead to higher resources utilization than 
other two approaches. The improvement of resources utilization ratio caused by SPCM can 
reach more than 20%, compared to the random approach which is generally difficult to 
satisfy the service chain requests. This is because that with the increase of the number of 
service chains, SPCM algorithm can rationally deploy the service chains by overall 
consideration of all network node resources, while the random method is more dependent on 
the resources of a single node. 
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(a) RUR results with Length_C=2 (b) RUR results with Length_C=4 

Fig. 9. The results of resources utilization ratio with different methods 
 
Thirdly, the runtime reflects the response time from the request to the service chain 

construction completion and also show the computation overhead of different methods. In 
the graph on Fig. 10, we measure the required run time by each approach with respect to an 
increasing number of service chains. In Fig. 10, we can see that the runtime of random 
method is the least and the size remains basically the same. The reason is that the random 
strategy completes the construction request based on the random number, but does not need 
to solve the optimization problem. The running time of the other three methods grows with 
the number of service chains, and SCIM method presents the most running time. Our SPCM 
method saves average 30% running time while achieving approximate service efficiency 
compared to SCIM algorithm. Although the runtime of SPCM is longer than the Naive 
algorithm, RAR and RUR of the Naive algorithm are worse.  

 

  
(a) Runtime results with Length_C=2 (b) Runtime results with Length_C=4 

Fig. 10. The results of runtime with different methods 
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5.3 Prototype Implementation 

Towards dependable validation of CNSC mechanism, we design a proof-of-concept 
implementation as shown in Fig. 11. In the prototype, CNSC module and the SR module are 
operated on the SDN controller which deploys service chaining decisions through south 
interface. We use ONOS as the SDN controller and Openflow1.3 protocol as the south 
interface between the controller and switches. ClickOS platforms are used to simulate virtual 
atomic service instances in the network.  

The prototype is a mesh network that consists of five OpenFlow switches implemented by 
NetFPGA-10G, and four servers supporting three ClickOS platforms and ONOS controller 
are connected with switches. The testing scenario reflects a typical broadband network 
deployment case which describes the communication between users and the video server. 

 

Switch1

ClickOS  
platform A

Switch2

Switch3 Switch4

User 

Video Sever

SDN 
controller

Switch5

Controller

SR module CNSC module

ClickOS  
platform B

ClickOS  
platform C

Atomic  services

Atomic  services

ASes

 
Fig. 11. The illustration of CNSC prototype. 

 
In order to show the usability of our prototype in the real network, we setup the service 

scene where the user sends a message to get the files stored in the server and requires a set 
of services. We simulate the network traffics based on datacenter network traffic traces. 
Then a robot program is developed to generate a number of service chains policies for 
traffics, and each service chain has different the number of atomic services which increase 
from 1 to 5. We calculate average RUR and average utility values of each node through 
Eq.(11) and compare our method with the Naive approach, as shown in Fig. 12. 

We get that the average utility values of network node from CNSC are about 0.71 and 
0.43 which are respectively calculated by meaning the values of blue bars in Fig. 12(a) and 
Fig. 12 (b), while the average utility values of network node from Naive approach only are 
0.58 and 0.37, which are respectively calculated by meaning the values of red bars in Fig. 
12(a) and Fig. 12 (b). Therefore, our CNSC can improve the node utility 15% compared to 
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Naive approach. This is because our SPCM orchestrates service chains cooperatively in the 
network and could fully utilize the resource on different service nodes.  

 

  

(a) Total service chain number on the fly 102 (b) Total service chain number on the fly 104 
Fig. 12. The average utility value of network node under different service chain number 

6. Conclusions 
This paper has presented a configurable network service chain (CNSC) mechanism to 

provide network services in a flexible way and implement a scheme prototype by combining 
SDN controller with NFV platforms. We first abstract the network service functions as 
atomic services and formulate the problem of network service chaining. Then a network 
service chaining framework is proposed to satisfy the service policy requests by 
cooperatively combine atomic service instances in the optimal way. In this framework, we 
design service path computation algorithm (called SPCM) based on a service capacity 
matrix of node and a link mapping with segment routing. Finally, we validate the 
performance of our SPCM algorithm in an experimental environment. And with SPCM 
solver as the core, we design a prototype system to demonstrate the functionality and 
advantages of CNSC architecture. In the future work, we will increase the service prediction 
mechanism and the network state sensing mechanism, so that our model can be extended to 
adapt to dynamical construction of service chains. 
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