
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 8, Aug. 2016 3701
Copyright ⓒ2016 KSII

A Mechanism for Configurable Network
Service Chaining and Its Implementation

Gang Xiong 1*, Yuxiang Hu 1, Julong Lan 1 and Guozhen Cheng 1

1 National Digital Switching System Engineering & Technology Research Center, Zhengzhou, Henan, P.R. China
[e-mail: xg1226@126.com]

[e-mail: chxachxa@126.com]
[e-mail: ndscljl@163.com]

 [e-mail: guozhencheng@hotmail.com]
*Corresponding author: Gang Xiong

Received February 4, 2016; revised June 14, 2016; accepted July 27, 2016; published August 31, 2016

Abstract

Recently Service Function Chaining (SFC) is promising to innovate the network service
mode in modern networks. However, a feasible implementation of SFC is still difficult due
to the need to achieve functional equivalence with traditional modes without sacrificing
performance or increasing network complexity. In this paper, we present a configurable
network service chaining (CNSC) mechanism to provide services for network traffics in a
flexible and optimal way. Firstly, we formulate the problem of network service chaining and
design an effective service chain construction framework based on integrating
software-defined networking (SDN) with network functions virtualization (NFV). Then, we
model the service path computation problem as an integer liner optimization problem and
propose an algorithm named SPCM to cooperatively combine service function instances
with a network utility maximum policy. In the procedure of SPCM, we achieve the service
node mapping by defining a service capacity matrix for substrate nodes, and work out the
optimal link mapping policies with segment routing. Finally, the simulation results indicate
that the average request acceptance ratio and resources utilization ratio can reach above 85%
and 75% by our SPCM algorithm, respectively. Upon the prototype system, it is
demonstrated that CNSC outperforms other approaches and can provide flexible and
scalable network services.

Keywords: Service chain; software-defined networking; network function virtualization;
network security

http://dx.doi.org/10.3837/tiis.2016.08.016 ISSN : 1976-7277

3702 Xiong et al.: A Mechanism for Configurable Network Service Chaining and Its Implementation

1. Introduction

Nowadays, legacy network services (or functions) are mainly introduced by a wide

spectrum of specialized appliances or middleboxes (e.g. Firewalls, Deep Packet Inspection
(DPI), Intrusion Prevention/Detection System (IPS/IDS)). However, as shown in Fig. 1(a),
traditional service models are limited to accommodate diverse requirements, since that these
hardware-based and proprietary appliances are costly and difficult to manage in an optimal
fashion or to scale up and down with shifting demands [1]. Even worse, the ossified way of
deployment, which has network services inserted on the data-forwarding path between
communicating peers, makes it impossible to reuse and change the service components.

Recently, two new networking concepts, namely Network Functions Virtualization (NFV)
[2] and Software Defined Networking (SDN) [3], have emerged aiming at cost reduction,
increase of network scalability and service flexibility. Compared to legacy network, the
integration of “SDN+NFV” eases the network function innovation via Service Function
Chaining (SFC) [4], which is being used to steer flows through appropriate network
functions and enforce network service policies (as shown in Fig. 1(b)). Taking network
security service for example, each network application may require a certain set of security
functions (e.g. virtual Firewalls and IDSes) and these security services can be dynamically
chained in a particular sequence in order to satisfy the security requirements of application
data flows. Particularly, the mechanism of controlling routing through the specified security
service is also called Security Service Chaining (SSC) [5]. It is anticipated that with the
advantages of capital expenditures (CAPEX) and operating expenses (OPEX), SFC
methodology will inevitably become popular in handling network service functions in the
near future.

Firewall

IDS

DPI

Virus and
malware scannnig

Traffic
(With security

service)

Traffic

(With security
service)

NFV service platform

SDN control logic
SFC appliction

Module
Other application

Module

(a) The legacy network environment (b) The network environment of SDN/NFV
Fig. 1. A typical site of network service model in different networks

However, in addition to packet forwarding, network service can buffer, inject or block

certain packets, as well as proxy entire connections. When these services are used in an SFC
environment, their actions and properties require careful design and extension. On the other

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 8, August 2016 3703

hand, under limited network resources constraints, such as processing, storage of nodes and
link bandwidth, service functions process should be conducted carefully to fully utilize
network resources. Therefore, making SFC in networks with virtual service is even a more
difficult task and proposes some challenges for network administrators.

In this paper, a Configurable Network Service Chaining (CNSC) mechanism based on
“SDN+NFV” is proposed to in order to achieve efficient and coordinated control of service
functions over a network. The main contributions of this paper are as follows:

 We formulate the problem of network service chaining and propose a new framework
for SFC construction by employing SDN, NFV and segment routing.

 We model service path computation involved in CNSC as an integer linear
programming problem. As the problem is a NP-hard, a heuristic algorithm based on
network utility maximization is developed to approach the optimal solution.

 We evaluate the efficiency of proposed service path computation method, and validate
the usability and feasibility of our CNSC mechanism through a realization prototype.

Roadmap: Section 2 states related works. Section 3 describes the network service
chaining problem. Section 4 presents a new framework for constructing network service
chains, and discusses some implementation issues in SDN and NFV. Section 5 shows the
experiments and evaluation; Finally, Section 6 concludes this paper.

2. Related Work
The integration of “SDN+NFV” eases the network service innovation via outsourcing

network functions and constructing dynamic service function chains. The main work related
with these research can be summarized as follows:
A. Service Function Chaining Architecture

IETF has taken initiatives towards developing the formal architectures for SFC. The SFC
architectural approach proposed by IETF (Quinn and Elzur [6]) suggests implementation of
data-plane for supporting network function forwarding. Qazi et al. [7] present a SIMPLE
policy enforcement layer based on SDN to efficiently steer middlebox-specific traffic. With
OpenFlow protocol [8] (McKeown et al.), Zhang et al. [9] propose a scalable framework
(called StEERING) for dynamically routing traffic through any sequence of middleboxes.
Fayazbakhsh et al. [10] develop FlowTags architecture to integrate FlowTags-enhanced
middleboxes into SDN networks. Further, Gember-Jacobson et al. [11] design a control
plane called OpenNF that can provide efficient and coordinated control for reallocation of
flows across network functions. Xia et al. [12] address an efficient optical service chaining
architecture for network function virtualization in data centers.
B. Service Description and Provision

Service function chain is an abstracted view of a network service that specifies the set of
required service functions as well as the order in which they must be executed. First step
towards implementation of a service chain is to describe and provide network services. In

3704 Xiong et al.: A Mechanism for Configurable Network Service Chaining and Its Implementation

aspects of service description, Sun et al. [13] summarize the research on service description
languages and enforcement of orchestration policies. Monsanto et al. [14] design a
composing language (Pyretic) that can implement network functionality by controlling the
flow space of switch in a programmatic manner. In terms of service provision, Shin et al. [15]
propose a click-inspired programing framework, called FRESCO, which supports
development of modular function programs in an independent SDN controller. Martins et al.
[16] provide a ClickOS platform to implement virtual network functions so that network
service functions can be migrated from hardware devices to software environment.
C. Service Function Composition Path

A service function composition path (SFCP) is a core mechanism used by service
chaining system to express the result of applying more granular policy and operational
constraints to the abstract requirements of a service function chain. Baumgartner et al. [17]
address the optimization model of mobile core network virtualization. Cheng et al. [18]
design a matchmaker supporting composition of higher-level policy modules which operate
at a higher layer of the controller stack. Wang et al. [19] develop a combinatorial
optimization model to describe the optimization problem of dynamic function composition.
Li Y. et al. [21][20] propose a unified service chaining framework that jointly controls and
optimizes the resource allocation in SDN/NFV networks. Li T. et al. [21] abstract the service
path selection as a grey system theory problem and propose a service composition algorithm
to steer network traffics. Hartert et al. [22] provide a declarative and expressive approach to
program service functions forwarding in carrier-grade networks.
D. Research Analysis of Service Function Chaining

Various solutions mentioned above so far have addressed the unique and unprecedented
challenges imposed by service function chaining. However, these research works are still not
perfect and there are some problems for further study as follows:

(a) The architectural approaches still lack analytical models and performance analysis
techniques for the proposed solutions. Besides, it is also necessary to emphasize on optimal
mapping model of network services to the underlying physical resources, especially
considering QoS and SLA constraints.

(b) The composition path methods are confronted with the service configuration
complexity [23]. Especially, to optimize network overall performance, it is difficult to solve
service function composition problem which usually is a NP hard problem.

Therefore, our work below is enlightened by existing work but is different from them. We
make an attempt to address the above challenges in SFC architecture. First we develop a
service architecture which can more automatically implement SFC by the instruction of
service policies. Then, we theoretically formulate SFC as a constraint programming and
provide an optimal mechanism to complete service function chain by a heuristic algorithm.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 8, August 2016 3705

3. Problem Overview
The objective of this section is to define the problem of applying the service function

chaining in SDN/NFV networks.

3.1 Description of Service Function Chaining

Service Function Chaining is a technology or system that efficiently manages the virtual
service functions and steers the network traffics through required service functionality. Fig.
2 shows an SFC architecture where data flows from its employees are forced to traverse the
security functions such as LB (Load Balancer), IDS, DPI and firewalls. For example, there
are two types of service chains, one for host H1 and H2: LB→IDS→ Firewall, and the other
one for host H3: DPI→Firewall.

Internet

S1

S2

H1

H2

H3

Firewall1DPIIDS1LB

Flow
classifier

Server

Traffic1

Traffic2

Traffic3

S3

…SFC
Policy

Network service chain field
Service1

IDS2
Firewall2

Service2

SFC work logic

SFC mapping

SFC physical substrate

Traffic1/SFC1

Traffic2/
SFC1

Traffic3/SFC2

Fig. 2. A architecture of service function chaining

SFC technology possesses some characteristics as follows:
Composability: Due to the standardization of service components and the unified

interfaces of various service, SFC can satisfy users’ diversity demand by compositing
different network service elements, as shown in the SFC work logic of Fig. 2. Note that, the
composition model may be a linearly sequence chain or a forking one.

Configurability: Each authorized service provider can readily develop and deploy
various software-based instances in commodity servers through NFV technology. It is
possible that one service has more than one instance in the network, such as the IDS service
with two instances “IDS1”and “IDS2” in Fig. 2. Therefore, operators can select suitable
service instances to configure the service function chain. For example, SFC1
“LB→IDS→Firewall” are implemented by configuring different service instances
distributed in the network.

Reusability: A service instance can be shared by multiple service chains. Likely the LB
instance in node S1 are used by both traffic1 and traffic2 in Fig. 2. In addition, if a new user

3706 Xiong et al.: A Mechanism for Configurable Network Service Chaining and Its Implementation

wants a set of services which is different from the former one, SFC just needs to reuse some
components and adds (or deletes) some ones, and combines them into a new chain for the
user.

3.2 Atomic Service and Service Chain Policy
A. Atomic Service Introduction

A service function means a network or application which is used singularly or in concert
with other service functions within a service chain to enable a service offered by a network
operator. The generic term “L3-L7 services” is often used to describe many service functions.
A non-exhaustive list of security service functions includes: Firewalls, IPS/IDS, DPI, server
load balancers, network virus and malware scanning, Data Loss Prevention, etc.

A service function is called an Atomic Service (AS) in CNSC. To simplify development
of AS, CNSC provides own script language to assist operators in composing ASes from
elementary modules. The description language requires the definition of six different
variables per instance of modular element: (i) Type, (ii) Input, (iii) Output, (iv) Attributes, (v)
Action, and (vi) ID. The Type presents the class of atomic service. The Input/Output denotes
the input/output items for an AS. The Attributes are a set of properties for configurations
which may contain parameters, performance level, resource cost, etc. The Action represents
operation that this AS will perform based on some conditions. The ID is a number generated
to identify individual AS instances. Based on the definition of six variables, we can define
an AS instance as a six-tuple < Type, Input, Output, Attributes, Action, ID>. For example,
Fig. 3 illustrates a toy example for atomic service instance written in XML format. The AS
type is Firewall which monitors the traffic pattern like <dst_port:~80 and dst_IP:
192.168.0.0/16>, and discards all the packets matching the above pattern when detecting
malicious profiles.

<atomic service>
<type>Firewall</type>
<input>All flows </input>
<output>Normal flows</output>
<attrs>
 <logic:and>

 <property name="dst_port">
~80

</property>
<property name="dst_IP">

192.168.0.0/16
</property>
<property name="Performance level">

High
</property>

 </logic:and>
</attrs>
<action>discard</action>
<ID>NDSC_Firewall_001</ID>

</atomic service>
Fig. 3. The instance of atomic service “Firewall”

B. Service Chain Policy

Generally, a Service Chain Policy (SCP) defines the required atomic services and
associated order (ASi→ASi+1) that must be applied to packets and/or frames, as shown in the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 8, August 2016 3707

work logic layer of Fig. 2. A service chain policy does not specify the network location or
specific instance of atomic services (e.g. firewall 1 vs. firewall 2). We gives the following
definition for a service chain policy.

Definition 1 Service Chain Policy: { }1,2, ,kA k K= =  ,

{ }1,2, ,j jDemand J==  , and { }, , 1,2, ,t tt destinationsour business tce T== < > > ,

(, ,K J T +∈N) represent atomic services set, demands set and network traffics set,
respectively. A service chain policy is represented as follows:

(), , , ,,SCP T S D T S D< > ∈ ∈ ∈    (1)

where atomic services set  is a list of AS identified by function types and each service
has several AS instances. Network traffics set  contains different traffic delivery patterns,
where traffic t is defined by the source address (tsource), destination address (tdestination),
and business class (tclass). Demands set  defines specific performance profiles, such as
the performance levels of ASes.

Each SCP varies with the difference of traffic patterns and the required services.
Therefore, a Chain IDentifier (CID) is assigned to mark the service chain police, and the
service chain classifier can use CID to determine SCP classification and the service path of
traffic through the physical network.

3.3 Instantiation of Service Function Chaining

The instantiation of SFC focuses on mapping between service chain policy and physical
network in an optimal way, as shown in Fig. 2. The main process involves with the atomic
service instances selecting and traffic steering among network nodes respectively. In essence,
the instantiation of SFC can be abstracted as the Service Path Computation (SPC) problem
[24], where this process should be conducted carefully to fully utilize the network resource.
For example, we should distribute flows among different service instances and links for load
balance. Selecting service path optimally on demand is more difficult than that in the current
networks with the shortest path strategy where only node resource is considered. This
complexity is caused by that it is time-consuming for searching optimal service nodes which
can provide the instance of each required atomic services, and it is also difficultly in
selecting suitable links due to the changes of occupied resources.

Our primary objective is to find out how service chain policies should be employed so

that the network utility is maximized. Hence, based on the optimization mathematical model,

we formulate service path selection problem as a centralized joint network Resources

Utilization Maximization (RUM) problem with some constraints, as follows:

3708 Xiong et al.: A Mechanism for Configurable Network Service Chaining and Its Implementation

()

() ()
() ()

S

S

 max

: Roccupied Rcapacity ,

. . : Roccupied Rcapacity ,
 s.

ff
RUM

n N n n

s t l L l l
other constraint conditio

S C

n

P
∈

∀ ∈ ≤
∀ ∈ ≤






�
 (2)

where f is a feasible configuration of network resources and  is the set of all feasible
configuration. SN and SL are respectively the node set and link set. ()Roccupied *
denotes the occupied resources on any node or link, and ()Rcapacity * denotes the
resources capacity of any node or link. In what follows, we formulate the service path
selection problem as a graph problem, and propose a heuristic algorithm that achieves a
proper service instance selection and traffic path steering.

4. Solution Formulation
In this section, we present CNSC mechanism to response the requests of network service

chain police.

4.1 System Architecture of CNSC

Based on the main ideas of SDN, the basic idea of our framework is decoupling network
control from forwarding hardware, which promises to simplify network management and
enables service innovation through network programmability and service function
orchestration. In order to implement CNSC in a flexible and efficient way, an administration
layer is designed to configure and reconfigure service chain policies. Furthermore, because
of the topology-independent of function virtualization technology, we consider a NFV
method to provide network services in the data forwarding plane, which can provide service
functions with no limit to where they are located. The components of CNSC framework are
illustrated in Fig. 4. In following content, we detail the role of every component of
architecture.

SDN controller

Demand
Anlysis
Module

Service Path
Computation

Module

Administrator

ASi1 ASi2 ASi3

SCPi

Administration
Plane

Control Plane

Forward Plane

Service
demand

Users

user terminal

DFN

SPN

NFV
platform

Gateway1
Gateway2

ASD

NRD
Information

exhange

Network state
sensing

Service path control
information

N4

N1

N3

N6 N8

N5

N7

N9

LB1

FW1

SCP1
FWDPILB

AS11 AS12 AS13

IDS1

LB2

FW2

IDS2

DPI1

DPI2

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

L12
L13

L14

N2

CID1 PID1

PID2

PID3
PID4

PID5

PID6

SID1
SID2

SID3

Fig. 4. Framework architecture of CNSC

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 8, August 2016 3709

A. Control Plane
We design the control plane based on SDN controller, such as ONOS [25]. As shown in

Fig. 4, there are three parts in the control plane. One is the Network Resource Database
(NRD) which is responsible for collecting information about network topology and current
traffic engineering information and providing information for CNSC computation. Another
one is the Service Path Computation Module (SPCM), being responsible for computing the
service paths, and the third one is Demand Analysis Module (DAM) which is responsible for
accepting service demands from network users (including data centers, enterprises,
telecommunication operators, etc.) and provides the analysis results for administration plane
to generate service chain policies.

As a core role in our framework, SPCM computes a proper service path for subscriber’s
requests. Then the proper service function path that chains all of the required service
instances is announced to the source nodes (such as gateways). Finally, the source node
steers the traffic toward the next node in the service chain by encapsulating the path
information into the corresponding packets’ header. The detail content will be described in
section 4.2.
B. Administration Plane

The administration plane can be viewed as a sub-plane of controller, which aims at
simplifying the construction operation of CNSC. There are two roles in administration plane:
one is to maintain the registration information of services and provide information inquiry
for SCP decision by the Atomic Service Database (ASD). The other one is to configure the
specific service chain policies according to service demands.

ASD is used for storing AS information distributed across a network. Through the
information exchange between the administrator and the controller, ASD can acquire the
information announced by various service providers, which contains instance information of
services (e.g. names, function descriptions, versions, sizes, etc.) and location information of
service nodes obtained from local routing tables, which means that the service providers turn
on the function in service-providing nodes.

The administrator begins to configure the service chain policy after receiving the service
request analysis results from the controller. The results include the data traffic state,
description of services, or needs for some services in a default order. The administrator
inquires ASD for looking up proper services and chooses services that satisfy subscriber’s
request to achieve the construction of SCP described in section 3.2. Fig. 4 shows different
SCPs in administration plane, one of which is SCP1 for the traffic through Load Balance
(LB), DPI, and Firewall. And then these candidate SCPs are delivered to the service path
computation module for specifying the service path.
C. Forwarding Plane

The forwarding plane can mainly be divided into three parts: Data-Forwarding Nodes
(DFN), Service-Providing Nodes (SPN) and NFV platforms. Data-forwarding nodes are

3710 Xiong et al.: A Mechanism for Configurable Network Service Chaining and Its Implementation

used for only delivering the traffics among nodes and Service-providing nodes connected
with NFV platforms can forward the traffics both among different nodes and between nodes
and their corresponding platforms.

NFV platforms provide a virtualization-based method for service implementation. These
NFV platforms can be deployed on universal x86 hardware servers instead of a special and
expensive device, on which services are embedded through virtual machines at a low cost.
As shown in Fig. 4, each service runs on one virtual machine, as a result, every service is
independent from each other owing to isolation of virtual machines. The administrator just
needs to manipulate the virtual machines when he wants to add or delete services.
D. Service Path Expression

As stated above, the path control information from the SPCM is encapsulated into packets’
header so that the traffics conforming to the character of CNSC can be steered. In order to
reduce the size of path information and improve security, we adopt the Path IDentifier (PID)
and Service IDentifier (SID) which are proposed in [21]. A single path with in a domain can
be identified by a sole PID consisting of node number and path number. The node numbers
can represent different nodes without repeat in a specific domain, and path numbers can
denote the links that connect to the nodes. And SID is a service number representing
different services implemented on NFV platforms.

As shown in Fig. 4, SCP1 is configured with the sequence of services: LB, DPI and
Firewall which are named SID1, SID2, and SID3, respectively. According to the service
path computation algorithm, the controller finds out a service path for SCP1 which is
identified by CID1 and marked as solid red line with arrows. Then, the services composition
of CID1 is mapped to path information which is composed of PIDs and SIDs, shown as:
{CID1, PID1, SID1, PID2, PID3, SID2, PID4, PID5, SID3, PID6}.

4.2 SPCM Algorithm Modeling

The algorithm used in SPCM enables the joint embedding of individual service chain
policy on a substrate network in an optimal way, which can achieve traffic routing
optimization (in terms of load balancing, average delay, maximum node resources utility,
etc.), while satisfying a correct traversal of service functions for each flow.

In this section, we abstract the service path computation problem as optimization problem
and present an SPCM algorithm based on integer linear programming that efficiently finds a
routing with a guarantee on the maximum network utility, while satisfying all constraints of
network service chain policy. Before modeling SPCM algorithm, we present the related
symbols used in this paper and list them for querying conveniently in Table 1.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 8, August 2016 3711

Table 1. Notations of Service Path Computation Problem
Symbol Annotation

C One network service chain policy, and , ,C C CC T S D∀ < >

CT
The network traffic pattern of C and sou des= , ,C

C C CT N N B , where sou
CN , des

CN , CB are the source address,

destination address and business class of C , respectively

CS
The atomic service request set of C and (){ }1= , , 2,3 , _C C C C

g g gS a a g Lengt Ca h− =∈  where _Length C is

the number of atomic services in C

CD
The demand indicators set of C and { }node link= ,C

C CD d d where node
Cd (or link

Cd) is the node (or link) demand

indicators of C

node
Cd

{ }node kNI
C Cd d k +∈ ∈N

where kNI is the node indicator. We focus on the processing, storage and switching

(throughput) capability of network nodes, such that there is { }node proc stor thro= , ,C C C Cd d d d

link
Cd

{ }link kLI
C Cd d k +∈ ∈N where kLI is a link indicator. We focus on the link delay, packet loss rate and bandwidth

indicators such that there is { }link delay loss band= , ,Cd d d d . Many other indicators can be added in our algorithm easily

SG The physical substrate network topology and S S S(,)G N L=

SN The set of substrate nodes with ()S S1, 2, ,in N i N∈ =  (* is the set cardinality)

SL The set of substrate links with () ()S S, , ,i j i j i jl n n L n n N n n∈ ∈ ≠

k

i

NI
nvol The volume of indicator kNI on substrate node in

(), j

k

i

L
l n

I
n

vol The volume of indicator kLI on substrate link (),i jl n n

U The network utility generated by placing demands of network service chain
N
inu The network utility generated by substrate node in

()
L

,i jl n n
u The network utility generated by substrate link (),i jl n n

()S C The set of network service chain policy in network

cC The c-th network service chain policy in network and ()cC S C∈

()cA C The set of atomic service of cC and () ()()_1 2, , _, , c
c
g c cLength C Lengtha A CC g A C∈ = =

()cL C The set of service path of cC and () ()(),c c c c
g h c g hl a a L C a a∈ ≠

r

i

A
nδ A binary parameter indicating, if node in hosts a service of type rA , 1r

i

A
nδ = ; else 0r

i

A
nδ =

,c g
ix A binary variable indicating, if service c

ga is mapped into substrate node in , , 1c g
ix = ; else , 0c g

ix =

()
(),

,

c c
g h

i j

l a a

l n n
f

A binary variable indicating whether service path (),c c
g hl a a passes through substrate link (),i jl n n .

()
() { },

,
0,1

c c
g h

i j

l a a

l n n
f ∈

When the service path computation demands set ()S C are obtained in advance, an

integer linear optimization model can be posed whose feasible solution defines a routing that
satisfies all network constraints. During service path computation, we select proper substrate
nodes with required atomic service instances and substrate links for each chain cC , such that
the total network utility can be improved as much as possible. We formulate model of SPCM
problem as follows:

3712 Xiong et al.: A Mechanism for Configurable Network Service Chaining and Its Implementation

()
()()

()
()

()
() ()()()

,

S S

,N L
,

,
,

,

max ,
i

c c
g hc g

i i j
i j

jc c c
c ci g c g h c

l a a
i n l n n

C S C C S Cn N a C L l a a C
l n n

A l n n L

U x f x u f ua β
∈ ∈∈ ∈ ∈ ∈

= +∑ ∑ ∑ ∑ ∑ ∑ (3)

S

,. . 1
c
g

i

i

ac g
i n

n N

s t x δ
∈

=∑ , () (), c
c g cC S C a A C∀ ∈ ∈ (4)

, c
g

i

ac g
i nx δ≤ , () ()S , , c

i c g cn N C S C a A C∀ ∈ ∈ ∈ (5)

()()
{ }, S

, , , proc,stor, throc g k k

i
c

c g c

NI NI
i c g n i k

C S C Aa C

x d vol n N NI
∈ ∈

≤ ∀ ∈ ∈∑ ∑ (6)

()
()

() ()()
() (), band band S

,
,

,
, ,

c c
g h

i jc c
c g h c

i j

l a a
cl n n

C S C l a a C
i jl n n

L

f l n nd vol L
∈ ∈

≤ ∀ ∈∑ ∑ (7)

()
()

()
() ()

() { },

,
,,

, , loss,delay
c c
g h k k

i jc c
h

j
g c

il n n

l a a LI LI
c c kl n n

l a a CL

f vol d C S C LI
∈

≤ ∀ ∈ ∈∑ (8)

()
()

()
()
()

()

() () ()

, , , ,
, ,

, ,

S

,

 , , ,

c c c c
g h g h

j i i jS S
j i i j

l a a l a a c g c h
i il n n l n n

l n n L l n n L

c c
i c g h c

f f x x

n N C S C l a a L C

∈ ∈

− = −

∀ ∈ ∈ ∈

∑ ∑
 (9)

()
() { }, ,

,
, 0,1

c c
g hc g

i j

l a a
i l n n

x f ∈ , () () () ()S , , , ,c c c
i c g c g h cn N C S C a A C l a a L C∀ ∈ ∈ ∈ ∈ (10)

The above Equations (3)-(10) represent the integer linear programming formulation of the
service path computation problem, which are consisted in two parts : the objective part
described by Equations (3) and the constraints parts described by (4)-(9). We explain them
specific meaning as follows:
A. Constraints

(a) Service uniqueness: Equations (4) and (5) guarantee that for every network service
chain only one service instance of each type is placed, and that the placement is on a unique
substrate nodes that are capable to host the respective network service.

(b) Capacity constraints: Equation (6) represents the resource volume constraint of the
physical nodes. Equation (7) represents the bandwidth resource constraints of the physical
links. The QoS (delay and packet loss rate) of service path for each service chain is bounded
by Equation (8).

(c) Flow conservation constraints: Equation (9) represents that the volume that a flow is
sent and received must be one. But for middle nodes, the volume that a flow enters a node
equals the volume that a packet exits from it. In addition, Equation (10) is the variables
integer constraints.
B. Objective

The main objective of service path computation is to find a set of substrate nodes and

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 8, August 2016 3713

links and design optimal routing approach so as to maximize the resources utility U of
substrate network. In this paper, we use the utility function of selected service nodes and

links to denote network utility as shown in Equation (3), where ,α β (+ =1α β) are

combination factors. In the selection procedure, the more sufficient the resources volume of

network node and link are, the more utility can be generated by them. Thus, node utility N
inu

and link utility ()
L

,i jl n n
u is defined as:

()()

,
,

NN exp

c g k

c
c g c

i k

i

S

NI
i c g

C a C
n NI

C A
k

nk

x d
u

vol
ω

∈ ∈

 
 

= − 
  
 

∑
∑

∑
, S

in N∀ ∈ (11)

()

() ()
()

()
()()

()

band
,

L L
3

, ,
L

band
,

,
exp

k

i j ii j
c c c

ki j

j

i j

LIl l
cl n n ll n n

L L
k

n n
l C C S C l C

LIl n n
k l n nc

f vol f d
u

vold
ω ω∈ ∈ ∈

  
  

= − +  
  

  

∑ ∑
∑

∑
, () S,i jl n n L∀ ∈

(12)
In equations (11) and (12), we use the ratio between demand volume and actual volume

on nodes (or links) to express the sufficient degree of each resource indicator. The smaller
the ratio value, the more sufficient the resource is. Then, the affine coefficients N

kω (or L
kω)

are used to combine the different indicator ratio values, where there is N 0kω ≥ and
N 1kk

ω =∑ (or L
kω). Finally, we use an exponential function ()exp * to transmit the

combination ratios so that the utility value N
inu (or ()

L
,i jl n n

u) increases with the sufficient

degree of network resources.

4.3 Optimal Solution of SPCM Algorithm

The optimization problem formulated above belongs to the class of Integer Linear
Programs (ILP). In general, this problem is NP-hard, and it is extremely difficult to obtain its
solution. Here, to quickly compute good solutions, we propose a heuristic approach to
construct a feasible service path scheme for SPCM algorithm. This heuristic approach
framework consists of two parts: node mapping based on service capacity matrix and link
mapping with segment routing policies.
A. Node mapping based on service capacity matrix

In the node mapping stage, we design a selection mapping algorithm (Algorithm 1) based
on node service capacity matrix. It works as follows:

First, we define the service capacity matrix for nodes in network.
Definition 2. Service Capacity Matrix: Given a substrate network S S S(,)G N L= , the

service capacity matrix of SN is formulated as Nod
,[]i r N Rm ×=M where ,i rm is the service

3714 Xiong et al.: A Mechanism for Configurable Network Service Chaining and Its Implementation

capacity of node ()S S, 1,2, ,i in n N i N N∈ = =
 that can provide for the type of atomic

service rA . Each service capacity ,i rm can be calculated by

,
N
i

r

i

A
i nnrm u δ×= (13)

where N
inu is utility value of node in and can be obtained by Eq.(11), and k

i

A
nδ is a binary

parameter for indicating whether there is service rA on node in .

Second, we construct a service request matrix Req
,[]r r R Rq ×=M for policy cC . ReqM

is a diagonal matrix, i.e.

,

1, if = and
=

0, el
;

s
=

e

c
r g

r r

A ar r
q





, () ()()1,2, ,c
g c ca A C g A C∈ =  (14)

Third, we calculate the selection matrix sel
,=[]i r N Re ×M which contains the required

services for policy cC as:
sel Nod Req= ×M M M (15)

Each column vector of matrix selM is denoted as ()T
1, ,= , ,r r N re e e



 ()1,2, ,r R=  such

that sel
1= , , Re e  M
 

 . If 0re =


, service rA cannot be used for policy cC ; else, node in

is a candidate node for policy cC when 0re ≠


 and (), ,0i r i r re e e≠ ∈


.

Finally, we select the optimal nodes for the policy cC based on the matrix selM . For
each ()c

g ca A C∈ and = c
r gA a , we choose node in as the service node for service c

ga

when the in satisfies the condition that is

(){ }sel
, , ,arg max , 0, satisfies Eq. 6i r i r i r r r ii

e e e e e n= ∈ ≠
gg gg

 (16)

We use the symbol sel
,i gn to represent the corresponding node of the sel

,i re . All the selected
nodes compose the service nodes set NΩ , as follows:

(){ }N sel
, 1,2, ,i g cgn A C=Ω = 

 (17)

As stated as above, we further describe the process of node mapping in Table 2

Table 2. Node mapping procedure of SPCM algorithm
Algorithm 1. Node Mapping based on Service Capacity Matrix

1. Compute the service capacity matrix NodM (Eq.(13));
2. Compute the service request matrix ReqM (Eq.(14));
3. Compute the selection matrix selM (Eq.(15));
4. for each c

ga in sorted ()cA C do

5. sel
gn Null= ; // initialization of selected node set

6. for each ()1, ,rA r R=  do;

7. if =c
g ra A and 0re ≠



 then do

8. While (sel
gn Null= and re Null≠



)

9. { }sel
, , ,arg max , 0i r i r i r r ri

e e e e e= ∈ ≠
gg gg

;

10. sel
,i i gn n ; // node in is selected as spare service node of atomic service c

ga

javascript:void(0);

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 8, August 2016 3715

11. if sel
,i gn satisfies the constraints Eq.(6)

12. sel sel
,i g gn n

13. else
14. re



= sel
,\r i re e



; // element sel
,i re is deleted from vector re



15. end if
16. end while
17. sel N

gn Ω ; // node sel
gn is added into set NΩ

18. else
19. sel N

gn Ω

20. end if
21. end for
22. end for
23. for each sel

gn in NΩ

24. if sel
gn Null=

25. Output mapping failure
26. end if
27. end for
28. return Output mapping success result NΩ

B. Link Mapping with Segment Routing

In the link mapping stage, we design a link mapping algorithm (Algorithm 2) based on
Segment Routing (SR) [26] to find the optimal routing scheme. SR provides enhanced
packet forwarding capabilities while keeping a low configuration impact on networks. The
basic idea of SR is to prepend packets with a stack of labels which is called segments and
encapsulated in a segment routing header. A segment including node segment and adjacent
segment represents an instruction. There, we focus on node segments that can be used to
define paths in a network topology.

Initially, we introduce the definition of segment routing path [22] and use the segment
routing path for describing the link mapping of service chain.

Definition 3 Segment Routing Path (SR-path): Given two nodes ()S,s t N s t∈ ≠ , a
SR-path from s to t is a non-empty sequence of forwarding graphs

() () () ()1 1 2 1, , , , , , , ,i i iFG s n FG n n FG n n FG n t−

such that the destination of a forwarding graph is the source of its successor in the sequence.
Also, the source of the first forwarding graph and the destination of the last forwarding graph
respectively correspond to the source and the destination of the SR-path. A forwarding graph

()1,i iFG n n− describes a flow between a pair of nodes ()S
1 1,i i i in n N n n− −∈ ≠ in the

network, which is a non-empty directed acyclic graph rooted in 1in − and converged towards

in . Three SR paths from source node s to destination node t are illustrated in Fig. 5.

3716 Xiong et al.: A Mechanism for Configurable Network Service Chaining and Its Implementation

s t

b

a

d

c
(s, t)

FG(s, t)

s t

b

a

d

c
(s, a, t)

FG(s, a) FG(a, t)

s t

b

a

d

c
(s, b, c, t)

FG(s, b) FG(b, c) FG(c, t)
(a) (b) (c)

Fig. 5. Three different SR-paths based on the forwarding graphs

In Fig. 5, the shadow nodes represent nodes that the segment routing policy requires to
pass through. The arrow lines indicate the optional connected paths between the adjacent
forwarding nodes. For example Fig. 5(b), the routing policy requires to pass through three

nodes (i.e. s, a, t) and the SR path consists of (),FG s a and (),FG a t . The path set of

(),FG a t includes three optional paths namely a c t→ → , a d t→ → and

a b d t→ → → .
The aim of the service chaining policy is to force a traffic to traverse a particular sequence

of service nodes. Thus, we can use the SR-path to represent the service path. Through the
node mapping, the set of nodes providing the corresponding service for policy cC is

obtained from Eq. (17), i.e. (){ }N sel
, 1,2, ,i g cgn A C=Ω = 

. Let sou
cCN , des

cCN be the source

and the destination node of cC , and the SR-path of the service chaining policy cC is shown
as

() () () ()()sou sel sel sel sel des
,1 1 2 , 1 , ,, , , , , , , , ,

c ccC i i g i g CCi AFG N n FG n n FG n n FG n N− 

(18)

Then, we calculate the forwarding path for each forwarding graph ()sel sel
, 1 ,,i g i gFG n n− .

According to the substrate network S S S(,)G N L= , we design a K shortest-path algorithm to
construct a connected path between sel

, 1i gn − and sel
,i gn for each forwarding graph

()sel sel
, 1 ,,i g i gFG n n− .

First, based on the link bandwidth demand of policy cC (noted as

()()_ cband dem nd La C), we construct the constraints through Eq.(7) as follows:

()() ()() ()
b n

,
a d_ _,

i j
i j l nc n

band load band demand C vol ln n L+ ≤ , () S,i jl n n L∀ ∈ (19)

where the parameter ()()_ ,i jband loa l n nd is the bandwidth occupation of link (),i jl n n .

We delete links which do not satisfy the constraint of Eq. (19) from the SG and get the
sub-graph S S S

1 1(,)G N L= where 1
sl L∀ ∈ satisfies the constraint of Eq. (19).

Furthermore, based the link utility of Eq.(12), we calculate the utility value for each link
by

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 8, August 2016 3717

()
() () ()()

()

, ,L L L
1 2

delay loss

L
delay loss ban3

,
d,

_ ,
exp +i j i j

i

i

j

j

l n n l n n i j

n
l

c l
n n

c n

vol vol band load
u

Th Th ol

l n n

v
ω ω ω

  
  = − +
  

  

, () 1, s
i jl n n L∀ ∈

(20)
where delay

cTh and loss
cTh are the thresholds of delay and loss packet rate required by policy

cC , respectively. Using ()
L

,i jl n n
u− as link weight value in S

1G , we can obtain the weighted

graph w
1G .

And then, we assume that on graph w
1G , a K Shortest-Path algorithm (KSP) is used for

searching traffic routing between sel
, 1i gn − and sel

,i gn . KSP is an extended version of the
shortest path algorithm. Being different from the shortest path algorithm, KSP can calculate
K alternative paths between the starting point and end point, and form the shortest path group
to meet the user's choice demand.

K shortest-path algorithm can achieve K paths which are denoted as { }=1,2 ,gP Kκ κ  .

From the path set, we can select an optimal path FG
gP as the path between sel

, 1i gn − and sel
,i gn ,

and FG
gP satisfies

L loss loss delay delG yF aarg max ,
g g g

g g gg gg

g
P P P

l l c l c
l l l

u vol d vol dP
κ κ κ

κ κ κκ κ κ
κ

∈ ∈ ∈

  = 


≤
 

≤ ∑ ∑ ∑ , =1,2 , Kκ 
 (21)

Eq. (21) means that gP κ where the links has the maximum of utility summation and

conform to the conditions of (8) is selected as the path for forwarding graph ()sel sel
, 1 ,,i g i gFG n n− .

Finally, we calculate each path FG
gP (()1,2, , cg A C= ) for each forwarding graph and

connect all paths as the SR-path of policy cC as follows:

(){ }L FG 1,2, ,g cAp g CΩ = = 
 (22)

In summary, we represent the process of link mapping in Table 3.

Table 3. Link mapping procedure of SPCM algorithm
Algorithm 2. Link Mapping with Segment Routing

1. Input the selected service node set NΩ ;

2. Input the network topology S S S(,)G N L= ;
3. Represent the SR-path by forwarding graph as Eq. (18);
4. for each ()sel sel

, 1 ,,i g i gFG n n− in SR-path do

5. Compute sub-graph S S S
1 1(,)G N L= by Eq. (19);

6. Compute weighted graph w
1G by Eq. (20);

7. Solve path FG
gP for forwarding graph ()sel sel

, 1 ,,i g i gFG n n− by Eq. (21);

8. end for
9. for each FG

gP in LΩ

10. if FG
gP Null=

11. Output mapping failure
12. end if
13. end for
14. return Output mapping success result LΩ as the SR-path of policy cC

3718 Xiong et al.: A Mechanism for Configurable Network Service Chaining and Its Implementation

5. Experiments and Evaluation
In this section, we first evaluate the performance of SPCM algorithm. Then we implement

CNSC mechanism in a prototype to illustrate its usability and efficiency.
5.1 Experimental Details

We perform simulation experiments on two topologies to assess the efficiency of SPCM
algorithm. The one is a real topology called Internet2 OS3E [27] which is used for advanced
scientific researches in USA and contains 34 nodes and 42 links. The other one is a synthetic
topology which is generated by GT-ITM tool [28]. The synthetic topology is a power-law
random network graph with 100 nodes and the average node degree is set 6. The real
topology is meant to assess the efficiency of our approach on practical situations, while the
synthetic topology is used to measure the behavior of our approach on complex networks. We
implement the proposed algorithms in C++ and execute on a computer equipped with an
Intel(R) Core(TM) i7 CPU 2.67GHz processor with 2 cores, and 4GB of RAM.

In the substrate network, we assume each node can be used as the service-providing node.
The number of service function classes is set 10 and all kinds of services can be uniformly
deployed on each node. For the simulation, the parameters for network resources and each
service function are randomly generated with a uniform distribution as follows:

(a) We consider four network resources namely three node resources (processing, storage,
throughput) and one link resource (bandwidth). The volume of each network resource with
each node (or link) is uniformly distributed between 500 and 1000.

(b) We consider two QoS attributes of each link (i.e. delay and packet loss rate). The
number of each attribute uniformly ranges from 1 to 5. For each service instance, the required
volume of each network resource are uniformly distributed between 1 and 10.

(c) The service chain requests arrive in a Poisson process. The number of atomic service
instances in each service chain is denoted as “Length_C”. It means that each service chain has
Length_C different service functions. For each test scenario of “Length_C”, we generate 10
different requests and then report the average value of the all test cases.
5.2 Simulation Results

In the subsection, we measure the efficiency of our approach by analyzing the request
acceptance ratio and network resources utilization ratio as follows. And for comparison
purposes, we also evaluate the performance of different algorithms.

A. Results of request acceptance ratio
The Request Acceptance Ratio (RAR) is defined by the ratio between the number of

successfully accepted service chain policies and the number of total service chain request (R),
which is calculated by

1
()

lim
R

cc

R

C
RAR

R
δ

=

→∞
= ∑ (23)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 8, August 2016 3719

where () 1cCδ = if the service chain request cC is accepted by network, otherwise
() 0cCδ = .

Fig. 6 illustrates the evaluation results of request acceptance ratio with different length of
service chain on the two experimental network topologies. Firstly, RAR under the same value
of Length_C decreases with the increase of the number of service chains in each substrate
network. The reason is that the network load is improved when the number of service chains
becomes greater. Secondly, the larger Length_C is, the smaller RAR is. Because the longer
service chains need more atomic service instances which means that more nodes and links are
acquired. Finally, comparing Fig. 6(a) and Fig. 6(b), we can find that RARs on two
topologies have the similar variation trend, which can be attributed to the heuristic search
strategy of SPCM algorithm. The solution of SPCM algorithm may be approximate optimal
or local optimal and usually complete requests of short service chains in a single node.
Moreover, the RAR means of the synthetic and real network are respectively 90.4% and
87.8%, so RAR of the synthetic topology is generally better than that of the real topology. It is
due to that the synthetic topology with more connectivity is helpful to find suitable service
path for requests.

(a) RAR results on the real topology (b) RAR results on the synthetic topology

Fig. 6. The results of request acceptance ratio on two topologies

B．Results of resources utilization ratio
The Resources Utilization Ratio (RUR) is defined by the average ratio between the

occupied volume of each resource (occupied
kivol) and the total volume of each resource (Total

kivol)
on all nodes and links, which is calculated by

()()
()()S S

S S

occupied
+

Total1 1+

1 1

1
k

N L K ki i

i kN L K k kiii k

vol R
RUR

volR

d

d
= =

= =

 
 =
 
 
∑ ∑

∑ ∑
 (24)

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000 100000

Length_C=2
Length_C=4
Length_C=6
Length_C=8

R
eq

ue
st

 a
cc

ep
ta

nc
e r

at
io

Number of service chain

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000 100000

Length_C=2
Length_C=4
Length_C=6
Length_C=8

R
eq

ue
st

 a
cc

ep
ta

nc
e r

at
io

Number of service chain

3720 Xiong et al.: A Mechanism for Configurable Network Service Chaining and Its Implementation

where k (=1,2, ,k K) is resource types, SN and SL are the total number of nodes and
links, respectively. () 1k

iRδ = if node (link) i has k type of resource, otherwise

() 0k
iRδ = .

Fig. 7 shows the evaluation results of resources utilization ratio on the two experimental
network topologies. We observe that RUR increases along with the number of service chains
in each topology, and the service chains with smaller length value (Length_C) can obtain
higher RUR. This is because the short service chains are more easily configured by selecting
less nodes and links. Meanwhile, when the number of service chains is 105, RURs under
different parameters (i.e. Length_C=2, 4, 6, 8) in the real network are 0.81, 0.75, 0.66, 0.65,
respectively, while RURs in the synthetic network are 0.88, 0.85, 0.803, 0.785, respectively.
By mean calculation, the RUR average values in the real and synthetic network are 71.8%
and 82.9%, respectively. Thus, the synthetic network achieves higher resource utilization
compared with the real topology.

(a) RUR results on the real topology (b) RUR results on the synthetic topology

Fig. 7. The results of resources utilization ratio on two topologies

C. Comparison of different methods
In this section, we compare our SPCM algorithm with other three algorithms, denoted as

“Random”, “Naive” and “SCIM” respectively. Here, “Random” way means randomly
selecting nodes and links for service path of each service chain. “Naive” approach simulates
a manual service chain placement which installs each service chain upon a node, and after
the current node’s resource is exhausted, the next node is started. “SCIM” proposed by [18]
uses the simulated annealing algorithm to find the service path. The evaluation results of
different methods in the real topology are shown in Fig. 8, Fig. 9 and Fig. 10. And the
computing results for “Naive” approach can be chosen as the performance benchmark.

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

Length_C=2
Length_C=4
Length_C=6
Length_C=8

R
es

ou
rc

e
ut

ili
za

tio
n

ra
tio

Number of service chain

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

Length_C=2
Length_C=4
Length_C=6
Length_C=8

R
es

ou
rc

e
ut

ili
za

tio
n

ra
tio

Number of service chain

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 8, August 2016 3721

Firstly, Fig. 8 shows the results of RAR with different service chain length. When the

increase of number of service chains makes the network overload, RAR continues to
decrease. SPCM and SCIM can always outperform than other two methods, and SPCM
performs better than SCIM when the number of service chains is greater than 104. The
reason is that SPCM can globally allocate network resources so that the service chain
requests are able to be accepted as much as possible. With the comparison of Fig. 8(a) and
Fig. 8(b), we can obtain that the longer the service chains are, the more obvious the
advantage of our SPCM method is.

(a) RAR results with Length_C=2 (b) RAR results with Length_C=4

Fig. 8. The results of request acceptance ratio with different methods

Secondly, the results of RUR with different service chain length are illustrated in Fig. 9.
Since SPCM and SCIM can cooperatively manage and schedule the network resources, they
can achieve approximate performance on RUR and lead to higher resources utilization than
other two approaches. The improvement of resources utilization ratio caused by SPCM can
reach more than 20%, compared to the random approach which is generally difficult to
satisfy the service chain requests. This is because that with the increase of the number of
service chains, SPCM algorithm can rationally deploy the service chains by overall
consideration of all network node resources, while the random method is more dependent on
the resources of a single node.

0.5

0.6

0.7

0.8

0.9

1

1.1

10 100 1000 10000 100000

SPCM
Random
Naive
SCIM

Number of service chain

R
eq

ue
st

 a
cc

ep
ta

nc
e r

at
io

0

0.2

0.4

0.6

0.8

1

1.2

10 100 1000 10000 100000

SPCM
Random
Naive
SCIM

R
eq

ue
st

 a
cc

ep
ta

nc
e r

at
io

Number of service chain

3722 Xiong et al.: A Mechanism for Configurable Network Service Chaining and Its Implementation

(a) RUR results with Length_C=2 (b) RUR results with Length_C=4

Fig. 9. The results of resources utilization ratio with different methods

Thirdly, the runtime reflects the response time from the request to the service chain

construction completion and also show the computation overhead of different methods. In
the graph on Fig. 10, we measure the required run time by each approach with respect to an
increasing number of service chains. In Fig. 10, we can see that the runtime of random
method is the least and the size remains basically the same. The reason is that the random
strategy completes the construction request based on the random number, but does not need
to solve the optimization problem. The running time of the other three methods grows with
the number of service chains, and SCIM method presents the most running time. Our SPCM
method saves average 30% running time while achieving approximate service efficiency
compared to SCIM algorithm. Although the runtime of SPCM is longer than the Naive
algorithm, RAR and RUR of the Naive algorithm are worse.

(a) Runtime results with Length_C=2 (b) Runtime results with Length_C=4

Fig. 10. The results of runtime with different methods

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000 100000

SPCM
Random
Naive
SCIM

R
es

ou
rc

e
 u

til
iz

at
io

n
 ra

tio

Number of service chain

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000 100000

SPCM
Random
Naive
SCIM

Number of service chain

R
es

ou
rc

e
 u

til
iz

at
io

n
 ra

tio

0

40

80

120

160

200

10 100 1000 10000 100000

SPCM

Random

Naive

SCIM

Number of service chain

R
un

 ti
m

e
(m

s)

0

40

80

120

160

200

240

10 100 1000 10000 100000

SPCM

Random

Naive

SCIM

Number of service chain

R
un

 ti
m

e
(m

s)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 8, August 2016 3723

5.3 Prototype Implementation

Towards dependable validation of CNSC mechanism, we design a proof-of-concept
implementation as shown in Fig. 11. In the prototype, CNSC module and the SR module are
operated on the SDN controller which deploys service chaining decisions through south
interface. We use ONOS as the SDN controller and Openflow1.3 protocol as the south
interface between the controller and switches. ClickOS platforms are used to simulate virtual
atomic service instances in the network.

The prototype is a mesh network that consists of five OpenFlow switches implemented by
NetFPGA-10G, and four servers supporting three ClickOS platforms and ONOS controller
are connected with switches. The testing scenario reflects a typical broadband network
deployment case which describes the communication between users and the video server.

Switch1

ClickOS
platform A

Switch2

Switch3 Switch4

User

Video Sever

SDN
controller

Switch5

Controller

SR module CNSC module

ClickOS
platform B

ClickOS
platform C

Atomic services

Atomic services

ASes

Fig. 11. The illustration of CNSC prototype.

In order to show the usability of our prototype in the real network, we setup the service

scene where the user sends a message to get the files stored in the server and requires a set
of services. We simulate the network traffics based on datacenter network traffic traces.
Then a robot program is developed to generate a number of service chains policies for
traffics, and each service chain has different the number of atomic services which increase
from 1 to 5. We calculate average RUR and average utility values of each node through
Eq.(11) and compare our method with the Naive approach, as shown in Fig. 12.

We get that the average utility values of network node from CNSC are about 0.71 and
0.43 which are respectively calculated by meaning the values of blue bars in Fig. 12(a) and
Fig. 12 (b), while the average utility values of network node from Naive approach only are
0.58 and 0.37, which are respectively calculated by meaning the values of red bars in Fig.
12(a) and Fig. 12 (b). Therefore, our CNSC can improve the node utility 15% compared to

3724 Xiong et al.: A Mechanism for Configurable Network Service Chaining and Its Implementation

Naive approach. This is because our SPCM orchestrates service chains cooperatively in the
network and could fully utilize the resource on different service nodes.

(a) Total service chain number on the fly 102 (b) Total service chain number on the fly 104
Fig. 12. The average utility value of network node under different service chain number

6. Conclusions
This paper has presented a configurable network service chain (CNSC) mechanism to

provide network services in a flexible way and implement a scheme prototype by combining
SDN controller with NFV platforms. We first abstract the network service functions as
atomic services and formulate the problem of network service chaining. Then a network
service chaining framework is proposed to satisfy the service policy requests by
cooperatively combine atomic service instances in the optimal way. In this framework, we
design service path computation algorithm (called SPCM) based on a service capacity
matrix of node and a link mapping with segment routing. Finally, we validate the
performance of our SPCM algorithm in an experimental environment. And with SPCM
solver as the core, we design a prototype system to demonstrate the functionality and
advantages of CNSC architecture. In the future work, we will increase the service prediction
mechanism and the network state sensing mechanism, so that our model can be extended to
adapt to dynamical construction of service chains.

References
[1] S. W. Ahn, S. H. Lee, S. H. Yoo, D. Y. Park, D. Kim, C. Yoo, “Isolation schemes of virtual

network platform for cloud computing,” KSII Transactions on Internet and Information Systems,
vol. 6, no. 11, pp. 2764- 2783, 2012. Article (CrossRef Link)

[2] M. Chiosi, D. Clarke, P. Willis, et al., “Network functions virtualisation –introductory white
paper,” SDN and OpenFlow world congress, Darmstadt, Germany, 2012.
Article (CrossRef Link)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Utility(CNSC) Utility(Naive)
RUR(CNSC) RUR(Naive)

Number of atomic services in service

A
ve

ra
ge

 u
til

ity
 o

f e
ac

h
se

rv
ic

e
no

de

A
ve

ra
ge

 R
U

R
 o

f e
ac

h
se

rv
ic

e
no

de

Number of atomic services in service

A
ve

ra
ge

 u
til

ity
 o

f e
ac

h
se

rv
ic

e
no

de

A
ve

ra
ge

 R
U

R
 o

f e
ac

h
se

rv
ic

e
no

de

0.6

0.8

1

1.2

0

0.2

0.4

0.6

1 2 3 4 5

Utility(CNSC) Utility(Naive)
RUR(CNSC) RUR(Naive)

A
ve

ra
ge

 u
til

ity
 o

f e
ac

h
se

rv
ic

e
no

de

Number of atomic services in service

A
ve

ra
ge

 R
U

R
 o

f e
ac

h
se

rv
ic

e
no

de

http://dx.doi.org/10.3837/tiis.2012.10.001
https://portal.etsi.org/nfv/nfv_white_paper.pdf

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 8, August 2016 3725

[3] Open Networking Foundation, “Software-defined networking: the new norm for networks,”
white paper, April, 2012. Article (CrossRef Link)

[4] P. Quinn, T. Nadeau, “Problem statement for service function chaining,” RFC 7498, 2015.
Article (CrossRef Link)

[5] W. Lee, Y. H. Choi, N. Kim, “Study on virtual service chain for secure software defined
networking,” Advanced Science and Technology Letters, vol. 29, pp.177-180, 2013.

Article (CrossRef Link)

[6] P. Quinn, J. Guichard, R. Fernando, et. al, “Network service header,” Internet-Draft,
draft-ietf-sfc-nsh-01.txt, IETF, 2014. Article (CrossRef Link)

[7] Z. A. Qazi, C. C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “SIMPLE-fying middlebox
policy enforcement using SDN,” in Proc. of the ACM SIGCOMM’13, Hong Kong, China, pp.
27-38, August 12-16, 2013. Article (CrossRef Link)

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner, “OpenFlow: Enabling innovation in campus networks,” ACM SIGCOMM CCR,
vol. 38, no.2, 2008. Article (CrossRef Link)

[9] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvret, R. Manghirmalani, R. Mishra, “StEERING: a
software-defined networking for inline service chaining,” in Proc. of the 21st IEEE International
Conference on Network Protocols (ICNP), pp.1-10, 7-10 Oct., 2013. Article (CrossRef Link)

[10] S. K. Fayazbakhsh, V. Sekar, M. Yu and J. C. Mogul, “FlowTags: enforcing network-wide
policies in the presence of dynamic middlebox actions,” in Proc. of the HotSDN, pp. 19-24, 2013.
Article (CrossRef Link)

[11] A. Gember-Jacobson, R. Viswanathan, C. Prakash, et al., “OpenNF: enabling innovation in
network function control,” in Proc. of the ACM SIGCOMM’14, Chicago, 2014.
Article (CrossRef Link)

[12] M Xia, M Shirazipour, Y Zhang, et al., “Optical service chaining for network function
virtualization,” IEEE Communications Magazine, vol. 53, no.4, pp. 152-158, 2015.
Article (CrossRef Link)

[13] L. Sun, H. Dong, J. Ashraf, “Survey of service description languages and their issues in cloud
computing,” Eighth International Conference on Semantics, Knowledge and Grids (SKG),
pp.128-135, October 2012. Article (CrossRef Link)

[14] C. Monsanto, J. Reich, N. Foster, J. Rexford and D. Walker, “Composing software-defined
networks,” in Proc. of USENIX NSDI, 2013. Article (CrossRef Link)

[15] S. Shin, P. Porras, V. Yegneswaran, et al., “FRESCO: modular composable security services for
software-defined networks,” in Proc. of NDSS, 2013. Article (CrossRef Link)

[16] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco and F. Huici, “ClickOS and
the art of network function virtualization,” NSDI, 2014. Article (CrossRef Link)

[17] A. Baumgartner, V. S. Reddy, T. Bauschert, “Mobile core network virtualization: a model for
combined virtual core network function placement and topology optimization,” in Proc. of 1st
IEEE Conference on Network Softwarization (NetSoft), London, pp. 1-9, 2015.
Article (CrossRef Link)

[18] G Z Cheng, H C Chen, H C Hu, et al., “Enabling network function combination via service chain
instantiation,” Computer Netwoks, pp.396-407, 2015. Article (CrossRef Link)

https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://datatracker.ietf.org/doc/rfc7498/
http://dx.doi.org/10.14257/astl.2013.29.36
https://tools.ietf.org/html/draft-quinn-sfc-nsh-01
http://dx.doi.org/10.1145/2486001.2486022
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1109/icnp.2013.6733615
http://dx.doi.org/10.1145/2491185.2491203
http://dx.doi.org/10.1145/2740070.2626313
http://dx.doi.org/10.1109/MCOM.2015.7081089
http://dx.doi.org/10.1109/skg.2012.49
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/monsanto
http://www.csl.sri.com/users/vinod/papers/fresco.pdf
https://www.usenix.org/node/179772
http://dx.doi.org/10.1109/NETSOFT.2015.7116162
http://dx.doi.org/10.1016/j.comnet.2015.09.015

3726 Xiong et al.: A Mechanism for Configurable Network Service Chaining and Its Implementation

[19] P. Wang, J. Lan, X. Zhang, Y. Hu, S. Chen, “Dynamic function composition for network service
chain: model and optimization,” Computer Networks, vol.92, pp.408-418, 2015.

Article (CrossRef Link)

[20] Y. Li, F. Zheng, M. Chen and D. Jin. “A unified control and optimization framework for
dynamical service chaining in software-defined NFV system,” IEEE Wireless Communications,
vol. 22, no. 6, pp. 15-23, 2015. Article (CrossRef Link)

[21] T. X. Li, H. C. Zhou, H. B. Luo, “A new method for providing network services: Service
function chain,” Optical Switching and Networking, available online, 30 September 2015.
Article (CrossRef Link)

[22] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils, T. Telkamp, P. Francois, “A
declarative and expressive approach to control forwarding paths in carrier-grade networks,” in
Proc. of SIGCOMM'15, August 2015. Article (CrossRef Link)

[23] S. Liu, W. Jia, “An adaptive virtual machine location selection mechanism in distributed cloud,”
KSII Transactions on Internet and Information Systems, vol. 9, no. 12, pp. 4776-4798, Dec. 2015.
Article (CrossRef Link)

[24] R. Hartert, P. Schaus, S. Vissicchio and O. Bonaventure, “Solving segment routing problems
with hybrid constraint programming techniques,” CP 2015, Cork, 2015. Article (CrossRef Link)

[25] The Open Network Operating System (ONOS). Article (CrossRef Link)
[26] C. Fils_ls et al., “Segment routing architecture,” Internet draft, IETF, 2014.

Article (CrossRef Link)
[27] Internet2 open science, scholarship and services exchange.” Article (CrossRef Link)
[28] E. W. Zegura, K. L. Calvert, S. Bhattacharjee, “How to model an internetwork,” in Proc. of

INFOCOM, vol. 2, pp. 594-602, 1996. Article (CrossRef Link)

http://dx.doi.org/10.1016/j.comnet.2015.07.020
http://dx.doi.org/10.1016/j.comnet.2015.07.020
http://dx.doi.org/10.1109/MWC.2015.7368820
http://dx.doi.org/10.1016/j.osn.2015.09.005
http://dx.doi.org/10.1145/2785956.2787495
http://dx.doi.org/10.3837/tiis.2015.12.003
http://dx.doi.org/10.1007/978-3-319-23219-5_41
http://onosproject.org/
https://datatracker.ietf.org/doc/draft-ietf-spring-segment-routing/00/
http://www.internet2.edu/network/ose/
http://dx.doi.org/10.1109/INFCOM.1996.493353

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 8, August 2016 3727

Gang Xiong received his B.E. and M.E. degrees in 2009 and 2012, respectively. He is
currently a Ph.D. candidate in National Digital Switching System Engineering and
Technological R&D Center (NDSC). His research interests are future network and
network security. Email: xg1226@126.com

Yuxiang Hu is an assistant professor in NDSC, China. His research interests mainly
include network security, routing protocols and future network.

Julong Lan is the full Professor in NDSC, China. His research interests mainly

include routing and switching design, routing protocols, resource scheduling, network

security, and future network.

Guozhen Cheng received his Ph.D. degree in 2015 and currently is a lecturer at the

NDSC. His research interests include Internet architecture, network security,

software-defined networking and network function virtualization.

	A Mechanism for Configurable Network Service Chaining and Its Implementation
	1. Introduction
	2. Related Work
	3. Problem Overview
	3.1 Description of Service Function Chaining
	3.2 Atomic Service and Service Chain Policy
	3.3 Instantiation of Service Function Chaining

	4. Solution Formulation
	4.1 System Architecture of CNSC
	4.2 SPCM Algorithm Modeling
	4.3 Optimal Solution of SPCM Algorithm

	5. Experiments and Evaluation
	5.1 Experimental Details
	5.2 Simulation Results
	5.3 Prototype Implementation

	6. Conclusions
	References

