
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 7, Jul. 2016 3231

Copyright ⓒ2016 KSII

A preliminary version of this paper appeared in The 1st International Conference on Electronics, Electrical

Engineering, Computer Science: Innovation and Convergence (EEECS 2016), January 20-22, Phuket, Thailand.

This version includes a concrete analysis and supporting implementation results on asymmetric mulcitore system

on graphics processing. This research was supported by a research grant from the Shanghai Municipal Natural

Science Foundation (15ZR1428600), Shanghai Pujiang Program(16PJ1407600), the program for Professor of

Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, USST incubation

project(15HJPY-MS02), and the National Science Foundation (XPS-1439097).

http://dx.doi.org/10.3837/tiis.2016.07.020 ISSN : 1976-7277

Reevaluating the overhead of data
preparation for asymmetric multicore

system on graphics processing

Songwen Pei
1,2

, Junge Zhang
1
, Linhua Jiang

1
, Myoung-Seo Kim

2
 and Jean-Luc Gaudiot

2

1 Shanghai Key Lab of Modern Optical Systems,

University of Shanghai for Science and Technology,

 Shanghai 200093, China

 [e-mail: {swpei, lhjiang}@usst.edu.cn]
2 Parallel Systems and Computer Architecture Lab,University of California

Irvine, CA 92697, USA

[e-mail: {myoungseo.kim, gaudiot}@uci.edu]

*Corresponding author: Songwen Pei, Myoung-Seo Kim

Received May 10, 2016; revised May 24, 2016; accepted June 5, 2016; published July 31, 2016

Abstract

As processor design has been transiting from homogeneous multicore processor to

heterogeneous multicore processor, traditional Amdahl’s law cannot meet the new challenges

for asymmetric multicore system. In order to further investigate the impact factors related to

the Overhead of Data Preparation (ODP) for Asymmetric multicore systems, we evaluate an

asymmetric multicore system built with CPU-GPU by measuring the overheads of memory

transfer, computing kernel, cache missing and synchronization. This paper demonstrates that

decreasing the overhead of data preparation is a promising approach to improve the whole

performance of heterogeneous system.

Keywords: Overhead of data preparation; heterogeneous multicore; Amdahl’s law; power

consumption

3232 Pei et al.: Reevaluating the Overhead of Data Preparation

1. Introduction

As we enter the multicore era, asymmetric multicore system[1] is becoming the mainstream

in the field of future processor design. Recent examples include Intel’s MIC[2], AMD’s

Kabini[3], and NVIDIA’s Project Denver[4], etc. However, the memory wall and

communication issues will continue increasing the gap between the performance of an ideal

processor and that of a “practical” processor, because the overhead of data preparation

becomes an unavoidable key problem.

Amdahl’s Law was a state-of-the-art analytical model that guided software developers to

evaluate the actual speedup that could be achieved by using parallel programs, or hardware

designers to draw much more elaborate microarchitecture and components. Gene Amdahl[5]

defined his law for the special case of using n processors (cores) in parallel when he argued for

the single-processor approach’s validity for achieving large-scale computing capabilities. He

used a limit argument to assume that a fraction f of a program’s execution time was infinitely

parallelizable with no scheduling overhead and other overheads to generate ready data to be

used by computing units, while the remaining fraction, 1 f , was totally sequential. He noted

that the speedup on n processors is governed by equation (1):

1
Speedup(f,n)=

f
(1- f)+

n
 (1)

This equation Amdahl’s law on basis of computing-centric system which never takes into

account the potential cost of data preparation. It is only correct as long as three key

assumptions are verified:

(1) the programs to be executed are of fixed-datasize and the fraction of the programs that is

parallelizable remains constant as well;

(2) there exists an infinite memory space without extra overhead of switching memory blocks

and disk blocks, etc.

(3) the overhead of preparing the data to be used by computing units, which includes memory

access, communication on-chips or off-chips and synchronization among cores, can be

neglected.

Currently, some CPU-GPU memory architectures are using separate memory address

spaces for the CPU and the GPU, while the programmer is responsible for communication

between them by using a relatively slow communication channel,such as PCIe bus. This

communication bottleneck limits the peak throughput that can be obtained from these systems.

Otherwise, the power consumption has become an important issue that impacts GPU

applications. Therefore, traditional Amdahl’s Law is not fit for heterogeneous computer

system, we will take consideration of the overhead of data preparation in asymmetric

multicore system.

Despite some criticisms, Amdahl’s Law is still relevant as we enter a heterogeneous

multi-core computing era. However, the future relevance of the law requires its extension by

the inclusion of constraints and architectural trends demanded by modern multiprocessor chips.

There are a lot of achievable researches in theory to extend Amdahl’s Law. Woo and Lee[6]

extended Amdahl’s law for energy-efficient computing of many-core, who classified

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 7, July 2016 3233

many-core design styles as three type: symmetric superscalar processor tagged with P*,

symmetric smaller power-efficient core tagged with c*, and asymmetric many-core processor

with superscalar processor and many smaller cores tagged with P + c*. The research results

show that heterogeneous architecture is better than symmetric system to save power. Similarly,

Marowka[7] extended Amdahl’s law for heterogeneous computing, and investigated how

energy efficiency and scalability are affected by the power constraints for three kind of

heterogeneous computer system, i.e., symmetric, asymmetric and simultaneous asymmetric.

The analysis shows clearly that greater parallelism is the most important factor affecting

power consumption. Karanikolaou, et al evaluated experimental energy consumption based on

both of performance/power and performance/energy ratio metrics[8]. Kim et al focused on the

energy efficiency of the sequential part acceleration, and how to determine the optimal

frequency boosting ratio which maximize energy efficiency[9]. Londono et al modeled the

potential dynamic energy improvement, optimal frequency and voltage allocation of a

multicore system in terms of extending Amdahl’s law[10]. EyerMan et al [11] introduced a

model that accounts for critical sections of te parallelizable fraction of a program. Ge et al

proposed a power-aware speedup model to predict the scaled execution time of power-aware

clusters by isolating the performance effects of changing processor frequencies and the

number of nodes[12].

In this paper we analyse the extended Amdahl’s law metioned in the papers[16-19] and

demonstrate that data preparation is another promising approach to improve performance of

heterogeneous system. The contributions in this paper are:

(1) Rethinking and analysing the general model of Amdahl’s law;

(2) Proposing the overhead of data preparation in the extended Amdahl’s law;

(3) Reevaluating an asymmetric multicore system built with CPU-GPU by measuring the

overheads of communication, computing kernel, cache missing and synchronization.

This paper is organized as follows. Section II revisits the extended Amdahl’s law of

asymmetric multicore system by considering the overhead of data preparation[13]. Section III

analyses the affecting factors of data preparation. Section IV proves the affecting factors of

data preparation should not be neglected through Rodinia benchmarks. Section VI concludes

our work and future missions.

2. Revisiting the extended Amdahl’s law by considering the overhead of
data preparation

The graphics processing unit (GPU) has made significant strides as an accelerator in parallel

computing. However, GPU has resided out on PCIe as a discrete device, the performance of

GPU applications can be bottlenecked by data transfers between the CPU and GPU over PCIe.

So the overhead of preparing the data and accessing the memory, of transmitting data on-chip

and off-chip, of transferring data between CPU memories and GPU memories for

heterogeneous system, of synchronizing processes, etc, become significant that it cannot be

ignored any longer. However, traditional Amdahl’s law only considers the cost of instruction

execution.

We will thus now assume that whole cost of executing a program can be split into two

independent parts: (c
p) and (1

c
p), as shown in the Fig. 1, one (1

c
p) is preparing the

data execution and the other one (c
p) is running instruction when the required data are ready.

3234 Pei et al.: Reevaluating the Overhead of Data Preparation

Therefore, the Overhead of Data Preparation (ODP) includes the whole cost of preparing data

for execution.

As proposed by [13], ODP can be considered to produce a new speedup equation will call it

the “Extended Amdahl’s law” as expressed in equation (2):

1

(, ,)

((1-)) (1-)
EA c c

c

c c c

S f c p
f

f p p
c

 (2)

where cp denotes the computation portion, 1
c

p denotes the Data Preparation portion

normalized to the computation portion: since the clock frequencies and the ISAs of CPUs,

GPUs, off-chip bus and memory arbitrator would likely be different, we should normalize the

performance of Data Preparation instructions to that of computing instructions. The cf is the

parallelizable computation portion, 1
c

f is the sequential computation portion.

1-fc fc/c 1-fh kc(1-α) fh

1-fc fc 1-fh (1-α) fh α fh

c

cores

1

core

(1-kc)(1-α) fh α fh

Pc 1-Pc

Fig. 1. Illustration of Extended Amdahl's law

 As shown in Fig. 1, however, equation (2) does not make allowances for the introduction

of techniques that would decrease or eliminate the overhead of data preparation. We further

divide the portion of data preparation into three sub-parts: 1
h

f ,
h

f and (1)
h

f .
h

f

denotes the portion of the program that can be overlapped with “computing” instructions in

theory, where 0<
h

f <1. But, it cannot be completely overlapped in practical due to the

unpredicted run-time negative factors from the limits of hardware resources. In other words,

the execution of this portion is masked behind the execution of the computation instructions.

 In general, memory access instructions can be executed in parallel with independent

computing instructions. However, it will not be possible to execute all of the data preparation

instructions simultaneously with computing instructions. For example, if a load instruction is

theoretically independent of the next computing instructions, it can be theoretically issued

with the next computing instructions. However, it would not be issued because the queue of

issuing load instructions is full. Therefore, we introduce the parameter  to denote the

percentage of data preparation instructions which are actually executed simultaneously with

computing instructions before using advanced technologies, where 0< <1. Thus,
h

f

denotes the portion of real parallelized instructions for data preparation and (1)
h

f denotes

the portion of data preparation instructions which cannot be overlapped with computing

instructions before adopting advanced technologies.

 Furthermore, with the help of advanced technologies such as data prefetching, speculative

execution, universal memory, no-copy data transfer, 3D NoC, etc., the fraction of data

preparation instructions which cannot be overlapped on one processor will sharply decrease as

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 7, July 2016 3235

the number of cores increases. In other words, (1)
h

f could be decreased significantly.

Furthermore, we introduce a variable
c

k to model how much percentage of data preparation

that cannot be overlapped on a c cores system even adopting advanced technologies, where

0<
c

k <1. After normalization to the computation, the fraction of data preparation instructions

which cannot be overlapped on a c core system becomes (1) (1)
ud h c h

f f k f . On the

opposite, the fraction of data preparation instructions which can be overlapped on a c core

system becomes (1) (1)
pd h c h

f f k f , where 1
ud pd

f f . While, the

1
h

f denotes the fraction of data preparation which is closely dependent on computation.

Therefore, we can extend Amdahl's law to be a new equation called “Enhanced Amdahl's law”.

The performance speedup is governed by:

)1())1((

1
),,,('

cudc
c

c

udccEA

pfp
c

f
f

fpcfS



 (3)

3. Analysis the impact factors of data preparation

Some multicore performance models tend to ignore the impact of data synchronization,

CPU-GPU communication, cache missing rate and so on. In this section, we take account of

some possible impact factors such as kernel overhead, memory overhead, data transfer

overhead and cache missing rate which contribute to the overhead of data preparation.Amdal’s

Law on basis never takes account of those overhead.

3.1 Memory Transfer Overhead

In CPU-GPU heterogeneous computing, one overhead is caused by the disjoint address spaces

of the CPU and GPU and the need to explicitly transfer data between the two memory spaces.

Before executing a kernel on the GPU, all of the data used by kernel needs to be transferred

from the CPU memory to the GPU memory. After execution, the data produced by the kernel

mostly needs to be transferred back to the CPU memory. The function to accomplish this

memory transferring is usually cudaMemcpy.

0.001

0.01

0.1

1

10

100

1000

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Bytes per transfer

T
ra

n
sf

er
 T

im
e(

m
s)

to device from device

pinned to device pinned from device

Fig. 2. Time per memory transfer for different size of transferred data

3236 Pei et al.: Reevaluating the Overhead of Data Preparation

Fig. 2 shows the average transfer time by using cudaMemcpy strides a wide range as the size

of transferring data increase. Four different configurations are measured, and their results are

all different whether the data are transferred to or from the GPU memory, and whether we use

pinned or non-pinned memory. Pinned memory is the memory which is allocated by using the

cudaMallocHost function, which prevents the memory from being swapped out and provides

improved transfer speeds. However, the non-pinned memory is the memory which is allocated

by using the malloc function.

For the small size of transfer data, there is a constant overhead of transferring data which is

around 10 µs. As the size of transferring data increasing about 8 KB, the transfer time starts to

increase linearly. Besides, the overhead of transferring data in pinned memory is smaller than

that in non-pinned memory.

3.2 Kernel Overhead

Kernel overhead includes the overhead of synchronization and launching a kernel.

Synchronization overhead can be a barrier to achieving good performance for applications

utilizing fine-grained synchronization. The overhead of launching a kernel can severely

impact the performance of a CUDA application if the kernel is invoked many times. To

evaluate the overhead of kernel execution, we measured the average time required to launch an

empty kernel over a large number of kernel invocations. Fig. 3 shows the time of calling each

kernel on four different GPUs. The asynchronization bar represents the case where the kernel

is invoked repeatedly without synchronization between calls. The synchronization bar

represents the case where the cudaThreadSynchronize function is called after calling each

kernel, and forces the CPU to wait for the execution of current kernel to be finished before

calling the next kernel. The y-axis is the time for calling a kernel, which mostly results from

the overhead of accessing the GPU driver API and Runtime API. As shown in the Fig. 3, the

average time of calling a kernel with synchronization is about 3.5 times than that of

asynchronous mode. Therefore, the synchronization overhead is much greater than that of

asynchronous.

0

2

4

6

8

10

12

14

16

GTX 280 GTX 269 8600 GTS 8800 GTX

T
im

e
 p

er
 c

al
l(

u
s)

Synchronization Asynchronization

Fig. 3. Time of calling an empty kernel

3.3 Cache Missing Rate

Another overhead of data preparation is caused by the cache missing. The application with

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 7, July 2016 3237

large problem sizes and irregular accessing memory would cause serious Cache missing in the

run-time because of unconventional memory access patterns are poorly handled by

pre-fetching.

CPUs are designed to reduce the effective memory access latency through extensive multi

cache level and prefetching technologies. Thus, a slightly irregular memory access pattern can

be successfully captured by the CPU caches. However, the same access pattern may be

irregular enough to prevent efficient utilization of the GPU memory bandwidth, due to the

restrictions on access patterns that must be met in order to achieve good memory performance.

The restrictions of access pattern can be partially relaxed by taking advantage of the GPU

special-purpose address spaces. Both constant and texture memory provide small on-chip

caches that allow threads to take advantage of fine-grained spatial and temporal locality.

In addition, texture memory relaxes the alignment requirements that must be met in order

for multiple memory accesses from within the same warp to be coalesced. Zero copy improves

performance by eliminating these redundant data copies. Another effective approach is to use

the software-controlled shared memory as an explicitly managed cache, which can

significantly improve performance when data elements are frequently reused.

4. Experimental Evaluation

In this section, to evaluate the overhead of the data preparation, we performed different

applications from Rodinia benchmark. In order to implement GPU programs, the Rodinia suite

uses CUDA [14, 20], an extension to C for GPUs. CUDA is a parallel computing platform and

programming model invented by NVIDIA. It enables dramatic increases in computing

performance by harnessing the power of the graphics processing unit (GPU). Rodinia is a

benchmark suite for heterogeneous computing. To help architects study emerging platforms

such as GPUs (Graphics Processing Units), Rodinia includes applications and kernels which

target on multi-core CPU and GPU platforms.

4.1 Platform and Applications

The benchmarks used for experiment are mentioned in Table 1. The Rodinia[15] benchmark

suite is designed to provide parallel programs for the study of heterogeneous systems. We use

seven benchmarks from Rodinia, which are k-means (KM), back propagation (BP),

breadth-first search(BFS), hotspot(HS), Needleman-Wunsch(NW), speckle reducing

anisotropic diffusion and stream cluster(SRAD).

Table 1. Selected applications from Rodinia Benchmark

Application Description Input dataset

BFS Breadth First Search Graph1MW_6.txt

NW
Needleman-Wunsch (Dynamic

Programming)
2048*2048

HS Hot spot (Structured Grid) 500*500

BP Back propagation 65536

KM K-means Clustering 819200

SC Stream cluster 65535

SRAD
Speckle reducing anisotropic

diffusion
2048*2048

3238 Pei et al.: Reevaluating the Overhead of Data Preparation

The KM is a clustering algorithm used extensively in the field of data mining. This

identifies related points by associating each data point with its nearest cluster, computing new

cluster centroids, and iterating until convergence. BP is a machine-learning algorithm for

layered neural network. This application is comprised of two phases: the forward phase and

backward phase. HS is a thermal simulation tool used for estimating processor temperature

based on an architectural floor plan and simulated power measurements. NW is an

optimization method for DNA sequence alignments, and BFS traverses all the connected

components in a graph. SRAD is a diffusion algorithm based on partial differential equations

and used for removing the speckles in an image without sacrificing important image features.

SRAD is widely used in ultrasonic and radar imaging applications. The inputs to the program

are ultrasound images and the value of each point in the computation domain depends on its

four neighbors.

Those seven benchmarks can be divided into two categories: compute-intensive and

memory-intensive applications. SRAD and HotSpot are relatively compute-intensive, while

Needleman-Wunsch, Breadth-First Search, Kmeans, and Stream Cluster are

memory-intensive application.

4.2 Experimental Results

The GPU in our experimental platform for heterogeneous system is NVIDIA GTX 750. It has

512 streaming multi-processors (SMs), and 2 GB device memory. We investigate the

overhead of data preparation by comparing against the total execution time of the applications

from Rodinia benchmark. As mentioned in section III, We mainly focus on overhead of

memory transfer, synchronization and cache missing rate. The computing performance of

applications is mostly affected by those overheads, which we will discuss in the following

sections.

As shown in Fig. 4, the overhead of different factors are analyzed, such as kernel execution,

CPU-GPU communication, CPU execution and synchronization. And to different applications,

the influence of those factors is not the same. For example, the CPU-GPU commucation

overhead of SRAD and BP are relatively high because of they have a large dataset. In addition,

as for NW, HS and BP, synchronization overhead makes up a high proportion of data

preparation for the data dependent.

0

10

20

30

40

50

60

KM NW HS BP SRAD BFS SC

p
er

ce
n

ta
g

e(
%

)

Kernel Execution CPU-GPU Communication

CPU Execution Synchronization

Fig. 4. Percentage of total execution time

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 7, July 2016 3239

4.2.1 Communication Overhead

The overhead of communication between GPUs and CPUs often becomes a major factor to

computing performance. For large dataset, the overhead of data preparation is mainly

determined by the bandwidth of PCIe bus. Slowing data transfer between CPU and GPU

exacerbates the overhead of data preparation.

As shown in the Fig. 5, SRAD and BP require significant CPU-GPU communication time

because they need a lot of data to be inputted. The average of communication time for SRAD

and BP is almost one-third of the whole runtime. As for NW and HS, all of the computation is

done on the GPU and the results are explicitly transferred back only after all GPU work has

been completed. In these applications, the memory transfer overhead is hard to be further

reduced. In conclusion, communication overhead should be considered in the Extended

Amdahl’s Law.

Understanding the application’s memory access patterns on the GPU is crucial to achieve
good performance. If the neighboring threads access neighboring rows in an array, allocating

the array in column-major order will allow threads within the same warp to access contiguous

elements. So warp scheduling can hide the memory latency and decrease the communication

overhead to some extent.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

KM NW HS BP SRAD BFS SC

p
er

ce
n

ta
g

e(
%

)

CPU-GPU Communication Other Overhead

Fig. 5. CPU-GPU communication overhead

4.2.2 Synchronization Overhead

As shown in the Fig. 6, the overhead of synchronization is a barrier to achieve high

performance of applications by utilizing fine-grained synchronization. SRAD and SC show

relatively low synchronization overhead because the majority of their computations are

independent. However, NW, HS, BP and BFS have great overhead of synchronization. The

synchronization percentage of those applications is between 30% and 40%, because the

majority of their computations are interdependent. As show in equation (3), if parallelism is

low, ignore the effects of data synchronization overhead is acceptable. But as parallelism

growing, this effect becomes more predominant. Che et al. [18] also showed the importance of

using the cached, read-only constant memory and texture memory spaces for frequently reused

3240 Pei et al.: Reevaluating the Overhead of Data Preparation

data within a thread block. These methods are especially helpful in reducing the overhead of

GPU’s data synchronization.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

KM NW HS BP SRAD BFS SC

p
er

ce
n

ta
g

e(
%

)

Synchronization Other Overhead

Fig. 6. Synchronization overhead

At all, the overhead of CPU-GPU communication and synchronization has great effect on

data preparation . As show in Fig. 7, we can calculate the total percentage of communication

and synchronization during the running time. The rate of NW and BP are already above the

half of the total time (NW is 52.4% and BP is 55.1%).The average rate of those benchmarks is

37.83%.According to Fig. 7, we find that data synchronization and communication affect

Amdahl’s Law in the hetergeneous architecture. It is apparent that the overhead of data

preparation (CPU-GPU communication and data syncronization) takes up a great proportion

of the total execution time.

0

10

20

30

40

50

60

KM NW HS BP SRAD BFS SC Average

p
er

ce
n

ta
g

e(
%

)

CPU-GPU Communication Synchronization

Fig. 7. Overhead of Communication and Synchronization

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 7, July 2016 3241

4.2.3 The Overhead of Cache Missing

Cache missing rate is another factor which contributes to the overhead of data preparation. As

shown in the Fig. 8, irregular data access is poorly handled by pre-fetching. NW exhibits a

high L2 cache missing rate of 41.0% because of its irregular memory access patterns (diagonal

strips). BFS exhibits L2 cache missing rate of 20.8% and KM exhibits 27.1%, which exhibit

regular behavior, present cache miss rates that are lower but still high enough to be of interest.

The L2 cache miss rates of other applications range from 2.0% to 12.0%. In terms of those

experimental data, we conclude that the applications with memory-intensive and irregular data

accessing would incur high cache missing rate.

0

5

10

15

20

25

30

35

40

45

KM NW HS BP SRAD BFS SC

L
2

 c
ac

h
e

m
is

si
n

g
 r

at
e(

%
)

Fig. 8. L2 cache missing rate

5. Conclusion

According to the experiment results, calling a kernel would incurs high overhead of

performance and programming to deal with the CPU-GPU communication (as in BP and

SRAD). High synchronization overheads are caused by computations interdependent such as

HS and BP. Therefore, the overhead of data preparation is a major factor which we should not

be neglected in heterogeneous system. Traditional Amdahl’s Law ignores those overheads, so

for tasks of high synchronization, parallel execution may result in significantly lower speedup

than as predicted by traditional Amdahl’s Law.

When we take into account the overhead of data preparation, the speedup will not grow

linearly as the number of cores increases. Therefore, the speedup obtained is always less than

the ideal in terms of traditional Amdahl's law. Therefore, we consider the overhead of data

preparation is an important factor by extending traditional Amdahl’s Law.

The effects of communication, synchronization and cache missing rate can be overcome by

proper architectural and software design. If a multicore architecture has no private memory,

then there would be no need in synchronization and communication: the only one memory is

shared by all of the cores and data access at the same space. Therefore such memory

architecture would be unaffected by those overheads of data preparation. But this may incur

long memory latency.

In this paper, we have presented an Extended Amdahl’s Law taking into account the effects

3242 Pei et al.: Reevaluating the Overhead of Data Preparation

of data preparation. By experiment, the heterogeneous multicore performance is

fundamentally limited by data synchronization, CPU-GPU communication and cache missing

rate. The maximum performance speedup achieved by heterogeneous multicore can be lower

than predicted by Amdahl’s Law. In the future work, we will keep on investigating the

performance gain within limited energy (or power) budget while considering the overhead of

data preparation.

References

[1] P.Rogers, “Heterogeneous System Architecture Overview,” in Proc. of Hot Chips Sym., Aug. 2013.

Article (CrossRef Link)

[2] A.Duran and M.Klemm, “The Intel Many Integrated Core Architecture,” in Proc. of the

International Conference on High Performance Computing and Simulation(HPCS), pp.365-366,

July 2012. Article (CrossRef Link)

[3] D.Bouvier, B.Cohen, W.Fry, S.Godey and M.Mantor, “Kabini: An AMD Accelerated Processing

Unit System on A Chip,” MICRO, vol.34, no.2, pp.22-33, March 2014. Article (CrossRef Link)

[4] Nvidia Corporation. Nvidia Project Denver, http://www.nvidia.com (available in Feb. 2016).

[5] Amdahl G M., “Validity of the single processor approach to achieving large scale computing

capabilities [J],” in Proc. of the American Federation of Information Processing Societies (AFIPS),

483-485, April 1967. Article (CrossRef Link)

[6] D.H.Woo and H.S.Lee, “Extending Amdahl’s Law for Energy-Efficient Computing in the

Many-Core Era,” Computer, vol.41, no.12, pp.24-31, Dec.2008. Article (CrossRef Link)

[7] A. Marowka, “Extending Amdahl’s Law for Heterogeneous Computing,” in Proc. of the 2012

International Symposium on Parallel and Distributed Processing with Applications(ISPDPA),

pp.309-316, July 2012. Article (CrossRef Link)

[8] E.M.Karanikolaou, E.I.Milovanovic ´, I.Z ˇ.Milovanovic ´,M.P.Bekakos, “Peformance Scalability

and Energy Consumpution on Distributed and Many-core Platforms,” Journal of Supercomputing,

vol.70, no.1, pp.349-364,Oct. 2014. Article (CrossRef Link)

[9] S.H.Kim, D.Kim, C.Lee, W.S.Jeong, W.W.Ro, and J.L.Gaudiot, “A Performance-Energy Model

to EvaluateSingle Thread Execution Acceleration,” Computer Architecture Letters, vol.14, no.2,

pp.99-102, Nov. 2014. Article (CrossRef Link)

[10] S.M.London ˜o, and J.P.Gyvez, “Extending Amdahl’s Law for Energy-Efficiency,” in Proc. of

International Conference on Energy Aware Computing(ICEAC), pp.1-4, Dec. 2010.

Article (CrossRef Link)

[11] Eyerman S, Eeckhout L., “Modeling critical sections in Amdahl's law and its implications for

multicore design [J].,” in Proc. of the 37
th

 Annual International Symposium on Computer

Architecture, ACM, New York, US, 38(3):362-370, 2010. Article (CrossRef Link)

[12] R.Ge and K.W.Cameron, “Power-Aware Speedup”, in Proc. of International Parallel and

Distributed Processing Symposium (IPDPS), March 2007, pp.1-10. Article (CrossRef Link)

[13] S.W.Pei, M.S.Kim, J.L.Gaudiot, “Extending Amdahl’s Law for Heterogeneous Multicore

Processor with Consideration of the Overhead of Data Preparation,” IEEE Embedded Systems

Letters, vol. 8, no.1, pp.26-29, March. 2016. Article (CrossRef Link)

[14] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with CUDA,”

ACM Queue, vol.6, no.2, pp.40–53, 2008. Article (CrossRef Link)

[15] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,S.-H. Lee, and K. Skadron, “Rodinia: A

benchmark suite for heterogeneous computing,” in Proc. of IEEE International Symposium on

Workload Characterization, pp.44–54. 2009. Article (CrossRef Link)

[16] Hill, Mark D, Marty, Michael R., “Amdahl's Law in the Multicore Era [J],” Computer, 2008,

41(7): 33-38. Article (CrossRef Link)

[17] Erlin Yao, Yungang Bao, Guangming Tan, et al., “Extending Amdahl’s Law in the Multicore

Era[J].,” ACM SIGMETRICS Performance Evaluation Review, 37(2):24-26, 2009.

Article (CrossRef Link)

http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.0T1-Hetero-epub/HC25.25.100-Intro-Rogers-HSA%20Intro%20HotChips2013_Final.pdf
http://dx.doi.org/10.1109/HPCSim.2012.6266938
doi:%2010.1109/MM.2014.3
doi:%2010.1145/1465482.1465560
doi:%2010.1109/MC.2008.494
doi:%2010.1109/ISPA.2012.47
doi:%2010.1007/s11227-014-1248-0
doi:%2010.1109/LCA.2014.2368144
doi:%2010.1109/ICEAC.2010.5702300
doi:%2010.1145/1815961.1816011
http://www.mscs.mu.edu/~rge/papers/IPDPS07.pdf
doi:10.1109/LES.2016.2519521
doi:%2010.1145/1365490.1365500
doi:10.1109/IISWC.2009.5306797
doi:10.1109/MC.2008.209
doi:%2010.1145/1639562.1639571

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 7, July 2016 3243

[18] Xian-He Sun, Yong Chen, “Reevaluating Amdahl’s law in the multicore era [J],” Journal of

Parallel and distributed Computing, 70(2):183-188, 2010. Article (CrossRef Link)

[19] Andreou A G. Beyond Amdahl's Law: An Objective Function That Links Multi-processor

Performance Gains to Delay and Energy [J]. IEEE Transactions on Computers, 61(8):1110-1126 ,

2012. Article (CrossRef Link)

[20] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron, “A performance study of

general purpose applications on graphics processors using CUDA,” Journal of Parallel and

Distributed Computing, 68(10):1370–1380, 2008. Article (CrossRef Link)

Songwen Pei received the B.S. in the School of Computer from National University of

Defence and Technology, Changsha, China in 2003, the M.S. in the School of

Information Engineering from Guizhou University, Guiyang, China in 2006, and the

Ph.D. in the School of Computer Science and Technology from Fudan University,

Shanghai, China in 2009. He is currently an Associate Professor of the Computer Science

and Engineering Department at the University of Shanghai for Science and Technology,

and he currently works as a Guest Researcher at the Institute of Computing Technology,

Chinese Academy of Sciences (2011-), and a Research Scientist at the Electrical

Engineering and Computer Science, University of California(2013-2015). His research

interests include heterogeneous multi-core processors, parallel and distributed

computing, cloud computing, big data, and fault-tolerant computation, etc. He is a

member of the IEEE, ACM and CCF in China, and he is also a board member of

CCF-TCCET, CCF-TCARCH and CCF-YOCSEF Shanghai respectively. He is a talent

award-winner of Shanghai Pujiang Program 2016.

Junge Zhang received the B.S. in the computer science from Luoyang Normal

University in 2012. She is currently a graduate student in computer architecture at the

University of Shanghai for Science and Technology. Her current research interests

include computer architecture, Multi-core heterogeneous systems, data prefetching and

GPU power model.

Linhua Jiang received M.S. degree and Ph.D. degree from Catholic University of

Leuven and Leiden University respectively. He is currently a Professor in the School of

Optical-Electrical and Computer Engineering, University of Shanghai for Science and

Technology, and is the director of the Optical-Computer Science Research Group. He

was a visiting Faculty of Stanford University. His current research fields include

Optical-Information and Image Processing, Computer Network and Cyber-Physical

System, Parallel Computing, etc. Prof. JIANG published more than one hundred

scientific papers and conference articles.

doi:%2010.1016/j.jpdc.2009.05.002
doi:%2010.1109/TC.2011.169
doi:%2010.1016/j.jpdc.2008.05.014

3244 Pei et al.: Reevaluating the Overhead of Data Preparation

Myoung-Seo Kim received both the B.S. degree in Computer Science and the B.S.

degree in Electrical and Electronics Engineering and the M.S. degree in Computer

Science from Yonsei University, Seoul, Korea in 2003 and 2005, respectively. He has

worked for 5 years performing design and verification of portable multimedia

system-on-a-chip (SoC) at Samsung Electronics, Yongin, Korea (2005-2008) and at

Apple Inc., Cupertino, California (2008-2009). He received the Ph.D. degree in Computer

Science from University of California, Irvine in 2016. He is currently a principal

researcher in the Parallel Systems and Computer Architecture Lab at University of

California, Irvine. He was the recipient of the 2011 Yonsei International Foundation

Scholarship and the 2012 SK Hynix Study Abroad Scholarship. In addition, he has

published more than 15 papers in journals and international conferences. His research

interests include multi/many-core system-on-a-chip, computer architecture and design,

low-power architecture, embedded systems, VLSI circuit design and analysis, and design

automation. He is a member of the IEEE and the ACM.

Jean-Luc Gaudiot received the Diplôme d’Ingénieur from ESIEE, Paris, France in

1976 and the M.S. and Ph.D. degrees in Computer Science from the University of

California, Los Angeles in 1977 and 1982, respectively. He is currently a Professor and

Chair of the Electrical and Computer Engineering Department at the University of

California, Irvine. Prior to joining UCI in January 2002, he was a Professor of Electrical

Engineering at the University of Southern California since 1982, where he served as and

Director of the Computer Engineering Division for three years. He has also done

microprocessor systems design at Teledyne Controls, Santa Monica, California

(1979-1980) and research in innovative architectures at the TRW Technology Research

Center, El Segundo, California (1980-1982). He consults for a number of companies

involved in the design of high-performance computer architectures. His research interests

include multithreaded architectures, fault-tolerant multi-processors, and implementation

of reconfigurable architectures. He has published over 200 journal and conference papers.

His research has been sponsored by NSF, DoE, and DARPA, as well as a number of

industrial organizations. In January 2006, he became the first Editor-in-Chief of IEEE

Computer Architecture Letters, a new publication of the IEEE Computer Society, which

he helped found to the end of facilitating short, fast turnaround of fundamental ideas in

the Computer Architecture domain. From 1999 to 2002, he was the Editor-in-Chief of the

IEEE Transactions on Computers. He has served on the IEEE Computer Society Board of

Governors for two terms (2010-1015), was VP of Educational Activities (2013), VP of

Publications (2014-2015) and is the 2017 IEEE Computer Society President. In 1999, he

became a Fellow of the IEEE. He was elevated to the rank of AAAS Fellow in 2007.

