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Abstract 
 

As processor design has been transiting from homogeneous multicore processor to 

heterogeneous multicore processor, traditional Amdahl’s law cannot meet the new challenges 

for asymmetric multicore system. In order to further investigate the impact factors related to 

the Overhead of Data Preparation (ODP) for Asymmetric multicore systems, we evaluate an 

asymmetric multicore system built with CPU-GPU by measuring the overheads of memory 

transfer, computing kernel, cache missing and synchronization. This paper demonstrates that 

decreasing the overhead of data preparation is a promising approach to improve the whole 

performance of heterogeneous system. 
 

 

Keywords: Overhead of data preparation; heterogeneous multicore; Amdahl’s law; power 

consumption 
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1. Introduction 

As we enter the multicore era, asymmetric multicore system[1] is becoming the mainstream 

in the field of future processor design. Recent examples include Intel’s MIC[2], AMD’s 

Kabini[3], and NVIDIA’s Project Denver[4], etc. However, the memory wall and 

communication issues will continue increasing the gap between the performance of an ideal 

processor and that of a “practical” processor, because the overhead of data preparation 

becomes an unavoidable  key problem.  

Amdahl’s Law was a state-of-the-art analytical model that guided software developers to 

evaluate the actual speedup that could be achieved by using parallel programs, or hardware 

designers to draw much more elaborate microarchitecture and components. Gene Amdahl[5] 

defined his law for the special case of using n processors (cores) in parallel when he argued for 

the single-processor approach’s validity for achieving large-scale computing capabilities. He 

used a limit argument to assume that a fraction f  of a program’s execution time was infinitely 

parallelizable with no scheduling overhead and other overheads to generate ready data to be 

used by computing units, while the remaining fraction, 1 f , was totally sequential. He noted 

that the speedup on n processors is governed by equation (1):    

                                          

1
Speedup(f,n)=

f
(1- f)+

n
                                                 (1) 

This equation Amdahl’s law on basis of computing-centric system which never takes into 

account the potential cost of data preparation. It is only correct as long as three key 

assumptions are verified:  

(1) the programs to be executed are of fixed-datasize and the fraction of the programs that is 

parallelizable remains constant as well; 

(2) there exists an infinite memory space without extra overhead of switching memory blocks 

and disk blocks, etc.  

(3) the overhead of preparing the data to be used by computing units, which includes memory 

access, communication on-chips or off-chips and synchronization among cores, can be 

neglected. 

Currently, some CPU-GPU memory architectures are using separate memory address 

spaces for the CPU and the GPU, while the programmer is responsible for communication 

between them by using a relatively slow communication channel,such as PCIe bus. This 

communication bottleneck limits the peak throughput that can be obtained from these systems. 

Otherwise, the power consumption has become an important issue that impacts GPU 

applications. Therefore, traditional Amdahl’s Law is not fit for heterogeneous computer 

system, we will take consideration of the overhead of data preparation in asymmetric 

multicore system. 

Despite some criticisms, Amdahl’s Law is still relevant as we enter a heterogeneous 

multi-core computing era. However, the future relevance of the law requires its extension by 

the inclusion of constraints and architectural trends demanded by modern multiprocessor chips. 

There are a lot of achievable researches in theory to extend Amdahl’s Law. Woo and Lee[6] 

extended Amdahl’s law for energy-efficient computing of many-core, who classified 
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many-core design styles as three type: symmetric superscalar processor tagged with P*, 

symmetric smaller power-efficient core tagged with c*, and asymmetric many-core processor 

with superscalar processor and many smaller cores tagged with P + c*. The research results 

show that heterogeneous architecture is better than symmetric system to save power. Similarly, 

Marowka[7] extended Amdahl’s law for heterogeneous computing, and investigated how 

energy efficiency and scalability are affected by the power constraints for three kind of 

heterogeneous computer system, i.e., symmetric, asymmetric and simultaneous asymmetric. 

The analysis shows clearly that greater parallelism is the most important factor affecting 

power consumption. Karanikolaou, et al evaluated experimental energy consumption based on 

both of performance/power and performance/energy ratio metrics[8]. Kim et al focused on the 

energy efficiency of the sequential part acceleration, and how to determine the optimal 

frequency boosting ratio which maximize energy efficiency[9]. Londono  et al modeled the 

potential dynamic energy improvement, optimal frequency and voltage allocation of a 

multicore system in terms of extending Amdahl’s law[10]. EyerMan et al [11] introduced a 

model that accounts for critical sections of te parallelizable fraction of a program. Ge et al 

proposed a power-aware speedup model to predict the scaled execution time of power-aware 

clusters by isolating the performance effects of changing processor frequencies and the 

number of nodes[12]. 

In this paper we analyse the extended Amdahl’s law metioned in the papers[16-19] and 

demonstrate that data preparation is another promising approach to improve performance of 

heterogeneous system. The contributions in this paper are: 

(1) Rethinking and analysing the general model of Amdahl’s law; 

(2) Proposing the overhead of data preparation in the extended Amdahl’s law; 

(3) Reevaluating an asymmetric multicore system built with CPU-GPU by measuring the 

overheads of communication, computing kernel, cache missing and synchronization.  

This paper is organized as follows. Section II revisits the extended Amdahl’s law of 

asymmetric multicore system by considering the overhead of data preparation[13]. Section III 

analyses the affecting factors of data preparation. Section IV proves the affecting factors  of 

data preparation should not be neglected through Rodinia benchmarks. Section VI concludes 

our work and future missions. 

2. Revisiting the extended Amdahl’s law by considering the overhead of 
data preparation 

The graphics processing unit (GPU) has made significant strides as an accelerator in parallel 

computing. However, GPU has resided out on PCIe as a discrete device, the performance of 

GPU applications can be bottlenecked by data transfers between the CPU and GPU over PCIe. 

So the overhead of preparing the data and accessing the memory, of transmitting data on-chip 

and off-chip, of transferring data between CPU memories and GPU memories for 

heterogeneous system, of synchronizing processes, etc, become significant that it cannot be 

ignored any longer. However, traditional Amdahl’s law only considers the cost of instruction 

execution.  

We will thus now assume that whole cost of executing a program can be split into two 

independent parts: ( c
p )  and (1

c
p ), as shown in the Fig. 1, one  (1

c
p ) is preparing the 

data execution and the other one ( c
p ) is running instruction when the  required data are ready. 
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Therefore, the Overhead of Data Preparation (ODP) includes the whole cost of preparing data 

for execution.  

As proposed by [13], ODP can be considered to produce a new speedup equation will call it 

the “Extended Amdahl’s law” as expressed in equation (2): 

          
1

( , , )

((1- ) ) (1- )
EA c c

c

c c c

S f c p
f

f p p
c

                                   (2) 

where cp denotes the computation portion,  1
c

p denotes the Data Preparation portion 

normalized to the computation portion: since the clock frequencies and the ISAs of CPUs, 

GPUs, off-chip bus and memory arbitrator would likely be different, we should normalize the 

performance of Data Preparation instructions to that of computing instructions. The cf is the 

parallelizable computation portion, 1
c

f is the sequential computation portion. 

1-fc fc/c 1-fh kc(1-α) fh

1-fc  fc 1-fh (1-α) fh α fh

c 

cores

1 

core

(1-kc)(1-α) fh α fh

Pc 1-Pc

 

Fig. 1. Illustration of Extended Amdahl's law 

 

     As shown in Fig. 1,  however, equation (2) does not make allowances for the introduction 

of techniques that would decrease or eliminate the overhead of data preparation. We further 

divide the portion of data preparation into three sub-parts: 1
h

f , 
h

f  and (1 )
h

f . 
h

f  

denotes the portion of the program that can be overlapped with “computing”  instructions in 

theory, where 0< 
h

f <1. But, it cannot be completely overlapped in practical due to the 

unpredicted run-time negative factors from the limits of hardware resources. In other words, 

the execution of this portion is masked behind the execution of the computation instructions.  

      In general, memory access instructions can be executed in parallel with independent 

computing instructions. However, it will not be possible to execute all of the data preparation 

instructions simultaneously with computing instructions. For example, if a load instruction is 

theoretically independent of the next computing instructions, it can be theoretically issued 

with the next computing instructions. However, it would not be issued because the queue of 

issuing load instructions is full. Therefore, we introduce the parameter  to denote the 

percentage of data preparation instructions which are actually executed simultaneously with 

computing instructions before using advanced technologies, where 0< <1. Thus, 
h

f  

denotes the portion of real parallelized instructions for data preparation and (1 )
h

f  denotes 

the portion of data preparation instructions which cannot be overlapped with computing 

instructions before adopting advanced technologies.  

      Furthermore, with the help of advanced technologies such as data prefetching, speculative 

execution, universal memory, no-copy data transfer, 3D NoC, etc., the fraction of data 

preparation instructions which cannot be overlapped on one processor will sharply decrease as 
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the number of cores increases. In other words, (1 )
h

f  could be decreased significantly. 

Furthermore, we introduce a variable 
c

k  to model how much percentage of data preparation 

that cannot be overlapped on a c cores system even adopting advanced technologies, where 

0<
c

k <1. After normalization to the computation, the fraction of data preparation instructions 

which cannot be overlapped on a c core system becomes (1 ) (1 )
ud h c h

f f k f . On the 

opposite, the fraction of data preparation instructions which can be overlapped on a c core 

system becomes (1 ) (1 )
pd h c h

f f k f , where 1
ud pd

f f . While, the 

1
h

f denotes the fraction of data preparation which is closely dependent on computation. 

Therefore, we can extend Amdahl's law to be a new equation called “Enhanced Amdahl's law”. 

The performance speedup is governed by: 

)1())1((

1
),,,('

cudc
c

c

udccEA

pfp
c

f
f

fpcfS



                         (3) 

3. Analysis the impact factors of data preparation 

Some multicore performance models tend to ignore the impact of data synchronization, 

CPU-GPU communication, cache missing rate and so on. In this section, we take account of 

some possible impact factors such as kernel overhead, memory overhead, data transfer 

overhead and cache missing rate which contribute to the overhead of data preparation.Amdal’s 

Law on basis never takes account of those overhead. 

3.1 Memory Transfer Overhead 

In CPU-GPU heterogeneous computing, one overhead is caused by the disjoint address spaces 

of the CPU and GPU and the need to explicitly transfer data between the two memory spaces. 

Before executing a kernel on the GPU, all of the data used by kernel needs to be transferred 

from the CPU memory to the GPU memory. After execution, the data produced by the kernel 

mostly needs to be transferred back to the CPU memory. The function to accomplish this 

memory transferring is usually cudaMemcpy.  
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Fig. 2. Time per memory transfer for different size of transferred data 
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Fig. 2 shows the average transfer time by using cudaMemcpy strides a wide range as the size 

of transferring data increase. Four different configurations are measured, and their results are 

all different whether the data are transferred to or from the GPU memory, and whether we use 

pinned or non-pinned memory. Pinned memory is the memory which is allocated by using the 

cudaMallocHost function, which prevents the memory from being swapped out and provides 

improved transfer speeds. However, the non-pinned memory is the memory which is allocated 

by using the malloc function.     

For the small size of transfer data, there is a constant overhead of transferring data which is 

around 10 µs. As the size of transferring data increasing about 8 KB, the transfer time starts to 

increase linearly. Besides, the overhead of transferring data in pinned memory is smaller than 

that in non-pinned memory.  

3.2 Kernel Overhead 

Kernel overhead includes the overhead of synchronization and launching a kernel. 

Synchronization overhead can be a barrier to achieving good performance for applications 

utilizing fine-grained synchronization. The overhead of launching a kernel can severely 

impact the performance of a CUDA application if the kernel is invoked many times. To 

evaluate the overhead of kernel execution, we measured the average time required to launch an 

empty kernel over a large number of kernel invocations. Fig. 3 shows the time of calling each 

kernel on four different GPUs. The asynchronization bar represents the case where the kernel 

is invoked repeatedly without synchronization between calls. The synchronization bar 

represents the case where the cudaThreadSynchronize function is called after calling each 

kernel, and forces the CPU to wait for the execution of current kernel to be finished before 

calling the next kernel. The y-axis is the time for calling a kernel, which mostly results from 

the overhead of accessing the GPU driver API and Runtime API. As shown in the Fig. 3, the 

average time of calling a kernel with synchronization is about 3.5 times than that of 

asynchronous mode. Therefore, the synchronization overhead is much greater than that of 

asynchronous.  
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Fig. 3. Time of calling an empty kernel 

3.3 Cache Missing Rate 

Another overhead of data preparation is caused by the cache missing. The application with 
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large problem sizes and irregular accessing memory would cause serious Cache missing in the 

run-time because of unconventional memory access patterns are poorly handled by 

pre-fetching. 

CPUs are designed to reduce the effective memory access latency through extensive multi 

cache level and prefetching technologies. Thus, a slightly irregular memory access pattern can 

be successfully captured by the CPU caches. However, the same access pattern may be 

irregular enough to prevent efficient utilization of the GPU memory bandwidth, due to the 

restrictions on access patterns that must be met in order to achieve good memory performance. 

The restrictions of access pattern can be partially relaxed by taking advantage of the GPU 

special-purpose address spaces. Both constant and texture memory provide small on-chip 

caches that allow threads to take advantage of fine-grained spatial and temporal locality.  

In addition, texture memory relaxes the alignment requirements that must be met in order 

for multiple memory accesses from within the same warp to be coalesced. Zero copy improves 

performance by eliminating these redundant data copies. Another effective approach is to use 

the software-controlled shared memory as an explicitly managed cache, which can 

significantly improve performance when data elements are frequently reused.  

4. Experimental Evaluation 

In this section, to evaluate the overhead of the data preparation, we performed different 

applications from Rodinia benchmark. In order to implement GPU programs, the Rodinia suite 

uses CUDA [14, 20], an extension to C for GPUs. CUDA is a parallel computing platform and 

programming model invented by NVIDIA. It enables dramatic increases in computing 

performance by harnessing the power of the graphics processing unit (GPU). Rodinia is a 

benchmark suite for heterogeneous computing. To help architects study emerging platforms 

such as GPUs (Graphics Processing Units), Rodinia includes applications and kernels which 

target on multi-core CPU and GPU platforms. 

4.1 Platform and Applications 

The benchmarks used for experiment are mentioned in Table 1. The Rodinia[15] benchmark 

suite is designed to provide parallel programs for the study of heterogeneous systems. We use 

seven benchmarks from Rodinia, which are k-means (KM), back propagation (BP), 

breadth-first search(BFS), hotspot(HS), Needleman-Wunsch(NW), speckle reducing 

anisotropic diffusion and stream cluster(SRAD).  

Table 1. Selected applications from Rodinia Benchmark 

Application Description Input dataset 

BFS Breadth First Search Graph1MW_6.txt 

NW 
Needleman-Wunsch (Dynamic 

Programming) 
2048*2048 

HS Hot spot (Structured Grid) 500*500 

BP Back propagation 65536 

KM K-means Clustering 819200 

SC Stream cluster 65535 

SRAD 
Speckle reducing anisotropic 

diffusion 
2048*2048 
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The KM is a clustering algorithm used extensively in the field of data mining. This 

identifies related points by associating each data point with its nearest cluster, computing new 

cluster centroids, and iterating until convergence. BP is a machine-learning algorithm for 

layered neural network. This application is comprised of two phases: the forward phase and 

backward phase. HS is a thermal simulation tool used for estimating processor temperature 

based on an architectural floor plan and simulated power measurements. NW is an 

optimization method for DNA sequence alignments, and BFS traverses all the connected 

components in a graph. SRAD is a diffusion algorithm based on partial differential equations 

and used for removing the speckles in an image without sacrificing important image features. 

SRAD is widely used in ultrasonic and radar imaging applications. The inputs to the program 

are ultrasound images and the value of each point in the computation domain depends on its 

four neighbors.  

Those seven benchmarks can be divided into two categories: compute-intensive  and 

memory-intensive applications. SRAD and HotSpot are relatively compute-intensive, while 

Needleman-Wunsch, Breadth-First Search, Kmeans, and Stream Cluster are 

memory-intensive application. 

4.2 Experimental Results 

The GPU in our experimental platform for heterogeneous system is NVIDIA GTX 750. It has 

512 streaming multi-processors (SMs), and 2 GB device memory. We investigate the 

overhead of data preparation by comparing against the total execution time of the applications 

from Rodinia benchmark. As mentioned in section III, We mainly focus on overhead of 

memory transfer, synchronization and cache missing rate. The computing performance of 

applications is mostly affected by those overheads, which we will discuss in the following 

sections.  

As shown in Fig. 4, the overhead of different factors are analyzed, such as kernel execution, 

CPU-GPU communication, CPU execution and synchronization. And to different applications, 

the influence of those factors is not the same. For example, the CPU-GPU commucation 

overhead of SRAD and BP are relatively high because of they have a large dataset. In addition, 

as for NW, HS and BP, synchronization overhead makes up a high proportion of data 

preparation for the data dependent. 
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4.2.1 Communication Overhead 

The overhead of communication between GPUs and CPUs often becomes a major factor to 

computing performance. For large dataset, the overhead of data preparation is mainly 

determined by the bandwidth of PCIe bus.  Slowing data transfer between CPU and GPU 

exacerbates the overhead of data preparation. 

As shown in the Fig. 5, SRAD and BP require significant CPU-GPU communication time 

because they need a lot of data to be inputted. The average of communication time for SRAD 

and BP is almost one-third of the whole runtime.  As for NW and HS, all of the computation is 

done on the GPU and the results are explicitly transferred back only after all GPU work has 

been completed. In these applications, the memory transfer overhead is hard to be further 

reduced. In conclusion, communication overhead should be considered in the Extended 

Amdahl’s Law.  

Understanding the application’s memory access patterns on the GPU is crucial to achieve 
good performance. If the neighboring threads access neighboring rows in an array, allocating 

the array in column-major order will allow threads within the same warp to access contiguous 

elements. So warp scheduling can hide the memory latency and decrease the communication 

overhead to some extent. 
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Fig. 5. CPU-GPU communication overhead 

4.2.2 Synchronization Overhead 

As shown in the Fig. 6, the overhead of synchronization is a barrier to achieve high 

performance of applications by utilizing fine-grained synchronization. SRAD and SC show 

relatively low synchronization overhead because the majority of their computations are 

independent. However, NW, HS, BP and BFS have great overhead of synchronization. The 

synchronization percentage of those applications is between 30% and 40%, because the 

majority of their computations are interdependent. As show in equation (3), if parallelism is 

low, ignore the effects of data synchronization overhead is acceptable. But as parallelism 

growing, this effect becomes more predominant. Che et al. [18] also showed the importance of 

using the cached, read-only constant memory and texture memory spaces for frequently reused 
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data within a thread block. These methods are especially helpful in reducing the overhead of 

GPU’s data synchronization. 
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Fig. 6. Synchronization overhead 

At all, the overhead of CPU-GPU communication and synchronization has great effect on 

data preparation . As show in Fig. 7, we can calculate the total percentage of communication 

and synchronization during the running time. The rate of NW and BP are already above the 

half of the total time (NW is 52.4% and BP is  55.1%).The average rate of those benchmarks is 

37.83%.According to Fig. 7, we find that data synchronization and communication affect 

Amdahl’s Law in the hetergeneous architecture. It is apparent that  the overhead of data 

preparation (CPU-GPU communication and data syncronization) takes up a great proportion 

of the total execution time. 
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Fig. 7. Overhead of Communication and Synchronization 
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4.2.3 The Overhead of Cache Missing 

Cache missing rate is another factor which contributes to the overhead of data preparation. As 

shown in the Fig. 8, irregular data access is poorly handled by pre-fetching. NW exhibits a 

high L2 cache missing rate of 41.0% because of its irregular memory access patterns (diagonal 

strips). BFS exhibits L2 cache missing rate of 20.8% and KM exhibits 27.1%, which exhibit 

regular behavior, present cache miss rates that are lower but still high enough to be of interest. 

The L2 cache miss rates of other applications range from 2.0% to 12.0%. In terms of those 

experimental data, we conclude that the applications with memory-intensive and irregular data 

accessing would incur high cache missing rate.  
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5. Conclusion 

According to the experiment results, calling a kernel would incurs high overhead of 

performance and programming to deal with the CPU-GPU communication (as in BP and 

SRAD). High synchronization overheads are caused by computations interdependent such as 

HS and BP. Therefore, the overhead of data preparation is a major factor which we should not 

be neglected in heterogeneous system. Traditional Amdahl’s Law ignores those overheads, so 

for tasks of high synchronization, parallel execution may result in significantly lower speedup 

than as predicted by traditional Amdahl’s Law. 

When we take into account the overhead of data preparation, the speedup will not grow 

linearly as the number of cores increases. Therefore, the speedup obtained is always less than 

the ideal in terms of traditional Amdahl's law. Therefore, we consider the overhead of data 

preparation is an important factor by extending traditional Amdahl’s Law. 

The effects of communication, synchronization and cache missing rate can be overcome by 

proper architectural and software design. If a multicore architecture has no private memory, 

then there would be no need in synchronization and communication: the only one memory is 

shared by all of the cores and data access at the same space. Therefore such memory 

architecture would be unaffected by those overheads of data preparation. But this may incur 

long memory latency. 

In this paper, we have presented an Extended Amdahl’s Law taking into account the effects 



3242                                                                                  Pei et al.: Reevaluating the Overhead of Data Preparation 

of data preparation. By experiment, the heterogeneous multicore performance is 

fundamentally limited by data synchronization, CPU-GPU communication and cache missing 

rate. The maximum performance speedup achieved by heterogeneous multicore can be lower 

than predicted by Amdahl’s Law. In the future work, we will keep on investigating the 

performance gain within limited energy (or power) budget while considering the overhead of 

data preparation. 
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