
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 5, May. 2016 2181
Copyright ⓒ2016 KSII

A Reconfiguration Method for Preserving

Network Bandwidth and Nodes Energy of
Wireless Sensor Networks

Hyunjun Jung1, Dongwon Jeong2, Byung-Won On2 and Doo-Kwon Baik1
1 Department of Computer and Radio Communications Engineering, Korea University

Anam-dong, Seongbuk-gu, Seoul 136-701, Korea
[e-mail: darkspen@korea.ac.kr, baikdk@korea.ac.kr]

2 Department of Statistics and Computer Science, Kunsan National University
Miryong-dong, Gunsan-si, Jeollabuk-do 573-701, Korea

[e-mail: djeong@kunsan.ac.kr, bwon@kunsan.ac.kr]
*Corresponding author: Doo-Kwon Baik and Dongwon Jeong

Received August 20, 2015; revised November 18, 2015; accepted March 9, 2016;

published May 31, 2016

Abstract

In Wireless Sensor Networks (WSNs) and even in the Internet of Things (IoT) ecosystem, the
reconfiguration of sensor variables is an important problem when the role of a system (or
application) program’s sensor nodes needs to be adjusted in a particular situation. For example,
the outdoor temperature in a volcanic zone, which is usually updated in a system every 10 s,
should be updated every 1 s during an emergency situation. To solve this problem, this paper
proposes a novel approach based on changing only a set of sensor variables in a part of a
program, rather than modifying the entire program, in order to reduce both network congestion
and the sensor nodes’ battery consumption. To validate our approach, we demonstrate an
implementation of a proof-of-concept prototype system and also present results of
comparative studies showing the performance and effectiveness of our proposed method.

Keywords: sensor variable, wireless sensor network (WSN) application, reconfiguration

http://dx.doi.org/10.3837/tiis.2016.05.013 ISSN : 1976-7277

2182 Jung et al.: A Reconfiguration Method for Preserving Network
Bandwidth and Nodes Energy of Wireless Sensor Networks

1. Introduction

The Internet of Things (IoT) constitutes the interconnection of various embedded computing
devices, such as RFIDs, sensors, actuators, mobile phones, smart cars, and electronic devices,
via the Internet. Tiny computers embedded in physical objects (or things) collaborate with
other connected devices in the vicinity to provide intelligent services [1][2]. For example, a car
driver would like to know the location of an available parking space in advance so that he or
she can save his or her valuable time. In particular, Wireless Sensor Networks (WSNs)
constitute a physical infrastructure that needs to embody the IoT ecosystem. In every WSN,
there exist a sink node and a sensor network consisting of sensor nodes. The sink node is a type
of sensor node that collects various sensing data, e.g., humidity, temperature, sound, pressure,
motion, and vibration, from the sensor nodes in the sensor network. Then, based on these
sensing data, a new IoT application can improve its quality of service (QoS) and mine more
useful information by combining multiple heterogeneous sources, such as sensor networks, in
addition to cellular networks, in an IoT environment.

First, to demonstrate the need for sensor network systems, we now show a real-world
example. According to a news reports in Korea, 2 people were killed and at least 68 were
injured in a pileup involving approximately 100 vehicles in foggy weather on the Incheon
bridge, which connects the Incheon International Airport to the outskirts of Incheon. If the
bridge had been equipped with an intelligent sensor network system, such as the Structural
Health Monitoring system1, which was designed, implemented, deployed, and tested on the
4200 ft. long main span and the south tower of the Golden Gate Bridge, such a serious traffic
accident could have been prevented. For instance, many sensor nodes attached to the Incheon
bridge frequently gather varied information concerning foggy, windy, or surveillance states,
and the time interval (or named sensing period) for collecting sensing data can be reset. The
collected data, e.g., those related to a foggy state, are stored in a sensor variable. Such a sensor
variable has one of two binary values, 0 or 1: a value of 1 if there is fog around the bridge, and
0 otherwise. An example of a reconfigurable sensor variable is the sensing period. Let us
suppose that the sensing period is initially set to 30 s. Since frequent updates of the sensor
variable can deplete batteries, this is the update interval usually set for the surveillance state.
However, in the case of an emergency, the sensing period needs to be shortened, e.g., from 30
s to 1 s, to reflect the conditions in the bridge’s immediate vicinity. More importantly, when
the values of reconfigurable sensor variables are changed in a sink node, the values
corresponding to the sensor nodes should also be updated. This data synchronization problem
is known as the reconfiguration problem in sensor networks. In this work, we first label each
sensor variable either non-configurable or reconfigurable. For example, the sensor variable of
the foggy state is labeled a non-configurable sensor variable. Meanwhile, if this sensor
network system is connected to the cellular networks of the IoT ecosystem, additional
information, such as that about sudden congestion in a particular area of the bridge, is
combined with the values of all the sensor variables. Thus, a serious incident can be detected at
its outset and an alarm can be given or car drivers who have just arrived at the bridge can be
diverted.
However, if the reconfiguration problem is not handled in existing sensor networks,

intelligent services cannot be expected in our daily life. Recall that the primary role of the sink
node is to collect and store the values of the sensor variables arriving from the sensor nodes.

1 Structural Health Monitoring of the Golden Gate Bridge (http://www.cs.berkeley.edu/~binetude/ggb/)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 5, May 2016 2183

Users usually explore the values through monitoring the software of the sink node. If a user
changes the value of a reconfigurable sensor variable, either the entire or part of the sensor
nodes (called target sensor nodes) is not automatically updated according to this change. For
instance, when the sensing period of a reconfigurable sensor variable for the surveillance state
is changed from 30 s to 5 s, a user has to access the sensor node in person and manually change
the value in the target sensor nodes. However, this is not a sensible idea if the sensor nodes are
located within a danger zone. Alternatively, if the user wishes to update this value remotely,
two methods are available. In the first, the entire source code is compiled, although the values
of only a few reconfigurable sensor variables are altered in the sink node, and then, its binary
codes are sent to the target sensor nodes. The disadvantages of this method are that the
network congestion in the sensor network is increased and all the services have to be
interrupted until all the execution files have been downloaded and then installed in the target
sensor nodes. Hereafter, this method is called the full-image-based method. The second
method is the component-based method. Typically, software usually consists of several
components (or software modules), e.g., an operating system (OS) usually consists of a kernel
module, networking module, etc. Thus, if the value of a reconfigurable sensor variable in a
particular component is changed, e.g., the routing information is reset, the binary code
corresponding to the component is transmitted only to target sensor nodes and is installed in
them. In this case, the main shortcomings of the full-image-based method can be somewhat
diminished. As would be expected, according to our experimental results, network congestion
is mitigated in the component-based method much more effectively than in the
full-image-based method. However, the component-based method still suffers from network
congestion and battery requirement issues.

Therefore, to handle the limitations of these existing methods, in this paper, we propose a
novel reconfiguration method in which the OS and application software contains a list of
pointer variables, each of which contains an address designating its location in flash memory.2
In the location, the value of each reconfigurable sensor variable is in fact stored. Therefore,
although the value of a reconfigurable sensor variable is altered in the sink node, the proposed
method simply updates the changed value in the pointer variable. Thus, it is no longer
necessary to compile either the entire or part (i.e., components) of the source code in the sink
node, and thus, the corresponding binary code does not need to be sent to target sensor nodes.
In turn, this process does not give rise to serious network congestion. The main contributions
of this study are as follows. (1) A prototype of the reconfiguration method in sensor networks
was developed, and (2) the empirical study showed that our proposed method outperforms
other methods in terms of the network congestion and battery issues that challenge sensor
networks.

The rest of this paper is organized as follows: In Section 2, we summarize related work. In
Section 3, our proposed reconfiguration method is presented in greater depth. Next, a
prototype of the proposed method is described in Section 4 and the experimental results for
three methods are discussed in detail in Section 5. Finally, in Section 6 the concluding remarks
are presented, followed by our future research plan.

2. Related Work
A significant amount of research has been conducted on sensor network reconfiguration.
Deluge [3] is the most popular application in the full-image-based method category. Deluge is

2 Because flash memory is non-volatile memory, the data stored in flash memory are not lost when a sudden power
outage occurs.

2184 Jung et al.: A Reconfiguration Method for Preserving Network
Bandwidth and Nodes Energy of Wireless Sensor Networks

an application for replacing a monolithic binary image. The large size of a monolithic binary
image (30–40 KB) incurs a high energy overhead for code transmission. Reinstallation of the
full application also disrupts the running application, resulting in a loss of recent data and
resources. Additionally, small frequent updates in the code, such as bug fixes, cause only
minor differences between the new and old system images.

FlexCup [4] is a flexible code-updating mechanism that minimizes the energy consumed at
each sensor node for installing arbitrary code changes. FlexCup requires a reboot after
reconfiguration. OpenCOM [5] is a component model that can be explicitly tailored for
diverse domains and environments. The component model is supported by a reflective runtime
architecture that is itself built from components. OpenCOM is a generic model that was
developed for resource-rich platforms. Gridkit [6] is sensor middleware that can be
customized to suit different sensor application types, providing a reflective approach for a
coordinated network-wide dynamic reconfiguration of sensor behavior. Figaro [7], a
programming model supported by an efficient run-time system and distributed protocols,
focuses on a code distribution algorithm for WSNs. The LooCI [8] component model imposes
minimal additional overhead on developers, and uses an event-based binding model that
enables them to model rich component interactions. Finally, RemoWare [9] mitigates the cost
of post-deployment software updates on sensor nodes through the notion of in situ
reconfigurability and provides a component-based programming abstraction to facilitate the
development of dynamic WSN applications. Contiki [10] enables partial code updates through
the linking and loading of native code in the ELF file format. The partial code updates require
OS support.

Recently, the dynamic reconfiguration issue has attracted increasing research attention.
Dynamic reconfiguration involves the automatic configuration of sensor nodes, and many
dynamic reconfiguration methods have been proposed. In [11], a framework called Fennec
Fox for dynamic reconfiguration to support heterogeneous applications was proposed. The
framework comprises a runtime infrastructure and a programming language to specify the
various WSN configurations. Leligou et al. [12] presented use cases that can exploit the
reconfiguration feature. In this study, a sample application, an urban surveillance case based
on a set of different sensors, was analyzed. The analysis identified communication modules
and parameters that can be reconfigured. Hughes et al. [13] proposed an energy-aware
software evolution model for WSNs. The model uses LooCI middleware and the authors
proposed a generic model for calculating the energy cost of the reconfiguration in WSN. Yeh
et al. [14] presented a framework for reconfigurable techniques on a WSN at the node and the
network level. The framework develops a structure for optimization problems and
classification of an energy optimization function. In [15], an approach called MoRE was
proposed for developing autonomic systems in smart homes, reusing variability models at
runtime to provide a semantic base for decision making. In this paper, the model-based
reconfiguration engine to implement model-management operations was introdiced. Ortiz et al.
[16] proposed a runtime variability mechanism that can modify the structural variability of a
dynamic software product line. In this study, a super-type-enabled runtime variability
mechanism was introduced and the previous feature models were extended. Mouronte et al.
[17] proposed a high-level architecture that exploits runtime software variability techniques to
manage the context-aware information dynamically. In [18], a family of configurable
middleware with a flexible architecture, called FamiWare, was proposed. The middleware
provides a single interface for accessing all those services that can operate in heterogeneous
devices. The architecture uses a software product line. In [19], a family of middleware for a

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 5, May 2016 2185

WSN, called Family, that can be customized according to the imposed constraints was
proposed. The middleware uses the software product line approach and feature model.

In addition, there are several issues related to WSNs, one of the most important of which is
the collection, aggregation, lifetime enhancement and use of sensor data from various WSNs.
Jung et al. [20][21], Zhang et al. [22] and Liu et al. [23] addressed this issue but it needs to be
further investigated and improved..

There has been considerable research on the reconfiguration of WSNs, but several issues
remain to be resolved. One of the main issues is that these approaches still suffer from network
congestion and battery requirement issues. We propose a novel reconfiguration method based
on sensor variables. The proposed method simply updates the changed value in the pointer
variable.

3. Main Proposal

Fig. 1 shows an overview of the proposed method. For example, when a user changes the
value of the reconfigurable sensor variable “sensing period” from 1 s to 5 s, the
reconfiguration manager in the sink node creates a sensor variable packet (SVP), which
includes the target sensor node identifier and the changed value of the reconfigurable sensor
variable. Then, it sends this packet to the target sensor node. After the packet is received in the
target sensor node, it is analyzed, and then, the value of the corresponding sensor variable in
the non-volatile memory is changed from 1 s to 5 s. In our approach, not all the binary image
data need to be sent to the target node. Instead, only a small packet is sent to update the
corresponding sensor variable in the target sensor node. In addition, a changed valued is not
lost when a sudden blackout occurs, because it is stored in non-volatile memory.

Fig. 1. Sensor variable-based reconfiguration method overview

2186 Jung et al.: A Reconfiguration Method for Preserving Network
Bandwidth and Nodes Energy of Wireless Sensor Networks

3.1 Sensor Variable
As mentioned previously, the goal of this study was to devise a new reconfiguration method
that supports a sensor variable-based reconfiguration. First, in our definition, a “sensor
variable” contains the value that should be synchronized between the sink node and target
sensor nodes. In other words, the value of the sink node should be always the same as that of
the target sensor nodes. The sensor variables that are mentioned in ATaG [24][25][26] are
similar to our sensor variable in that they represent the capability of a node and are used to
determine the type of a node. Our approach is to modify the behavior by changing the sensor
variable of the sensor node.

Sensor variables comprise a network, scheduler, device driver, sensor type, and other
components. WSN application systems contain various sensor variables [27][28][29]. Table 1
shows the reconfigurable sensor variable classification as defined in this paper and examples
of sensor variables and descriptions according to category. The reconfigurable sensor
variables are classified into four categories: network, scheduler, device driver, and sensor type.
The network category includes sensor variables for network configuration, the scheduler
category consists of sensor variables for schedule configuration, the device driver category
consists of device sensor variables for sensor drivers, and the sensor type category includes
sensor variables for sensors and actuators action.

Table 1. Sensor variable classification and description
Category Sensor variable Description (of sensor node)

Network

NodeID Changes unique number for sensor node
identification

SensingPeriod Changes sensing period value
AdjacentActuatorNodeID,

AssociationPermiStartNodeID,
AssociationPermiEndNodeID,
NextHopRoutingFirstNodeID,
NextHopRoutingfirstNodeID,

NextHopRoutingSeecondNodeID

Changes network identifiers relative to the sensor
node

RFChannel Changes RF channel number
Beacon_Enable Changes Beacon uses

ZigBeeRF Changes ZigBee protocol type
(e.g., simple, IEEE802.14.4, MAC, and StarMesh)

Scheduler
Scheduler_Enable Changes Scheduler enable

SchedulerType Changes Scheduler type
(e.g., None, FIFO, and PreemptionRR)

Device
driver

EEPROM_Enable Changes EEPROM module enable
UartType Change Uart type

(e.g., NONE, printf-module, scanf-module, and
scanf&printf)

FlashMemory_Enable Changes Flash memory module enable
RSSI_Enable Changes RSSI module enable

Sensor
type

Sensor_Temperature_Enable Changes Temperature module enable
Sensor_LED_Enable Changes LED sensor module enable
Sensor_Gas_Enable Changes Gas sensor module enable

Sensor_Humidity_Enable Changes Humidity module enable
Sensor_Light_Enable Changes Light module enable

Sensor_Ultra_sonic_Enable Changes Ultra sonic enable
Sensor_Battery_Enable Changes Battery enable

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 5, May 2016 2187

3.2 Code Description for Sensor Variable-based Reconfiguration
The code description of the sensor variable-based reconfiguration method uses sensor
variable-based programming [30], which supports value updates and does not require a system
reboot. A non-volatile memory of a sensor node enables a flash memory, e.g., EEPROM.
Non-volatile memory has a storage area for non-volatile data, which are not lost even when the
power is turned off suddenly. A reconfigurable sensor variable connects to the non-volatile
memory. In the proposed method, we redesign OS and application software such that it
includes a list of pointer variables, each of which contains an address designating its location
in the memory. When the value of a reconfigurable sensor variable is changed in a sink, the
value corresponding to a sensor node should also be updated. In the proposed method, the
value of the reconfigurable sensor variable is in fact stored in the non-volatile memory of the
sensor node.

Fig. 2 shows the logical structure connecting the sensor variable and the non-volatile
memory. A sensor node consists of sensor variables, such as Node ID, Sensing_Period, and
Humidity_Enable. The sensor variable values are stored in non-volatile memory by linking the
corresponding code descriptions. When a sensor node changes its actions, the method
proposed in this paper updates the sensor variable values by using the reconfiguration method.
This feature supports a dynamic reconfiguration in WSNs.

Fig. 3 shows an example sensor variable-based code description in TinyOS [31]. The code
description is connected to the reconfigurable sensor variable in a binary image and the
non-volatile memory.

Fig. 2. Logical structure between sensor variable and non-volatile memory

Fig. 3. Sensor variable-based programming in TinyOS

2188 Jung et al.: A Reconfiguration Method for Preserving Network
Bandwidth and Nodes Energy of Wireless Sensor Networks

3.3 Sensor Variable-based Reconfiguration Method
In this section, we describe the proposed method, which supports sensor variable-based
reconfiguration. First, the sink node sends an initial communication packet to target sensor
nodes to set the communication channel between the sink node and the target sensor nodes and
then to hold the ongoing service of the target sensor nodes. Then, the sink node transmits an
SVP to the sensor node for the reconfiguration. Each target sensor node updates the value of
the reconfigurable sensor variable in the non-volatile memory.

Fig. 4 depicts an overview of the sensor variable-based reconfiguration method proposed in
this paper. A user sends the reconfiguration information to the sink node. The reconfiguration
information consists of the changing information of the target sensor node, i.e., the sensor
node ID, sensor variable name, and value. The sink node checks the sensor variable list for
validation of the reconfiguration information. The sensor variable list includes an available
sensor variable list of the WSN and the unit of reconfiguration. The sink node creates SVPs
using the reconfiguration information. The sensor node in general collects data and transmits
the data to the corresponding sink node. If the sensor node executes the reconfiguration during
sensor data collection, data collection errors may occur. Therefore, before executing the
reconfiguration operation, the mode of the target sensor node changes to a waiting mode for
error prevention. The sink node transmits the SVP after initial communication checking. The
sensor node executes the reconfiguration operation using the SVP analysis.

Fig. 4. Overall reconfiguration process in proposed method

Fig. 5 illustrates the structure of the sink node and sensor node. The following points
summarize the module:

 Selector: The selector module selects the target node and the sensor variable.
 Registry manager: The registry manager module manages the sensor variable

list of the WSN for validation of the reconfiguration information using the
registry.

 Sensor variable packet creator (SVPC): The SVPC module generates the SVP.
The packet includes the reconfiguration information.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 5, May 2016 2189

 Reconfiguration manager (RM): The RM module manages the initial
communication of the sensor node before a reconfiguration.

 Sensor variable checker (SVC): The SCV module manages the available sensor
variable list of the WSN.

 Packet analyzer (PA): The PA module determines the packet types received
from the nodes and analyzes the packet types. The packet types are related to the
changing initial communication and executing reconfiguration.

 Reconfiguration controller (RC): The RC module executes the reconfiguration
using non-volatile memory.

 Sensor variable adaptor (SVA): The SVA module changes the sensor variable
values on the basis of the non-volatile memory.

Fig. 5. Structure of the sink node and sensor node

2190 Jung et al.: A Reconfiguration Method for Preserving Network
Bandwidth and Nodes Energy of Wireless Sensor Networks

Fig. 6. Overall reconfiguration process: sequence diagram

Fig. 6 shows a sequence diagram of the overall proposed method process. The diagram

shows the interaction between the modules. A user sends reconfiguration information for the
sensor variable-based method (1). The reconfiguration information includes the sensor node
ID, sensor variable name, and sensor variable value. The registry contains the sensor variable
list of the WSN. The SVC checks the reconfiguration information using the registry manager
(2). The selector selects the reconfiguration elements together with the SVC (3). The selector
sends the result to the RM, which then executes a sensor variable-based reconfiguration (4).
The RM requests a change in the initial communication at the target sensor node (5). The PA
of the target sensor node analyzes the received packet and calls the RC, which changes the
initial communication in the sensor node and sends the PA the result of the initial
communication change (6) and (7). The PA transmits the result of the initial communication
change to the RM (8). If the change result of the initial communication is true, the RM calls the
APC (9). The SVPC creates a sensor variable-based reconfiguration packet, and transmits it to
the target sensor node (10). The PA of the target sensor node analyzes the received the packet
and calls the SVA (11). The SVA adapts the SVP for the reconfiguration and sends the PA the
adaptation result (12). The PA transmits the result of the adaptation to the selector and the
selector sends (13) the result to the SVC (14).

Fig. 7 shows the reconfiguration process for the sink node. The user sends any
reconfiguration information for the target sensor node. The reconfiguration information
includes the target sensor node ID, the sensor variable name, and the sensor variable value.
The sink node receives the reconfiguration information from the user and checks the sensor
variable list for validation of the reconfiguration information using the registry. The list
includes a set of available sensor variable lists of all the sensor nodes and the unit of

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 5, May 2016 2191

reconfiguration. The sink node creates an SVP on the basis of the reconfiguration information.
The SVP includes the target sensor node ID, the sensor variable name, and the sensor variable
value. If there is no relevant reconfiguration information, the sink node requests new
reconfiguration information from the user. The sink node requests the initial communication
change before transmitting the SVP. The initial communication is ready for the
reconfiguration execution for the target node. The sensor node in general collects sensor data
and transmits the data to the sink node. If the sensor node executes the reconfiguration
operation during sensor data collection, data collection errors may occur. The initial
communication prevents sensor node errors during the reconfiguration. The sink node
transmits the SVP after the initial communication checking is complete. Finally, the sink node
transmits the SVP to the corresponding sensor node.

Fig. 8 shows the reconfiguration process for the sensor node. First, if the sensor node
receives initial communication packets from the sink node, it changes its initial
communication. The sink node waits to receive the SVP and execute sensor variable-based
reconfiguration. Finally, the sensor node transmits the results of the reconfiguration to the sink
node.

Fig. 7. Sink node process in the proposed method

2192 Jung et al.: A Reconfiguration Method for Preserving Network
Bandwidth and Nodes Energy of Wireless Sensor Networks

Fig. 8. Sensor node process in the proposed method

4. Implementation
This section describes a prototype of the sensor variable-based reconfiguration method
proposed in this paper. The prototype was used to test the proposed method. We configured
the nodes to use the 2.4 GHz band IEEE 802.15.4 physical layer and the beaconless mode
action. The implementation used two TelosB nodes [32] running on TinyOS.

The prototype implementation used the flash memory of the non-volatile memory in the
TelosB. The flash memory and EEPROM of the non-volatile memory enable the sensor node
for sensor variable-based reconfiguration. Some parts of the flash memory and EEPROM can
be read and written by the developer.

A sensor variable is connected to a source code with the flash memory. The proposed
method changes the sensor variable values of the flash memory for changing the action. The
reconfiguration information set, including the node ID, sensor variable name, and sensor
variable value, is given to the prototype. The prototype implementation executes the changing
operation for the sensor node.

Fig. 9 illustrates an implementation scenario to show the contributions of the proposed
method. The sensor node supports the LED_Enable and Sensor_Temperature_Enable sensor
variable. A user provides reconfiguration information containing the node ID, sensor variable
name, and sensor variable value. The scenario comprises three steps for the action change in

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 5, May 2016 2193

the sensor node. In the first step, the user sends information about the LED sensor variable and
Temperature sensor variable to the sink node. The sink node checks the sensor variable list and
the sensor node creates an SVP. The packet includes the target sensor id, reconfigurable sensor
variable name, and sensor variable value. The sink node requests an initial communication
change from the target sensor node and transmits the SVP. The LED and Temperature
elements of the target sensor node are deactivated. In other words, the LED light is turned off
and the temperature sensor is not activated. In the second step, the LED action on the target
sensor node is changed. The target sensor node is changed. After the change operation, the
LED action is activated by using the LED_Enable sensor variable and the LED light is turned
on. Finally, the temperature sensor action using the Sensor_Temperature_Enable sensor
variable is changed as the activation status. In this scenario, in the proposed method only the
SVP is requested for the reconfiguration.

Fig. 9. Proposed reconfiguration method scenario

Fig. 10 shows the reconfiguration scenario execution. Fig. 10(a) shows the LED light on the

sensor node is activated and blinking after the LED_Enable sensor variable is updated. Fig.
10(b) shows the On-state of the temperature sensor through the updating of the
Sensor_Temperature_Enable sensor variable. The oscilloscope tool shows the temperature
values sensed by the temperature sensor. The oscilloscope snapshot shows the values collected
after the corresponding sensor variable change.

2194 Jung et al.: A Reconfiguration Method for Preserving Network
Bandwidth and Nodes Energy of Wireless Sensor Networks

Fig. 10. Prototype of the sensor variable-based reconfiguration method

5. Experimental results
In this section, we present experimental evidence that our proposed method is superior to two
other existing methods: (1) a full-image-based method and (2) a component-based method.
For the experiments, Deluge and RemoWare were selected from among several
full-image-based and component-based methods, respectively. In most cases, sensor networks
suffer considerably from the network congestion problem and rapid consumption of the sensor
node batteries. Therefore, the experiments were divided into two different types, as follows:

 Network congestion: The objective of this set of experiments was to study the effect
of each method on network congestion in a sensor network. If the network congestion
of the sensor network is mitigated to a greater degree when the proposed method is
used than when the other methods are used, the proposed method is determined to be
useful for building intelligent sensor networks.

 Battery consumption: In this set of experiments, the extent of the battery
consumption of sensor nodes comprising a sensor network was compared. To
determine the best method, we needed to identify the sensor node batteries that were
consumed at the lowest rate when each different method was used.

5.1 Network Congestion
Network congestion frequently occurs when sensor nodes carry an excessive amount of data
and leads to deterioration in an application’s QoS, since the throughput of the sensor network
is rapidly diminished by the network congestion problem. In our evaluation of Deluge3 and
our proposed method in terms of network congestion, to quantitatively measure the extent of
the network congestion, we considered both the network bandwidth and the updated time. The

3 In the experiment, our method is directly compared to not Remoware but Deluge because our proposed method
and Deluge are running on the same operating system (TinyOs).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 5, May 2016 2195

network bandwidth constitutes the channel capacity of a logical communication path in a
sensor network. For instance, to transmit 10 kilo bytes in a file to a target sensor node n2 from
a sink node n1, first a channel is set up between n1 and n2. Assuming that the channel has a
capacity of 512 bytes per second, it will take about 20 s for n2 to receive the entire file.
However, if the file is only 1 kilobytes in size, it will take approximately 2 s. In addition, the
update time is defined as the total amount of time it takes to send a file from n1 to n2 and then to
install and render it ready for use in n2.

Fig. 11 shows the experimental results about the total size of data (S) to be transmitted to a
target sensor node (n2) from the sink node (n1) using Deluge and our approach. Formally, the
total size of data sent by the Deluge and our approach can be computed by the following
equations:

SDeluge = SOs + SApplication, and

SProposed_Method = SSensor_Node_ID + ∑ (𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑆𝑆𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅_𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑁𝑁𝑅𝑅𝑁𝑁𝑅𝑅 + 𝑆𝑆𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)𝑅𝑅

, where i means the i-th pair of sensor variable name and value. SDeluge is composed of two
terms, SOs and SApplication, for reconfiguration. SOs is the size of operating system for n2, such as
TinyOS and contiki, and SApplication is the size of the re-compiled version for n2. Deluge always
sends to n2 a ROM file including both SOs and SApplication. On the other hand, SProposed method is
only a few bytes for sending a sensor ID followed by pairs of reconfigurable sensor variable
names and values. In Deluge, suppose that the size of the entire operation system is about
10KB, and the size of the application is 5KB or so. SDeluge is 15 KB. In our approach, if there
are about 256 sensor nodes and variables in a wireless sensor network, each of SSensor_Node_ID,
Sreconfigurable_Sensor_Variable_Name, and Svalue is 1 byte. If 12 pairs of reconfigurable sensor variable
names and values, ∑ (𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑆𝑆𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅_𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑁𝑁𝑅𝑅𝑁𝑁𝑅𝑅 + 𝑆𝑆𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)𝑅𝑅 is 24 bytes. In this
set-up, SDeluge is about 600 times larger than SProposed_Method. This outcome is similar to our
empirical results in Fig. 11.

For the experiments, we prepared three test cases. One case constituted updating the
configuration value of the blinking light period in a target sensor node, the second constituted
updating the configuration value of the LED blinking On/Off state in a target sensor node, and
the third constituted updating the configuration value of the temperature On/Off state in a
target sensor node. For clarification, we hereafter call the three cases Blinking_Period,
LED_Enable, and Sensor_Temperature, respectively. We also used 12 TelosB nodes running
on TinyOS. We modified Deluge and implemented our method using benchmark data sets
given by TinyOS. In our approach, the configuration information was updated on the flash
memories of the TelosB nodes.

In all three test cases, when we used Deluge, the total data size was about 20 kilobytes on
average, while data of about 25 bytes needed to be sent to n2 when our method was used. The
data size to be sent using Deluge is thus about 800 times bigger than that using our method.
Such relatively large data cause or exacerbate the network congestion problem in sensor
networks. In Deluge, the binary code of all the source codes, including OS and application
software, should be sent to a target sensor node. In contrast, in our scheme, the only data to be
sent contain the identifier of a target sensor node, reconfigurable sensor variable name, and
reconfiguration value. If there are about 512 sensor nodes in a given sensor network, only 9
bits are required to identify each of all the sensor nodes. In addition, suppose that the total
number of reconfigurable sensor variables is 64. In this case, only 6 bits are needed to identify
each of the sensor variables. In most cases, the reconfiguration information of sensor variables
constitutes, for example, turning a particular sensor on/off and changing the sensing period.

2196 Jung et al.: A Reconfiguration Method for Preserving Network
Bandwidth and Nodes Energy of Wireless Sensor Networks

Thus, 1 byte is sufficient to represent the reconfiguration value. As a result, when our approach
is used, the total size of data to be transmitted to n2 is at most 3 bytes. In Deluge, if the capacity
of the channel between n1 and n2 is 512 bytes, n1 has to divide the total data into 20 parts of
data, and then, each part of the data is sent to n2. Therefore, the network bandwidth is occupied
and cannot be used by other nodes until n2 has received all the data. In contrast, when our
method is applied to the sensor network, all the data are simultaneously sent to n2 and the used
channel is quickly available. Based on these experimental results, we suggest that our
approach outperforms the existing methods such as Deluge in the aspect of network bandwidth.
Therefore, using our approach ameliorates the network congestion problem that frequently
occurs in sensor networks.

We also measured the updated time (T) of Deluge and our method. Regardless of the Deluge
or our approach, the updated time for the reconfiguration is defined as

TUpdate = ∑ (𝑆𝑆𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅_𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅 / 𝑆𝑆𝐵𝐵𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑅𝑅𝐵𝐵𝐵𝐵ℎ) + 𝑇𝑇𝐼𝐼𝑅𝑅𝑆𝑆𝐵𝐵𝑅𝑅𝑅𝑅𝑅𝑅_𝑇𝑇𝑅𝑅𝑁𝑁𝑅𝑅𝑗𝑗

, where j means the distance to the target sensor node from the sink node. The communication
between sensor nodes is made by UDP protocol. The sink node first sends a segment to the
nearest neighbor of the sensor nodes in a wireless sensor network. The neighbor node stores
and forwards it to its nearest neighbor again. In this way, the segment is arrived to the target
sensor node. The UDP protocol is connectionless without providing any control scheme for
end-to-end network flow. Thus, the updated time can be defined as the combination of the data
transmission time and the install time. The data transmission time is computed by SFile_Size /
SBandwidth. For example, SDeluge / SBandwidth in the Deluge method, but SProposed_Method / SBandwidth in
our method. Please note that the transmission time is the dominant term in TUpdate equation.
Compared to our approach, the size of Deluge is considerably larger than that of our method.
This indicates that the TUpdate time of Deluge is also much slower than ours. In addition,
another term, TInstall_Time is the amount of time taken to install the binary image in the target
sensor node using the Deluge method. However, in our method, it means the amount of time
taken to simply update the values of the sensor variables. In Deluge, if SDeluge is about 15KB,
and SBandwidth is 250 kbps (please, refer to TelosB in http://www.memsic.com), then it
takes about 60 seconds to send SDeluge to the target sensor node. Further, if the distance from
the sink node to the target sensor node is 5, then it takes about 65 seconds by ∑ (𝑆𝑆𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅_𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅 /𝑗𝑗
 𝑆𝑆𝐵𝐵𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑅𝑅𝐵𝐵𝐵𝐵ℎ). Supposing that TInstall_Time is about 3 seconds, the TUpdate time is 68 seconds. In
case of our method, if SProposed_Method is 25KB, and SBandwidth is 250 kbps, it takes about 1
second to send to the target sensor node by SProposed_Method / SBandwidth. In addition, if the
distance is 5, it takes about 2 seconds by ∑ (𝑆𝑆𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅_𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅 / 𝑆𝑆𝐵𝐵𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑅𝑅𝐵𝐵𝐵𝐵ℎ)𝑗𝑗 . If TInstall_Time is 1 second,
the TUpdate time is 3 seconds. As a result, the TUpdate time of the proposed method is about 23
times faster than that of Deluge. Figure 11 also shows the similar patterns between the
analytical and empirical studies.

In the set of experiments, the average update time of Deluge was more than 1 m. In contrast,
the update time required by the proposed method was at most 2 s on average. The experimental
results show that our proposed method is about 30 times faster than existing full-image-based
methods such as Deluge. Interestingly, the update time consists of transmit time and
installation time. The transmit time is defined as the amount of time it takes to send all data to
a target sensor node from a sink node. The install time is the amount of time it takes to install
the data in the target sensor node. In Deluge, the transmit time and the installation time were
about 61 s and 4 s, respectively. That is, the transmit time is dominant in the update time.
Similarly, in our approach, the transmit time is about 2 s, whereas the installation time is at

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 5, May 2016 2197

most 1 ms. A comparison of the transmit time of our scheme and of Deluge reveals that the
proposed method is also about 30 times faster than Deluge. This result is consistent with the
experimental results for the network bandwidth.

Fig. 11. Total size of data and average updated time results

5.2 Battery Consumption
By referring to IEEE 802.15.4 multihop networks [33], we implemented a simulator for
estimating the energy consumption of Deluge, RemoWare, and our approach. In the
simulation, we focused on updating the configuration value of the LED blinking On/Off state
in a target sensor node. In addition, we used OMNet++ [34], a well-known component-based
C++ discrete even simulator jointly with the MiXiM and OMNet++ frameworks created for
various types of mobile and fixed wireless networks (e.g., WSNs, body area networks, ad-hoc
networks, and vehicular networks) [35]. The simulated network nodes were located in a
uniformly random spatial distribution in two-dimensional square areas. The nodes were
configured to use the 2.5 GHz band IEEE 802.15.4 physical layer and parameters in CC2420
[36]. We conducted experiments and activated the parameter settings of the simulator on the
basis of experimental results and similar simulation environments [37]. Thirty sensor nodes
were randomly deployed in a 500 m * 500 m field.

Fig. 12 shows a screen-shot image of our simulation based on OMNeT++. In the figure,
node[0] represents a sink node and the remaining nodes are sensor nodes. Each sensor node
has a borderline of a circle-shape within which it can only communicate with other sensor

2198 Jung et al.: A Reconfiguration Method for Preserving Network
Bandwidth and Nodes Energy of Wireless Sensor Networks

nodes. The arrows between the nodes represent the routing information. Data are transmitted
to sensor nodes based on the routing information.

Fig. 12. Screen-shot image of our simulation based on OMNeT++

Fig. 13 illustrates the experimental results for the battery consumption of sensor nodes

when each method, Deluge, RemoWare, or our approach, was employed. In the figure, the
x-axis represents each of the 30 sensor node identifiers and the y-axis represents the battery
consumption per sensor node. The average energy consumptions of Deluge, RemoWare, and
our approach are 108.5 mWs, 47.4 mWs, and 6.1 mWs, respectively. According to these
experimental results, our proposed method is 17 times and 7 times more energy-efficient than
Deluge and RemoWare, respectively. This implies that our method can save battery
consumption efficiently, as compared with the existing methods. The reason is that only data
of 3 bytes are sent to a target sensor node in our approach and therefore the target sensor node
tends to consume less energy because it is handling a small size of data. In contrast, the other
methods are likely to require large batteries to handle the relatively large data. For instance,
each sensor node has a receiver and a transmitter. The receiver and transmitter consume a
battery energy of 0.6391 mA and 0.6845 mA per (receive and transmit) operation. In the
example in the previous section, when we used Deluge, the receiver of a target sensor node (n2)
had to be activated 20 times to receive all the data. Then, it needed to consume 20 × 0.6391
mA = 12.782 mA to receive every data item. In contrast, in our approach, the receiver can be
activated only one time and therefore it consumes only 0.6391 mA.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 5, May 2016 2199

Fig. 13. Experimental results for battery consumption

6. Conclusion
In this paper, we proposed a novel approach for resolving the reconfiguration issue that is a
significant challenging problem in sensor networks and the IoT ecosystem. Whenever
configuration values are updated in a sink node (e.g., a certain sensor is turned on or off), the
updated information should also be updated in the target sensor nodes. In existing methods,
such as full-image-based (e.g., Deluge) and component-based (e.g., RemoWare) methods, the
binary code of either the entire or part of the source code should be sent to the target sensor
nodes, although only the configuration information in the entire source code is changed in the
sink node. For this reason, the existing methods frequently result in both the network
congestion problem and battery requirement issues, which are very important in sensor
networks. In contrast, since our approach is based on updating only configuration information,
it can ease the limitations of the existing methods.

In future work, we plan to study the autonomous reconfiguration problem. To address this
problem without human intervention, configuration information should be automatically
updated in the target sensor nodes to provide flexibility in handling a situation.

Acknowledgement
This research was supported by Basic Science Research Program through the National

Research Foundation of Korea (NRF) funded by the Ministry of Education
(NRF-2014R1A1A2058992). The co-corresponding authors are Doo-Kwon Baik and
Dongwon Jeong.

2200 Jung et al.: A Reconfiguration Method for Preserving Network
Bandwidth and Nodes Energy of Wireless Sensor Networks

References
[1] Vermesan, O., Friess, P. “Internet of Things: Converging Technologies for Smart Environments

and Integrated Ecosystems,” River Publishers: Aalborg 42 9000 Aalborg, Denmark, 2013.
Article (CrossRef Link).

[2] Atzori, L., Iera, A., Morabito, G., “The Internet of Things: A survey,” Comput. Network, 10,
2787-2805, 2010. Article (CrossRef Link).

[3] Hui, J.W., Culler, D. “The dynamic behavior of a data dissemination protocol for network
programming at scale,” in Proc. of the 2nd International Conference on Embedded Networked
Sensor Systems, 2004. Article (CrossRef Link).

[4] Marron, P.J., Gauger, M., Lachenmann, A., Minder, D., Saukh, O., Rothermel, K. “Flexcup: A
flexible and efficient code update mechanism for sensor networks,” in Proc. of the 3rd European
Conference on Wireless Sensor Networks, 3868, 212-227, 2006. Article (CrossRef Link).

[5] Coulson, G., Blair, G., Grace, P., Taiani, F., Joolia, A., Lee, K., Ueyama, J., Sivaharan, T., “A
generic component model for building systems software,” ACM Transactions on Computer
Systems, 26(1), 1-42, 2008. Article (CrossRef Link).

[6] Grace, P., Coulson, G., Blair, G., Porter, B., Hughes, D. “Dynamic reconfiguration in sensor
middleware,” in Proc. of the International Workshop on Middleware for Sensor Networks,
MidSens '06, 1-6, 2006. Article (CrossRef Link).

[7] Mottola, L., Picco, G.P., Sheikh, A.A. “FiGaRo: Fine-grained software reconfiguration for
wireless sensor networks,” Wireless Sensor Networks Lecture Notes in Comput. Sci., 4913,
296-304, 2008. Article (CrossRef Link).

[8] Hughes, D., Thoelen, K., Horre, W., Matthys, N., Cid, J.D., Michiels, S., Huygens, C., Joosen, W.
“LooCI: A loosely-coupled component infrastructure for networked embedded systems,” in Proc.
of the 7th International Conference on Advances in Mobile Computing and Multimedia, MoMM
'09, 195-203, 2009. Article (CrossRef Link).

[9] Taherkordi, A., Loiret, F., Rouvoy, R., Eliassen, F. “A generic component-based approach for
programming, composing and tuning sensor software,” Comput. J., 54, 1248-1266, 2011.
Article (CrossRef Link).

[10] Dunkels, A., Gronvall, B., Voigh, T., “Contiki - a lightweight and flexible operating system for
tiny networked sensors,” in Proc. of 29th Annual IEEE International Conference on Local
Computer Networks, 455-462, 2004. Article (CrossRef Link).

[11] Szczodrak, M., Gnawali, O., Carloni L.P. “Dynamic reconfiguration of wireless sensor networks
to support heterogeneous applications,” in Proc. of IEEE DCOSS Conference, 38, 23-31, 2005.
Article (CrossRef Link).

[12] Leligou, H.C., Redondo, L., Zahariadis, T., Retamosa, D.R., Karkazis, P., Papaefstathiou, I.,
Voliotis, S., “Reconfiguration in wireless sensor networks,” Developments in E-systems
Engineering, 59-63, 2010. Article (CrossRef Link).

[13] Hughes, D., Canete, E., Daniels, W., R, G.S., Meneghello, J., Matthys, N., Maerien, J., Michiels, S.,
Huygens, C., Joosen, W., Wijnants, M., Lammtte, W., Hulsmans, E., Lannoo, B., Moerman, I.
“Energy aware software evolution for wireless sensor networks,” in Proc. of IEEE 14th
International Symposium and Workshops on World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 1-9, 2013. Article (CrossRef Link).

[14] Yeh, C.T. “Dynamic reconfiguration techniques for wireless sensor networks,” University of
Massachusetts Amherst Masters Thesis, 2008. Article (CrossRef Link).

[15] Cetina, C., Giner, P., Fons, J., Pelechano, V., “Autonomic computing through reuse of variability
models at runtime: The case of smart homes,” IEEE Computer 2009, 42(10), 37-43, 2009.
Article (CrossRef Link).

[16] Ortiz, Ó., García, A. B., Capilla R., Bosch J., Hinchey M., “Runtime variability for dynamic
reconfiguration in wireless sensor network product lines,’ in Proc. of the 16th International
Software Product Line Conference, 2, 143-150, 2012. Article (CrossRef Link).

http://www.internet-of-things-research.eu/pdf/Converging_Technologies_for_Smart_Environments_and_Integrated_Ecosystems_IERC_Book_Open_Access_2013.pdf
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1145/1031495.1031506
http://dx.doi.org/10.1007/11669463_17
http://dx.doi.org/10.1145/1328671.1328672
http://dx.doi.org/10.1145/1176866.1176867
http://dx.doi.org/10.1007/978-3-540-77690-1_18
http://dx.doi.org/10.1145/1821748.1821787
http://dx.doi.org/10.1093/comjnl/bxq102
http://dx.doi.org/10.1109/LCN.2004.38
doi:10.1109/DCOSS.2013.21
doi:10.1109/DeSE.2010.17
doi:10.1109/WoWMoM.2013.6583386
http://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1164&context=theses
doi:10.1109/MC.2009.309
http://dx.doi.org/10.1145/2364412.2364436

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 5, May 2016 2201

[17] Mouronte, M. L., Ortiz, Ó., García, A. B., Capilla R., “Using dynamic software variability to
manage wireless sensor and actuator networks,” IM 2013, 1171-1174, 2013.
Article (CrossRef Link).

[18] Gámez, N., Fuentes L., “FamiWare: a family of event-based middleware for ambient intelligence,”
Personal and Ubiquitous Computing, 15(4), 329-339, 2011. Article (CrossRef Link).

[19] Delicato, F. C., Fuentes, L., Gámez N., Pires P. F., “Variabilities of wireless and actuators sensor
network middleware for ambient assisted living,” IWANN 2009, 851-858, 2009.
Article (CrossRef Link).

[20] Jung, E.H., Kim, Y.P., Park, Y.J., Cho, S.Y., Han, S.Y., “An attribute-based naming architecture
for wireless sensor networks using a virtual counterpart overlay network,” EUROSSC 2006, LNCS
4272, 222-225, 2006. Article (CrossRef Link).

[21] Jung, E.H., Kim, Y.P., Park, Y.J., “TinyONet: A cache-based sensor network bridge enabling
sensing data reusability and customized wireless sensor network services,” Sensors, 8, 7930-7950,
2008. Article (CrossRef Link).

[22] Zhang, J., Ren, F., He, T., Lin, C., “Attribute-aware data aggregation using dynamic routing in
wireless sensor networks,” in Proc. of IEEE International Symposium on World of Wireless
Mobile and Multimedia Networks, 1-9, 2010. Article (CrossRef Link).

[23] Liu, X., Li, J., Kang, G., “A Smart Energy-efficiency Deployment Scheme for Lifetime
Enhancement in Large-scale Wireless Sensor Networks,” Smart Computing Review, 5, 591-601,
2015. Article (CrossRef Link).

[24] Bakshi, A., Prasanna, V.K., Reich, J., Larner, D., “The abstract task graph: A methodology for
architecture-independent programming of networked sensor systems,” in Proc. of the 2005
Workshop End-to-end, Sense-and-Respond Systems, Applications and Services, 19-24, 2005.
Article (CrossRef Link).

[25] Pathak, A., Mottola, L., Bakshi, A., Prasanna, V.K., Picco, G.P., “Expressing Sensor Network
Interaction Patterns using Data-Driven Macroprogramming,” in Proc. of the 5th IEEE
International Conference on Pervasive Computing and Communications Workshops, 255-260,
2007. Article (CrossRef Link).

[26] Pathak, A., Mottola, L., Bakshi, A., Prasanna, V.K., Picco, G.P, “A compilation framework for
macroprogramming networked sensors,” in Proc. of the 3rd International Conference on
Distributed Computing in Sensor Systems, 189-204, 2007. Article (CrossRef Link).

[27] Lee, W.J., Kim, J.I., Kang, J.M. “Automated construction of node software using attributes in a
ubiquitous sensor network environment,” Sensors, 10, 8663-8682, 2010. Article (CrossRef Link).

[28] Jung, H.J., Jeong, D.W., Lee, S.H., “Self-reconfiguration middleware model for sensor network
environment,” Research Notes in Information Science (RNIS), 14, 2013. Article (CrossRef Link).

[29] Jung, H.J., Jeong, D.W., Lee, S.H., “Self-reconfiguration middleware model and qualitative
evaluation for sensor network environment,” International Journal of Advancements in Computing
Technology (IJACT), 5, 174-183, 2013. Article (CrossRef Link).

[30] Attribute-based programming. Available online: http://www.webopedia.com/TERM/A/attribute_
based_programming.html (accessed on 21 January 2015).

[31] Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D., Hill, J.,
Welsh, M., Brewer, E., et al., “TinyOS: An operating system for sensor networks,” Ambient
Intelligence, Springer Berlin Heidelberg: Berlin, Germany, pp. 115-148, 2005.
Article (CrossRef Link).

[32] TELOSB MOTE PLATFORM. Available online: http://www.willow.co.uk/TelosB_Datasheet.pdf
(accessed on 21 January 2015).

[33] IEEE 802.15.4. (2006). Wireless medium access control (MAC) and physical layer (PHY)
specifications for low-rate wireless personal area networks (WPANs)

[34] Varga, A. “The Omnet++ discrete event simulation systems,” in Proc. of the European Simulation
Multiconference, Prague, Czech Republic, 6-9 June 2001.

[35] MiXiM simulator for wireless and mobile networks using OMNeT++. Available online:
http://mixim.sourceforge.net/ (accessed on 21 January 2015).

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6573157&newsearch=true&queryText=Using%20dynamic%20software%20variability%20to%20manage%20wireless%20sensor%20and%20actuator%20networks
http://dx.doi.org/10.1007/s00779-010-0354-0
http://dx.doi.org/10.1007/978-3-642-02481-8_129
doi:10.1007/11907503_17
http://dx.doi.org/10.3390/s8127930
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5513765
http://dx.doi.org/10.1109/wowmom.2010.5534896
http://dx.doi.org/10.6029/smartcr.2015.06.009
https://www.usenix.org/conference/eesr-05/abstract-task-graph-methodology-architecture-independent-programming-networked
http://dx.doi.org/10.1109/percomw.2007.46
http://dx.doi.org/10.1007/978-3-540-73090-3_13
http://dx.doi.org/10.3390/s100908663
http://www.globalcis.org/rnis/global/paper_detail.html?jname=RNIS&q=248
http://www.aicit.org/IJACT/ppl/IJACT3280PPL.pdf
http://dx.doi.org/10.1007/3-540-27139-2_7

2202 Jung et al.: A Reconfiguration Method for Preserving Network
Bandwidth and Nodes Energy of Wireless Sensor Networks

[36] Texas Instruments Incorporated. 2.4 GHz IEEE 802.15.4/ZigBee-ready RF Transceiver. Available
online: http://www.ti.com/lit/gpn/cc2420 (accessed on 1 January 2015).

[37] Kermajani, H., Gomez, C., “On the network convergence process in RPL over IEEE 802.15.4
multihop networks: Improvement and trade-offs,” Sensors, 14, 11993-12022, 2014.
Article (CrossRef Link).

Hyunjun Jung received a M.S. degree in the Department of Computer Science and
Engineering from Soongsil University. Seoul, Republic of Korea in 2010. He is
candidates of Ph.D. degree in the department of computer science and engineering,
Korea University, Seoul, Korea. His interested in Data engineering, the Semantic Web,
Ubiquitous computing, Big data, Software engineering.

Dongwon Jeong received his Ph.D. degree in Computer Science from Korea
University, Korea, 2004. He was a Research Assistant Professor, Korea University,
2004-2005 and was a Visiting Research Scholar (PostDoc.), School of Information
Sciences & Technology, Pennsylvania State University, USA, 2005. He was a Visiting
Research Scholar, Department of Computer Science and Engineering, Oakland
University, USA, 2013-2014. He is a Professor in Dept. of Statistics & Computer
Science, Kunsan National University, Korea from 2005. His research interests include
data engineering, the semantic web, smart mobile services, dig data, IoT, and Security.

Byung-won On received the PhD degree from the Department of Computer Science
and Engineering, Pennsylvania State University, University Park, PA, in 2007. He is an
assistant professor in the Department of Statistics and Computer Science, Kunsan
National University, Gunsan-si, Jeollabuk-do, Korea. His research interests are
probabilistic models, entity resolution and search, social network analysis and mining,
PCM-based in-memory databases, and cutting-edge big data technologies.

Doo-Kwon Baik received his M.S. and Ph.D. degrees in Computer Science from
Wayne State University in the U.S. in 1983 and 1986, respectively. He is a full professor
in the Department of Computer Science and Engineering, Korea University, Seoul,
Republic of Korea. He is interested in semantic web, ontology, data engineering,
modeling & simulation, and metadata registry.

http://www.mdpi.com/1424-8220/14/7/11993

