
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 12, Dec. 2015                                          4776 
Copyright ⓒ2015 KSII 

An Adaptive Virtual Machine Location 
Selection Mechanism in Distributed Cloud 

 
Shukun Liu1, Weijia Jia2 

1 School of Information Science and Engineering, Central South University, 410083 Changsha, China 
[e-mail: liu_shukun@csu.edu.cn] 

2 Department of Computer Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China 
[e-mail: weijiaj@gmail.com] 

*Corresponding author: Shukun Liu 
 

Received July 7, 2015;  revised September 22, 2015; accepted October 18, 2015; 
 published December 31, 2015 
  

 

Abstract 
 

The location selection of virtual machines in distributed cloud is difficult because of the 
physical resource distribution, allocation of multi-dimensional resources, and resource unit 
cost. In this study, we propose a multi-object virtual machine location selection algorithm 
(MOVMLSA) based on group information, doubly linked list structure and genetic algorithm. 
On the basis of the collaboration of multi-dimensional resources, a fitness function is designed 
using fuzzy logic control parameters, which can be used to optimize search space solutions. In 
the location selection process, an orderly information code based on group and resource 
information can be generated by adopting the memory mechanism of biological immune 
systems. This approach, along with the dominant elite strategy, enables the updating of the 
population. The tournament selection method is used to optimize the operator mechanisms of 
the single-point crossover and X-point mutation during the population selection. Such a 
method can be used to obtain an optimal solution for the rapid location selection of virtual 
machines. Experimental results show that the proposed algorithm is effective in reducing the 
number of used physical machines and in improving the resource utilization of physical 
machines. The algorithm improves the utilization degree of multi-dimensional resource 
synergy and reduces the comprehensive unit cost of resources. 
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1. Introduction 

With the growth of network application services, information technology architecture and a 
variety of resources should be effectively integrated to manage physical resources effectively, 
improve the utilization rate of resources, and reduce resource unit costs [1]. Virtual machine 
technology is a key to virtualization, and it is widely applied to distributed cloud [2]. With the 
rapid popularity of cloud computing, the unlimited use of limited resources can be achieved by 
users in the future. Under this condition, users can obtain the physical resources they actually 
require, similar to how people purchase fuel or natural gas for their daily routines. However, 
users need to select the most appropriate interface to obtain such resources; otherwise, a 
considerable amount of resources will be wasted. The selection of the proper purchase window 
has thus become a key and fundamental problem that necessitates urgent solutions. Nowadays, 
the resources needed by cloud users are mainly embodied in the form of a virtual machine. To 
make a virtual machine perform efficiently, the host resource is mapped to the application 
layer, and the resource scheduling process is encapsulated in the search process of the virtual 
machine [3, 4]. Thus, the key problem in the resource allocation process is the rapid and proper 
selection of a virtual machine for the corresponding physical nodes under the premise of 
satisfying all service-level targets for different applications [5]. 

Physical resource utilization and user satisfaction can be greatly improved with an adaptive 
selection mechanism that allows users to automatically select a virtual machine according to 
comprehensive factors, which depend on a physical machine, during the allocation of virtual 
machine resources. Therefore, as the key issue in virtual machine deployment, the location 
selection of virtual machines needs to be solved urgently.  

In this study, we first formulate our optimization problem as a bin packing based on 
multi-dimensional resource utility to determine the optimal location selection of virtual 
machines to physical machines, with consideration of the requirements for dependability. This 
method is different from the traditional way. Second, this study proposes a new population 
updating method based on immune memory and on a new multi-object genetic algorithm for 
the location selection of virtual machines based on the structure of a doubly linked list. Finally, 
during the coding process of virtual and physical machines, we used a mechanism of 
information grouping mode, through which the similar scale virtual machines can be allocated 
to the proper locations in shorter time compared with the traditional way. 

The rest of this paper is organized as follows. Section 2 surveys related works. Section 3 
states the problem that we will address and presents related definitions. Section 4 describes the 
detail of gene encoding and evaluation function design. Section 5 describes the MOVMLSA 
algorithm. Section 6 presents the experimental evaluation and analysis. Finally, Section 7 
concludes this paper and suggests a future research direction. 

2. Related Work 

The mapping problem of virtual machines to physical nodes can be regarded as a 
multi-dimensional vector packing problem [6–8] and as a NP-hard problem. At present, this 
problem is mainly solved with a heuristic algorithm [8, 9]. However, the current research on 
the location selection of virtual machines in a cloud platform is mainly aimed at the 
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optimization of only one particular dimension. For example, existing research only aims to 
guarantee service-level objectives, minimize the number of physical nodes, and reduce virtual 
machine migration and energy consumption [10]. The optimization goals in some cases are 
inconsistent and contradicting. For example, a virtual machine is placed on a minimal number 
of physical nodes to reduce the number of used nodes; in this way, idle nodes can be saved, 
and energy consumption and management cost can be reduced [11]. Nevertheless, extensive 
virtual machine migration occurs. If the goal is to reduce such migration, the number of used 
physical nodes is likely to increase. 

In [12, 13], a genetic algorithm was used to tackle the problem of the static placement of 
virtual machines without consideration of the overhead costs involved in the virtual machine 
migration. In [14], node virtualization integration was described as a packing and random 
optimization problem in the cloud data center, but the considerations focused only on 
processor resources and not on other dimensions, such as memory and input/output (I/O). In 
[15, 16], the authors proposed a management framework for virtual machine placement in 
cloud computing, but they failed to consider resource costs and system energy consumption. 
In [17, 18], the authors proposed a scheduling strategy for virtual machines based on a genetic 
algorithm, the historical data of the cloud computing system, and the current state of the 
system [19]. This method achieves an ideal load balance and incurs minimal overhead for 
virtual machine migration; however, it ignores resource utilization and energy consumption in 
the data center. In [13, 15], the problem of the location selection of virtual machines was 
divided into a multi-objective optimization problem and a bin packing problem but without the 
consideration of the cost of virtual machine migration; the study focused only on the static 
placement of virtual machines and disregarded dynamic deployment based on virtual machine 
migration. In [18, 20], the problem was considered as a combinatorial optimization problem 
based on bin packing; similarly, the authors only considered the static placement of virtual 
machines and disregarded dynamic placement based on virtual machine migration. 

Most optimization methods for virtual machine placement are implemented in several 
phases to solve a single-objective optimization problem. Multiple targets are rarely optimized 
simultaneously. Consequently, only a local rather than a global optimization solution is 
obtained. In sum, extensive research results have been obtained in the cloud placement of 
virtual machines, but several serious problems, including those enumerated below, have yet to 
be solved. 
(1) Most studies determine data centers by selecting the required physical nodes and not the 
most appropriate nodes from the cloud data center. A complete strategy for the location 
selection of virtual machines should be divided into two levels, namely, data center and 
physical machine. 
(2) Many of the existing studies on the virtual machine placement strategy are mainly based on 
a single dimension of target optimization under certain rules. Consequently, the generated 
optimal placement method may be based on only one certain condition. An efficient strategy 
for the location selection of virtual machines should consider the dependencies between 
dimensional constraints and comprehensive balance. 
(3) Many new challenges need to be addressed to dynamically allocate and manage the shared 
physical and virtual resources of data centers. For example, an adaptive framework for the 
location selection of effective virtual machines is lacking. In location selection, the cost of 
resources, system performance, energy consumption, and other factors must be considered. An 
efficient algorithm for the location selection of virtual machines must also be designed such 
that it is adaptable to different user goals and business needs. 
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3. Problem Statement and Related Definitions 

The total amount of resources utilized by users in a cloud computing platform is equivalent to 
the particular resources of a virtual machine. Each user application runs in its own, 
independent virtual machine. The efficient use of cloud computing resources and the reduction 
in the cost of such resources are key academic research issues.  

3.1 Problem Statement 
The multi-dimensional collaborative problem of the location selection of virtual machines can 
be considered a multi-objective combinatorial optimization problem. The available resources 
of each physical machine, such as the central processing unit (CPU), memory, disk, and I/O 
devices, can be used as multi-dimensional vectors. Every dimension is a physical resource for 
physical machines. Each resource required by a virtual machine corresponds to a 
multi-dimensional vector. The goal of the location selection of virtual machines is to place 
different virtual machines to multiple physical nodes according to the different needs of 
multiple users. The location selection process must be based on an effective adaptive 
framework. The problem of the location selection of virtual machines, which is based on 
multiple targets, can be described as follows. 

In order to describe the problem and definitions conveniently and clearly, we designed two 
notation tables in which the basic meanings of the main symbols are defined accordingly. 

 
Tabel 1.  Notation table (1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

SYMBOL DESCRIPTION 

H  number  of data centres 

V  virtual machine set 

jv  the jth virtual machine 

M  physical machine set 

im  the ith physical machine 

t  task set of a virtual machine 

R  resource set of a data centre 

ir  resource set of ith  physical machine 
q

ir  the qth dimension resource of the ith  physical node 

L  resource service period 

S  useful resource service vector 

is  the useful service ratio of ir  
q
jkt  the qth dimension resource of kth task on jv  

W  task generation ratio set of virtual machine 

jw  task generation ratio of jv  

n mp ×  probability distribution matrix of data source 

n ms ×  cloud resource scheduling matrix 

µ  load balance variance of all physical nodes 
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Table 2.  Notation table (2) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
A cloud platform comprises a number of data centers. In this study, we suppose that H  data 

centers exist in a cloud platform and denote all resources in the data centers as
1

H

h
h

R
=
∑ . One data 

center comprises n  physical nodes. 1, 2, 3...... .....,{ }i nR r r r r r= denotes the total resources of one data 

center. 1 2 3
, , , ......,{ }q

i i i i ir r r r r=  denotes a set of q  different  dimensions resource of im . During an 
entire service period, which is denoted as L , the useful service time obeys the 
Poisson distribution [21], and all the resources are independent of one another, 
i.e., ,

0

n
i i

i
r R r φ

=
∀ ∈ =I . In the resource set of a data center, which is denoted as R , the useful 

service vector is denoted as 1 2{ , ,......, }nS s s s= , and the useful service rate of ir  is denoted 
as (0 )is i n≤ ≤ . 

A virtual machine set is denoted as 31 2{ , , ,......, }mV v v v v= , which is placed on physical 
nodes. The set comprises m  virtual machines. In this study, we suppose that jv  only has one 
task jt at any time. The kth  task, which is denoted as 1 2 3{ , , ,......, }q

j jk jk jk jkk
t t t t t= ,0 j m≤ ≤ , 

includes q different attributes. The task generation rate of a virtual machine can be described as 

1 2 3 4{ , , , ,... ..., },j mW w w w w w w= 0 j m≤ ≤ , where jw  denotes the task production rate of the jth  

virtual machine. All independent tasks satisfy , 0
m

j j jt V t φ=∀ ∈ =I , ,i jr R t V∀ ∈ ∈ . If ir can 
satisfy all the requirements of  jt , then jt  can be assigned to ir , and all operations can be run. 

In some cases, many ir  can satisfy the requirements of jt . To achieve an effective balance 

among all resources, jt is allocated to ir  with a probability of ijP . The probability distribution 

matrix of data resources is denoted as ( )n m ij n m
P P× ×

= , with the condition that 0ijP ≥  and 

0
1

n

ij
i

P
=

=∑ . The cloud resource scheduling matrix is denoted as ( )n m ij n m
S S× ×

= . If jv  is assigned 

SYMBOL DESCRIPTION 

,i qU  qth dimension resource utility of im  

,
i
j qU  utility of qth resource of jv which is assigned to im  

q
jiv  the qth  dimension resource of jv which is assigned to im  

q
im  the qth  dimension resource of im  

E  remaining resource biggest matrix of physical node 

F  virtual machine resource matrix 

jf  the required resource for jv  

q
jf  the required resource number of qth dimension for jv  

iC  resource billed vector of im   
q
ic  the cost of obtain qth dimension from im  

G  mapping matrix of jv to im   

N  migration number of virtual machine 

Y  overhead of placing jv on im  

Q  the max number of resource dimension 

javascript:void(0);
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to im , then =1ijS ; otherwise, =0ijS . During all the allocation processes, the following 
conditions must be fulfilled: 

0

0

0 0 0

1

S s

n

ij ij
i

n

ij ij j i
i

n m n

ij ij j i
i j i

P S

P t

P S t s

=

=

= = =


⋅ =


 ⋅ ⋅ ≤



⋅ ⋅ ≤


∑

∑

∑∑ ∑

.                                                        (1) 

 
In this work, we discuss the proper placement of virtual machines according to the usage 

information of multi-dimensional vectors of such virtual machines in the location selection 
process. We evaluate the resulting performance by referring to Microsoft’s 2008 report on 
virtual machine management techniques in the evaluation standards for physical server 
resources, i.e., according to the CPU, memory, network bandwidth, and disk I/O [15]. The 
problem is described as follows: 
(1) In  n physical machine nodes ( 21 3= , , ,......m },{ nM m m m ), n refers to the number of physical 
nodes in the physical cluster. The main resources include memory, CPU, disk, bandwidth, and 
I/O. 
(2) In m  virtual machine nodes ( 1 2 3{ , , ,......, }mV v v v v= ), m refers to the number of virtual 
machines. The main resource requirements of a virtual machine include memory, CPU, disk, 
bandwidth, and I/O. 
(3) A mapping between virtual and physical machines must be established to satisfy all the 
requirements of virtual machines and to reduce the physical nodes assigned to these virtual 
machines. During the mapping process, the sum of the assigned virtual machine resources 
cannot exceed the amount of resources of the physical machine. 
 
3.2 Related Definitions 
Definition 1: The largest resource vector of im  can supply 1 2 3

, , , ......,{ }q

i

T
i i i ir r r r r= , where q

ir  
denotes the maximum number of dimension resource  supplied by im ,1 i n≤ ≤ . The remaining 
resource matrix of the physical machine node set can be defined as follows: 

1 2 3
1 1 1 1
1 2 3
2 2 2 2
1 2 3
3 3 3 3

1 2 3

...

...

...
... ... ... ... ...

...

q

q

q

q
n n n n

r r r r
r r r r

E r r r r

r r r r

 
 
 
 =
 
 
  

. 

Definition 2: Given an adequate amount of physical resources, a virtual machine runs 
appropriately. The required amount of resources of jv can be denoted as 

1 2 3
, , , ......,{ }q T

j j j j jf f f f f= . q
jf  denotes the required number of qth  dimension resource, 

1 j m≤ ≤ . The required resource matrix of a virtual machine is denoted as follows: 
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1 2 3
1 1 1 1
1 2 3

2 2 2 2
1 2 3

3 3 3 3

1 2 3

...

...

...
... ... ... ... ...

...

q

q

q

q
m m m m

f f f f
f f f f

F f f f f

f f f f

 
 
 
 =
 
 
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. 

Definition 3: Resource cost 
The required amount of resources is billed. The billed vector can be marked with 

1 2 3
, , , ......,C {c c c c } ,q T

i i i i i=  where q
ic  denotes the cost of obtaining thq  dimension resource from 

im . 
Definition 4: Mapping matrix of jv  to im  

11 12 1 1

1 2

1 2

...
... ... ... ... ...

...
... ... ... ... ...

...

j m

i i ij im

n n nj nm

g g g g

g g g gG

g g g g

 
 
 
 =
 
 
  

 

Here, 1 i n≤ ≤ , 1 j m≤ ≤  , and {0,1}ijg ∈ . ijg  denotes whether jv  is placed on im . 1ijg =  
indicates that jV  is placed on the im ; otherwise, g =0ij . 
Definition 5: Let {0,1}ix ∈ . 1ix =  indicates that a virtual machine migrates from one physical 
node to another physical node. Otherwise, the virtual machine does not migrate. We suppose 
that S  denotes the number of migrations undertaken by a virtual machine and 

that
1

n

i
i

S x
=
∑= , {0,1}ix ∈ . According to this definition, the overhead of placing a virtual machine 

on a physical node can be denoted as Y , where iG C× ×TY=F . 

Definition 6: 
1

n

i
i

P p
=

= ∑ , {0,1}ip ∈ . 1ip =  indicates that at least one virtual machine is assigned 

to a physical node. Otherwise, no virtual machine is assigned to a physical node. 

Definition 7: ( / )i
q

Min D qµ = ∑ denotes the balanced load variance of all the physical 

machines. iD denotes the ith dimension variance, and q  denotes the number of dimensions. 
^2

i ij iD (p p ) /
n

n−= ∑ , where n  denotes the number of physical nodes. ip denotes the average 

value of the performance of the ith dimension for all physical nodes. ijp is the ith  performance 
value of the im . All the performance values are normalized. In this study, the optimization goal 
for virtual machine placement is as follows: 
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Constrained conditions: 
At any time, the total amount of all types of resources required by all virtual machines cannot 

exceed the total amount of resources of all physical machines. The amount of resources 
required for each virtual machine should also not exceed that required for each physical 
machine. The concrete constrained conditions can be formalized as follows: 

( )
( )
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c
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=
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
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∑

∑∑

∑

∑

I

                                               (3) 

,i qT  denotes the threshold of the resource q  for im , and ,
i
j qU  denotes the useful ratio of the 

resource q  in jv , which is assigned to im . The inequality (e) above indicates that the  qth  
dimension resource (i.e. CPU, memory, disk space, bandwidth, and I/O) of the virtual machine 
that are assigned to the physical machine im  cannot exceed those of the physical machine im . 
If a user application can be placed on X  virtual machines, then the performance factors of the 
virtual machines supplied to the application P  must satisfy service-level agreements (SLAs). 

4. Chromosome Gene Encoding and Evaluation Function Design 

In this part, we will introduce the process of chromosome gene encoding and evaluation 
function design. Using the GA (Genetic Algorithm) technology, we can explain the coding 
information of virtual machine and physical machine clearly and easily. In addition, evaluation 
function can be expressed combined with the coding information. 

4.1 Encoding 
Encoding is generally the first factor that can affect the search efficiency of evolutionary 
algorithms. Encoding can reflect the mapping relations of solutions to chromosomes [16]. For 
the location selection of virtual machines, the solution coding of the physical nodes to which  
virtual machines are assigned can be considered a chromosome. The assigned virtual machine 
is the gene value. The advantage of this coding is that the number of chromosome genes is 
determined by the total number of physical servers [22]. Therefore, this situation cannot 
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reduce computing speed because of the emergence of extensive coding. During the subsequent 
crossover and mutation operations, the hardware constraints among all servers remain the 
same [22]. In the present study, the problem of the location selection of virtual machines can 
be regarded as a bin packing problem. Three chromosome encoding mechanisms are available: 
coding based on cases, coding based on items, and coding based on groups [3]. Coding based 
on cases and coding based on groups focus on individual items. The goal function of bin 
packing depends on item groups. In this study, the encoding mechanism is mainly based on 
item groups. According to the combined redundancies of group encoding [23], a doubly linked 
list coding method is proposed. 

M virtual machines are assigned to N  physical nodes.  M  is generally larger than N . A 
random virtual sequence that includes M  virtual machines is generated. For chromosome 
encoding, a priority heuristic algorithm is employed to place a random virtual machine 
sequence on physical nodes. This priority heuristic algorithm selects a physical node from 
used physical nodes. If the selected node can satisfy the five resource requirements (CPU, 
memory, network bandwidth, disk, and I/O) of the first virtual machine, then the virtual 
machine can be placed on the physical node. Otherwise, the subsequent physical nodes are 
selected until the physical node that satisfies such requirements is found (let the resources of 
N  physical machines satisfy the resource requirements of M virtual machines). If no proper 
physical node  from the used physical nodes can satisfy the resource requirement, then the first 
new physical node that has not been used is selected for the placement of the virtual machine 
(when the algorithm is implemented initially, all physical machine nodes are not used). 
According to the description above, all virtual machines can be placed on physical nodes. The 
concrete algorithm is described as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

Algorithm 1: Priority heuristic algorithm 
 
For (i=0; i<=n; i++) 
{        
     VMFlag=0; 

For (j=0;j<=m;j++) 
      {    
         If (VMpj ==1) 
              { 
                   If  Rpj(c,m,s,b,i/o)>Rvi(c,m,s,b,i/o)  
                       { 

VMi stored in Pj; 
                            VMFlag=1; 
                            Break; 

} 
                    Else 
                     j++; 

} 
} 

If (VMFlag==0) 
VMi stored in the first unused Pj 

} 
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The encoding process of assigning virtual machines to  physical nodes, which is 
based on group information and a doubly linked list, is shown in the example. Let us assume 
the availability of  virtual machines, which need to be allocated at a certain period, as well 
as a sequence number of . The sequence number is random. Virtual 
machines are assigned to physical nodes randomly according to the priori algorithm, and the 
initial code can then be generated. The initial code is optimized according to the doubly linked 
list packing method. 

 
Fig. 1. Encoding process 

4.2 Evaluation Function 
The optimal goals are a minimal number of used physical machines, low unit price costs of 
resources for users, a high performance of an application system achieved with a balanced load, 
and a low useful ratio of physical nodes. An evaluation function can be used to evaluate 
individuals. The first parameter is a key factor to evaluate the chromosome load performance of 
used physical nodes. A small load variance denotes the good load performance of used physical 
nodes. The second parameter is the lowest possible resource cost for users. The third parameter 
is used to evaluate the energy consumption level in a chromosome using the number of physical 
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nodes. A minimal number of used physical nodes denote insignificant energy consumption. 
The fourth parameter is used to evaluate the physical machine utilization of a specific resource 
type. In this study, the fitness function is defined as follows: 

, q , q   
1 1

( , , , ) {min ),min ( ),min(( ),max }
QN

i i
i q

Fitfunction M P U M Y P Uµ µ
= =

= ∑∑ .         (4) 

4.3 Evolution Operators 
For the problem of assigning a virtual machine to physical machine, a new coding method 
based on group information and doubly linked list nodes is used. 
4.3.1 Crossover operator 

The virtual machine code contains the precursor and subsequent nodes. A chromosome gene 
is expressed in different groups and in an internal bidirectional chain structure. Considering that 
the arrival of the virtual machine sequence is random, the sequence length is not fixed. The 
number of virtual machines that each physical machine can accommodate also differs. The 
variable length of the chromosomes referred by the crossover operator is not fixed as well. 

The genetic algorithm involves physical machine coding and virtual machine group coding. 
Based on the proposed coding method, a single-point crossover method with the longest doubly 
linked list is put forward in this study. The crossover process in the genetic algorithm mainly 
allows the offspring to inherit excellent genes from parent generation. The crossover process is 
divided into two parts. One part is the process based on cross-group coding to minimize the 
number of used physical machines. The other part is the process based on cross-resource coding 
to maximize the utility of physical machine resources. In the first part (as shown in the Fig. 2 
below), the main steps of the single-point crossover optimization method for sub-individual 
coding optimization based on the largest chain length (for the optimization of individual 
species) are as follows: 
Step a) Two parent nodes are selected randomly. The longest group in parent individual A is 
selected and replaced with the corresponding group of parent individual B. 
Step b) After the crossing operation for parent individual B, the corresponding physical nodes 
that comprise repeated virtual machines are removed from the collection of used physical nodes 
and are then added to the unused physical node set; in this case, the virtual machines are deleted 
[16]. 
Step  c) The unallocated virtual machine series is generated on the basis of the retained virtual 
machine chain structure of parent individual B. 
Step d) The priority heuristic algorithm is used to generate new child entities from the 
unallocated virtual machine sequence.  
Step  e) A group is randomly selected from parent individual B and is then used to replace the 
corresponding group in parent individual A. Individuals B are generated according to Steps 
a)–d). 
For example, 12 virtual machines and 4 physical nodes are simulated. The process of the 

single-point crossover method [16] is shown in Fig. 2. 
4.3.2 Mutation operator 
Two scenarios emerge in chromosome variation. One is based on the group encoding variations 
of a doubly linked list, i.e., deleting a virtual machine in the parent node list randomly. The 
other scenario refers to resource coding variants, in which we can delete a doubly linked list 
node of a virtual machine. After such deletion, the precursor and subsequent nodes change 
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simultaneously. The occurrence of these two types of mutation does not follow a specific 
discipline; they may occur in the form of a single individual or in a specific moment. When 
mutation occurs, X physical nodes are randomly selected from the chromosome (where X < M 
/ 2). X physical nodes are removed from the collection of used physical nodes and are then 
added to the collection of unused physical nodes. The virtual machines deployed on the 
physical nodes are also deleted. The unallocated virtual machine series is then generated on the 
basis of the chain structure of individual virtual machines, which preserves individual variation. 
Finally, the unallocated sequence of virtual machines is redistributed in accordance with the 
distribution of the priority heuristic algorithm. 
The value of parameter X, which can affect the performance of the multi-objective 

evolutionary algorithm, depends on mutation rate. The value is determined with an experiment 
[16]. We take note of the following details. 1. When virtual machines have been integrated, we 
will ensure that the amount of resources of the physical machine is less than or equal to the 
threshold of each type of resource value during the process of crossover or mutation. 2. In the 
process of crossover or mutation based on resource coding, the remaining resources of the cross 
section selected by the physical machine must be greater than those of the selected virtual 
machine. The process of the mutation operator method is shown in Fig. 3. 

 
Fig. 2. Single-point crossover process 
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Fig. 3. Mutation process 

4.4.3 Population update method 
The  dominant relation is a weakened form of the Pareto dominance relation [24]. In this 
study, the  form is added for the given . The concrete definition of this 
form is as follows: 
Definition 8: dominant relation 

Let  which is called , if and 
only if and , which is marked 
as . 
Definition 9: -Pareto optimal approximate solution set  

Set is called a -Pareto optimal approximate solution set of  if and only if for 
any , the attribute  is always true and  is always true [24]. 

Definition 10: -Pareto solution set 
Set is called a -Pareto solution set of  if and only if  is a -Pareto optimal 

approximate solution set of X and [24]. 
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Definition 11: Immune memory 
Immune memory is an important characteristic of the immune system. When the body is 

exposed to an antigen for the second time, the incubation period of the antibodies relative to the 
first response time is obviously short. In this case, the antibody levels rise rapidly. When the 
same antigen invades the body again, a strong primary immune system develops; the 
phenomenon in which antibodies gain a higher degree of affinity is referred to as immune 
memory [25].  

The current non-dominant individuals are stored on the basis of the memory set. 
dominantε − is an effective form of the relaxation mechanism of the Pareto dominance, which 

is used to maintain the uniform distribution of a solution. This form is widely applied to 
maintain diversity domain. dominantε − is adopted to update the memory population. For a 
multi-goal optimization problem that includes m  goal functions, if ( )1 ,  1, 2,...,  ,if K i m≤ ≤ =  
then the goal space can be divided into (( ) 1  / )mK ε−  sub-spaces according to the rules 
of dominantε − . In every sub-space, only one individual exists, and other individuals are 
deleted from the population space. 
The dominantε −  mechanism is sensitive to a variety of problems. Given such variety, 

different numbers of antibodies are kept.  
From a practical viewpoint, deciders cannot know the geometric distribution form of the 

Pareto frontier in advance. If a target value of multiple antibodies is less than a certain value, 
deciders do not view two antibodies as different. In this case, the use of the dominantε −  
mechanism is appropriate. We adopt a control mechanism to provide decision rights that can 
meet such a situation and to maintain population diversity. In practice, decision makers can 
dynamically control the values of a vector. Allocating an identification vector for individuals is 
a simple method that can be used to divide the antibodies of a living space [25]. The 
identification vector can be defined as ( ) ( ) ( ) ( )( )1 2 , ,...,a a a m aB X B X B X B X=  and 

( ) ( ) ( )  / , 1, 2,...,  aBi Xa fi X i mε= = . The current memory set can be denoted 
as ( ) ( )1 2,  ,..., nMS t MS MS MS= . A new generation population is generated after the crossover 
and mutation operations and is then crossed with sub-populations. The result is sorted with the 
rule of ε  non-dominated sorting. According to the domination relationship among individuals, 
the memory information of antibodies, the Euclidean distance, and super volume [26], the 
subsequent generation of species evolves further. The update mechanism of concrete super 
body populations is described as follows: 
a) If the current generation is the first generation, then the non-dominant individual should be 
selected in the initial population. Otherwise, the non-dominant individual of the current 
population and the parent population is assigned to the individual population set. The large 
individual population is sorted after being overlaid according to the dominant relation. Let the 
grade number be n , and let the non-dominant set be denoted as  1, 2,.......,L L Ln . The new 
identification vector for the non-dominant population is assigned. If some of the identification 
vectors of some individuals are the same, then they belong to the same super individual. All 
identification vectors can be used to extract and identify super individuals. 
b) Let the population scale be M , and let the individual number of  1L  be M . The set of  1L  
can be regarded as the subsequent generation. 
c) If the individual number of  1L  is more than M , then all the memory information of the 
antibodies and the contribution value of the super individuals are calculated in  1L , except for 

javascript:void(0);
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some individuals with goal limit values. The 2n −  contribution values that are relatively large 
are selected, and the individuals whose values satisfy the goal value are selected as the 
subsequent generation population and marked as ( ) 1Z g + . 

d) If the individual number of  1L  is less than M , then all the individuals of M  are added to 
the subsequent generation marked as ( ) 1Z g + . The individuals of  2, 3,.......,L L Ln  are added to 
( ) 1Z g +  until the scale of the population reaches M . After such addition, if the number of 

individuals of i L  is more than M , then the Euclidean distance of the vector individuals with 
the same super individuals is calculated. The individuals with small values of Euclidean 
distance join the subsequent generation until the population scale reaches M . 

5. Immune Memory-based Algorithm for the Location Selection of Virtual 
Machines 

The optimization process with the multi-objective optimization algorithm has obvious 
disadvantages despite the wide use of the non-dominated sorting genetic algorithm 2 and the 
double F-shaped resonator (DFR). For the problem of multi-target optimization, improved 
performances and optimal results can be achieved for different frontal shapes. In this study, the 
basic evolution operators of cloud resource allocation are thus embedded in SMS-EMOA [16]. 
We propose a new multi-objective virtual machine location selection algorithm (MOVMLSA) 
according to the multi-objective selection process based on dominated hyper-volume [27]. The 
main process of the algorithm is described as follows: 
a) According to the group information based on doubly linked list encoding, parent individuals 
are initialized to form the parent population with a scale of M. 
b) The fitness evaluation function is calculated in view of the population individuals. The 
parent population that has been evaluated is sorted with the ε  non-dominated rule. The control 
level of the individuals in the population is divided. 
c) Two parent individuals are selected from populations using the tournament selection method, 
and a hybrid individual is generated using the single-point crossover method for the two parent 
individuals. 
d) Intelligent hybrid individual variation occurs, and individuals are generated. The child 
individuals are first evaluated with the fitness evaluation function. The child individuals are 
then added to the population pool. This step is repeated until the population size reaches M. 
e) The best M individuals are selected as the subsequent generation of the parent population on 
the basis of the update mechanism of the immune memory. 
f) For the new generation of the parent population, steps c)–f) are repeated until the evolution 
condition is met (maximum number of iterations). The algorithm is then terminated. 
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Fig. 4. Algorithm flow 

6. Experimental Results and Analysis 

The experimental results show that the proposed MOVMLSA based on immune memory can 
determine the reasonable placement of virtual machines, improve the utilization of physical 
resources, and reduce the cost of resources for users. The algorithm features a certain degree of 
feasibility and high accuracy. 

A priority heuristic algorithm (i.e., the proportional hazards model (PHM)), the classic 
NSG-2 algorithm, the multi-dimensional dominant resource fairness (DRF) scheduling 
algorithm [28], and the multi-objective evolutionary algorithm based on immune memory are 
all simulated in this study to verify the performance of the immune system-based 
multi-dimensional strategy for the location selection of virtual machines. The number of used 
physical machines, the load balance of the physical machines, and the resource cost are all 
recorded; these values can be used to compare the performance of the different algorithms. The 
simulation experimental platform is the CloudSim, which was proposed by the teams from the 
Grid Laboratory of the University of Melbourne in Australia and the Gridbus Project [6]. Some 
corresponding classes based on the base classes of CloudSim are modified to implement all the 
algorithms. Several inherited classes and methods are also designed. The existing useful 
resource vector of every physical machine can be obtained through the host class. The required 
resource vector of a virtual machine can be generated from the Datacenter class. The 
VMProvisioner class is used to achieve the mapping from a physical machine to a virtual 
machine. The VMAllocation policy is an abstract class that is used to achieve the location 
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selection of virtual machines. The HostForVm allocation method can realize the placement of a 
special virtual machine to a fixed physical machine. 

The inherited VMAllocationPolicy class can provide the assignment strategy of virtual 
machines. The allocation algorithm of virtual machines based on the multi-objective genetic 
immune memory can be implemented by editing the user-defined inheritance class named 
VMAllocation Policy. With this class, virtual machines can select proper physical machines to 
locate. With the method of extending classes in CloudSim, all classes can be rebuilt. 

Forty physical nodes are simulated in the CloudSim simulation platform. Every node is 
equipped with two processors (Intel(R) Core(TM) i5-3317U 1.7 GHz), a 4 GB memory storage, 
8 MB L2 cache, and two disks of 7,200 turns with 500 GB. The virtual numbers are 30, 45, 55, 
65, and 80 in turn. 

 
Table 3. Parameter design of the algorithm for the location selection of virtual machines in the 

CloudSim platform 
Number of physical nodes Number of virtual 

machines Algorithm 

40 30 PHM, NSG-2, DRF, MOVMLSA 

40 45 PHM, NSG-2, DRF, MOVMLSA 

40 55 PHM, NSG-2, DRF, MOVMLSA 

40 65 PHM, NSG-2, DRF, MOVMLSA 

40 80 PHM, NSG-2, DRF, MOVMLSA 

 
The population size of the evolution algorithm and the evolution number are set to 50 and 

1,000, respectively. The crossover and mutation ratios are set to 0.6 and 0.01, respectively. 
Crosser and mutation rates have very important influence on the experimental results. For 

general generic algorithm, the crosser and mutation rates are always constant. However, 
determining the concrete value of both rates is difficult. If the value is extremely small, an 
optimal solution is always more approximately achieved; however, ensuring that the solution 
is the global optimal solution is difficult. On the other hand, if the value of crosser and 
mutation rates are too large, the number of iterations also become large. Moreover, the 
searching ability becomes extremely low. At the same time, the algorithm is difficult to 
converge. To determine the experimental parameters, we conducted experiments, which can 
be used to determine the correlation between mutation rate and convergence speed, 1000 
times. 
 

Table 4. Class crossover and mutation rates 
Crossover rate Mutation rate Maximum evolution number Population size 

0.6 0.01 1,000 50 

 
An evolution experiment is conducted according to the above parameters in Table 3 and 

Table 4. The experimental results are shown in Table 5. 
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Table 5. Performance comparison of four algorithms 

Algorithm 
Number of 

virtual 
machines 

Number of 
physical 

machines 

Load balance 
variance of physical 

set  
Resource 
utilization 

PHM 
NSG-2 
DRF 

MOVMLSA 

30 

29 
13 
10 
11 

0.0046 
0.0042 
0.0026 
0.0023 

60 
63 
67 
70 

PHM 
NSG-2 
DRF 

MOVMLSA 

45 

30 
19 
15 
14 

0.0047 
0.0041 
0.0024 
0.0024 

63 
66 
69 
73 

PHM 
NSG-2 
 DRF 

MOVMLSA 

55 

32 
24 
19 
16 

0.0042 
0.0035 
0.0022 
0.0021 

65 
68 
73 
77 

PHM 
NSG-2 
DRF 

MOVMLSA 

65 

35 
27 
22 
20 

0.0037 
0.0033 
0.0023 
0.0022 

66 
70 
77 
80 

PHM 
NSG-2 
DRF 

MOVMLSA 

80 

40 
30 
27 
26 

0.0039 
0.0032 
0.0021 
0.0018 

69 
73 
79 
82 

 
The intuitive data graph shown in Figs. 5–7 is used to further analyze the algorithm 

performance data shown in Table 4. The numbers of the enabled physical nodes in the 
location selection algorithm based on immune memory and the DFR algorithm are 
approximately similar, but they are lower than those in the PHM and NSG-2 algorithms. A low 
number of enabled physical nodes indicates considerable savings in energy and resources. For 
the load performance of a cluster, the load performance variance in the location selection 
algorithm based on the multi-objective genetic algorithm is less than those in the other three 
algorithms. A small load performance variance denotes the good effect of the load-balancing 
server cluster. The preceding analysis implies that the location selection algorithm based on 
the multi-objective genetic algorithm can greatly reduce the number of used physical servers 
and can achieve a good load-balancing server cluster effect. 
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Fig. 5. Comparison of resource utility 
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Fig. 6. Comparison of the number of enabled physical machines 
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Fig. 7. Comparison of load balance degrees 

To obtain the comparison results of PHM, NSG-2, DFR, and MOVMLSA, we performed 
five independent group experiments (the required numbers of virtual machines are separately 
set to 30, 45, 55, 65, and 80). Thus, the physical machine number, resource load balance, and 
resource utility can be analyzed adequately. 
(1) Analysis comparison of comprehensive resource utility: The comprehensive resource 
denotes CPU, memory, network, and I/O resource. From the comparative experiments of the 
first group data to the fifth group data, the changes were recorded according to the changes in 
the number of virtual machines. The resource utility situation of PHM, NSG-2, DRF, and 
MOVMLSA are shown in Fig. 5. As shown in the figure, under the same conditions, the 
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physical resource utility is the highest when MOVMLSA is used. When the number of virtual 
machines is adjusted from 30 to 80, the comprehensive resource utility using MOVMLSA is 
10%–14% higher than that of PHM, NSG-2, and DRF. Thus, MOVMLSA can obviously 
improve resource utility and save energy. 
(2)Analysis comparison of the number of enabled physical machine: The number of virtual 
machines is adjusted, and the required physical machine number is shown in Fig. 6. The figure 
reflects the difference between NSG-2, DRF, and MOVMLSA. When different algorithms are 
used to assign the virtual machine to the physical machine, MOVMLSA can assign the virtual 
machine efficiently, which is reflected by using physical machines at least under the same 
conditions. Of course, the number of required physical machines increases with the increase in 
the number of virtual machines. The experimental results show that compared with PHM, 
which consumes plenty of resources, MOVMLSA can degrade the comprehensive resource 
utility from 35% to 62%. Compared with NSG-2 and DRF, MOVMLSA can degrade the 
comprehensive resource utility as well. Thus, MOVMLSA can improve resource utilization. 
(3) Analysis comparison of resource load balance: In the experiments, resource threshold 
value, attributes of physical machines, and virtual machine tasks are consistent with one 
another, except for the deployment method. The cross and mutation rates are set at 0.6 and 
0.01, respectively, and the maximum genetic algebra is set at 1000. The virtual machine 
deployment process was recorded from 30 virtual machines to 80 virtual machines in the 
experiment. The main goal of this experiment is to obtain the comparison of the result of 
resource load balance in a fixed number of virtual machines with different location selection 
algorithms. The comparison results are presented in Fig. 7. The experiments show that with 
the increase in the number of virtual machines, the algorithm can decrease the unbalanced 
degree of the resources. From the longitudinal contrast, under the same conditions relative to 
PHM, NSG-2, and DFR, MOVMSLA can reduce the resource imbalance degree from 0.03% 
to 0.23%. Compared with three other algorithms, MOVMLSA contributes more effectively to 
the performance of resource load balance. However, this advantage is not particularly obvious 
because many uncertain factors in determining genetic algorithm parameters exist. In our 
future work, the aspects of optimization parameters based on the characteristics of the 
algorithm itself would be improved. 

In theory, the multi-object virtual machine location selection problem, which is proposed in 
this paper, is a combinatorial optimization problem. In cloud computing environment, 
however, combinatorial optimization problems are likely to lead to combination explosion. 
Prioritization process between targets can be avoided because the genetic algorithm can be 
processed parallel to each target. Thus, the genetic algorithm can effectively reduce the invalid 
combination. Therefore, the algorithm is suitable for solving a multi-object optimization 
problem [10]. MOVMLSA is a multi-object location selection algorithm based on immune 
memory, which is also classified as a kind of genetic algorithm. MOVMLSA is effective for 
solving multi-object combinatorial optimization problems. However, at present, the genetic 
algorithm faces the problem of slow convergence speed. To improve the convergence speed of 
the genetic algorithm, MOVMLSA can choose excellent individuals from each generation 
population; then, the immune information is extracted from the excellent individuals, and a 
vaccination for immunization is prescribed to the diagnosed offspring. Immune memory can 
speed up the breeding of good modes and repair the damaged modes by crossover and 
mutation model of excellence. Virtual machine population and immune memory information 
can interact and cooperate with one another, which can greatly improve the convergence speed 
of MOVMLSA. MOVMLSA can automatically obtain the immunization information of an 
individual, and this information is dynamically updated with the evolution of the population. 
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In this way, we can find the subspace that may be included in the optimum solution and 
improve the searching efficiency of the algorithm. The scale of immune memory library is an 
important factor that can influence the efficiency of the algorithm. However, in this study, we 
did not examine the relationship between the population size and the immunization type 
database scale, which will be investigated in our future work. 

7. Conclusion 

The MOVMLSA based on the multi-objective evolutionary algorithm and that based on 
immune memory are discussed in this work. To solve the problem of mapping physical 
machines to virtual machines, we transform the problem of the location selection of virtual 
machines into a multi-objective packing problem according to the multi-dimensional resource 
characteristics of virtual machines and the characteristics of optimization goals. The solution 
of the multi-objective genetic algorithm is obtained on the basis of the genetic memory 
information. A chromosome evaluation function and a group chain code are designed 
according to the doubly linked list and group information. The maximum lengths of the cross 
operator, single-point crossover operator, and mutation operator of the X-point mutation are 
designed according to the code information. Compared with other evolutionary algorithms, the 
multi-objective genetic algorithm based on immune memory shows a better performance for 
different frontal shapes. An algorithm for the location selection of virtual machines based on 
immune factors is designed in a cloud computing platform. The algorithm update policy is 
based on the volume of the update mechanism, which can ensure the population quality and 
diversity. PHM, NSG-2, DFR, and MOVMLSA are simulated to verify the performance of the 
new algorithm. The experimental results show that the MOVMLSA based on immune 
operators performs better than the other algorithms in terms of resource utilization, cluster 
load balance, and resource cost.  
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