
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 6, Jun. 2015 2035
Copyright © 2015 KSII

RAS: Request Assignment Simulator for
Cloud-Based Applications

R. Arokia Paul Rajan1 and F. Sagayaraj Francis2

1,2 Department of Computer Science and Engineering, Pondicherry Engineering College,
Puducherry, India – 605 014

e-mail: 1paulraajan@gmail.com, 2fsfrancis@pec.edu
*Corresponding author: R. Arokia Paul Rajan

Received October 8, 2014; revised July 10, 2014; accepted May 26, 2015;

published June 30, 2015

Abstract

Applications deployed in cloud receive a huge volume of requests from geographically
distributed users whose satisfaction with the cloud service is directly proportional to the
efficiency with which the requests are handled. Assignment of user requests based on
appropriate load balancing principles significantly improves the performance of such
cloud-based applications. To study the behavior of such systems, there is a need for simulation
tools that will help the designer to set a test bed and evaluate the performance of the system by
experimenting with different load balancing principles. In this paper, a novel architecture for
cloud called Request Assignment Simulator (RAS) is proposed. It is a customizable, visual
tool that simulates the request assignment process based on load balancing principles with a
set of parameters that impact resource utilization. This simulator will help to ascertain the best
possible resource allocation technique by facilitating the designer to apply and test different
load balancing principles for a given scenario.

Keywords: Cloud computing, Cloud simulators, Request assignment, Load balancing

A preliminary work of this paper published in Advances in Intelligent Systems and Computing, Springer
International Publishing, Volume 248, 2014.

http://dx.doi.org/10.3837/tiis.2015.06.004 ISSN : 1976-7277

2036 Rajan et al.: RAS: Request Assignment Simulator for Cloud-Based Applications

1. Introduction

Cloud computing has become an inevitable impacting paradigm on recent technology
evolutions in the IT industry. The cloud computing model turned out to be the way in which
Internet applications were developed, delivered, and consumed [1]. In this model, all the
resources and services are considered as a utility. These resources are largely distributed,
highly scalable, and virtualized for its global users accessing through the Internet. Cloud
computing gives the illusion that these resources are limitless and made available on demand.
The appealing features from the consumer’s viewpoint are that a cloud service does not require
any cost upfront and is delivered with a pay as-you-go precept. Cloud services are offered on
three levels [2]. At the lowest level, the physical resources are provisioned as services known
as Infrastructure as a Service (IaaS). Amazon EC2, which offers its resources as a service,
belongs to this category [3]. At the second level, services are offered on a software platform
known as Platform as a Service (PaaS). Using this platform, application developers can
develop and deploy their applications. Google App Engine provides such services [4]. At the
last level, applications are offered as services to customers known as Software as a Service
(SaaS). Rackspace offers many SaaS services [5].

Without suitable experimenting methodologies, designing such a computing and delivery
model for these kinds of services may end up as a costly risk. Experimenting with the
simulated environment and enumerating the alternative solutions will help the designer to
make appropriate decisions. The main factors that influence the performance of large-scale
distributed environment are the computing elements, network components, and the governing
strategies through which they interact with each other. In cloud architectures, there are few
policies that decide the way in which requests have been processed and delivered to the user.
Service broker policy and load balancing principle in the request scheduling process are the
two most important strategies that a cloud application architect has to design [6]. Fig. 1
presents the locale of request assignment process in cloud architectures.

Based on the selection of service broker policy, the requests are routed to a data center. The
objective of a service broker policy is to achieve the maximum rate of utilization of resources
or service the maximum number of requests or to minimize response time and computing costs.
The load balancing principle determines the best method to assign requests with the servers to
achieve the objective policy of the service broker architecture [7]. In reality, it will be very
expensive to set up a large-scale distributed platform to test and evaluate such an architectural
design policy. Since the designer cannot have control or predict the varying nature of
structural components in the real environment, a comprehensive study should be done on the
impact of the choice of principle selection. Designing and adopting these strategies will enable
higher resource utilization and meeting customers’ expectations. It will also strive to achieve
maximum service quality with minimum costs.

In this paper, we present a simulation tool called Request Assignment Simulator (RAS)
that allows the learner to model, customize, test, and evaluate a use case in cloud architecture.
It models the user base, data center controller, and resource manager layers of the cloud
architecture. Using this tool, one can create user bases, generate cloudlets, configure the
resource and their parameters, opt the load balancing principles, view requests assignment,
compute performance, consolidate results, and eventually compare performances. This
simulator is designed to represent a generic cloud model which could be extendable to any
specific cloud model.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 6, June 2015 2037

Fig. 1. Request assignment in cloud architecture

In this paper, we present a problem scenario and design a solution model and a suitable

load balancing principle that effectively performs the requests assignment to compute
resources. In order to compare a newly proposed load balancing principle with a few
commonly adopted load balancing principles, we designed a visual tool which evolved into a
simulator, namely, the Request Assignment Simulator (RAS). The proposed principle is more
generic in nature. It can be extendable to any network architecture like p2p, cluster, grid, and
cloud, provided the parameters are suitably personalized.

RAS complements the successful cloud simulator in the industry, namely, Cloud Analyst.
The models, parameters, and metrics of RAS are compared and justified with Cloud Analyst.
We concentrated on designing our tool as a test bed for evaluating some of the successful load
balancing principles that are adopted in the cloud. We kept Cloud Analyst as our reference
model for deriving the parameters and design principles. RAS computes the response time of
the requests and the percentage of the rate of utilization of the compute nodes as the measure
for the system’s performance.

RAS is developed in .Net framework using C# and MS Access. It can be downloaded from
the link: http://www.paulraajan.blogspot.in

http://www.paulraajan.blogspot.in/

2038 Rajan et al.: RAS: Request Assignment Simulator for Cloud-Based Applications

The rest of this paper is organized as follows: Section 2 lists the related work. Section 3
introduces a problem scenario, architectural design of the components, used parameters,
details about experimental setup, and significant features of our model. Section 4 concludes
the paper and provides direction for future works.

2. Related Work
Until recently, there were only a few works in the realm of the development of simulators that
focused on evaluating the behavior of large-scale distributed systems. A few such studies
evolved with a handful of simulation tools for clusters, P2P systems, and grids, and these
became the pioneering works that paved the path for the development of cloud simulators.

GridSim is a Java-based simulation toolkit designed to evaluate the performance of
large-scale distributed systems typically fit for grid environments [8]. GridSim model request
collection, creates a task pool, configures a resource panel, and schedules tasks with resources.
CloudSim is a Java-based simulator that is built on top of GridSim toolkit’s framework [9].
CloudSim is the pioneer in simulation platform, which supports modeling, simulation, and
experimenting on cloud computing architectures. It is an effective simulator that provides
better modeling features for large-scale computing environments. It includes configuring data
center resources, virtual machine management, detailed network parameters, service broker
and scheduling policies, tasks assignment between hosts and virtual machines, and a detailed
performance evaluation of the system. CloudSim is a better fit for IaaS, PaaS, and SaaS of the
service provider’s infrastructure.

A cluster scheduler simulator can be used to model and equate different cluster scheduling
strategies [10]. It simulates the generation of workloads from different clusters using empirical
parameter distributions, scheduling and executing jobs using discrete event creators, and
analyzing performance metrics. iCanCloud is a cloud simulator aimed to evaluate the
trade-offs between cost and performance of a given scenario experimented with a specific
infrastructure setup [11]. This simulator platform includes provisioning of cloud brokering
policies, customizable virtual machines, configurations for a wide range of storage systems,
and a user-friendly GUI for launching experiments extended with generating graphical
reports.

GroudSim is an event-based simulator focused on IaaS [12]. It provides a comprehensive
set of features like calculation of costs, job processing on computing resources, and load
distribution on resources. TeachCloud is a modeling and simulation environment for cloud
computing [13]. Learners can experiment with data centers, computing elements, networking,
Service Level Agreement (SLA) constraints, and virtualization.

CloudAnalyst is a visual evaluation and modeling simulator that leverages the features of
the CloudSim framework with an extension of some capabilities [14]. This simulator is
developed to simulate large-scale distributed computing environments with the objective of
studying the behavior of cloud applications under various deployment configurations.
CloudAnalyst provides a visual platform for developers to understand more about configuring
cloud infrastructures. Users can also set up a scenario with the goal of optimizing the
application performance by suitably opting the service broker and load balancing strategies.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 6, June 2015 2039

3. Request Assignment Simulator (RAS)

3.1 Request assignment in cloud
Request assignment involves job scheduling policies that control the order in which the tasks
are allotted with the computing resources [15]. It is a process of allocation of required
resources to the tasks under real constraints. This process plays a vital role in
High-Performance Computing (HPC) and aims to achieve quality of service through the
overall performance of a system as seen by users. A good request assignment policy makes a
trade-off between customers’ satisfaction and resource utilization at cheaper costs.

Load balancing principles are effectively used in the request assignment process through
which the workload is distributed across amalgamated computing resources, such as
computers, network links, central processing units, and storage elements [16]. There are
different load balancing principles adopted to achieve objectives such as maximizing resource
utilization and throughput, minimizing response time, and avoiding overload on any one of the
resources.

3.2 Scenario
Consider a web service provider who offers different services through the Internet. Due to
economic and administrative reasons, they want to shift their IT infrastructure to the cloud.
Their IT infrastructure requirement mainly includes compute resources like processors, disks,
and storage. The cloud infrastructure provider offers different configurations of computing
resources with varying price plans. Therefore, an IT architect of the web service provider has
to wisely choose the best infrastructure plan which should not be over or under provisioned as
well as economical to the company. We illustrate this scenario in the following case study:

www.reverso.net/ is a famous online language solution provider offering services like
language translations, grammar check, and spell check [17]. Reverso receives global requests
for their web services. Each web service provided by Reverso is variable in size and
processing time. The processing time is not the same for all services, but varies according to
users’ requests. For example, the processing time for a user who has requested a language
conversion service for thousand words will be different from a user who requested the same
service for ten thousand words. It is similar to comparing a service that sorts ten numbers and
requires different processing time and memory to a service that sorts ten thousand numbers.

If Reverso wants to subscribe IT infrastructure from the cloud provider Amazon EC2, it
would need to estimate the required virtual server reserved instances [18]. “How many virtual
boxes are needed?” can be better answered if one knows “how much each virtual box can
give.”

3.3 Design principles
We attempt to answer the second part of the question with our proposed model. Our model is
designed with the following principle: Each compute node alias virtual server instance is
configured with processor(s), memory, the maximum number of connections it can support,
bandwidth, operating system, etc. Based on the requests, the services are instantiated in the
compute nodes. The instantiation of the requests is restricted by the load and storage
limitations. Therefore, the assignment of requests to the compute nodes is subjective to the
capacity constraints. When there is a restriction on the requests accommodation with the
compute nodes, there is a need for prioritization of requests. Requests grouping may be based

2040 Rajan et al.: RAS: Request Assignment Simulator for Cloud-Based Applications

on the requested service or weightage of the service or by the category of the users. The global
requests need to be geographically grouped and assigned to the proximate data center.

We canonically describe the model as follows: There are services available as data items I
= {i1, i2,.….ij}. Each data item ij attains a value pj based on its demand. There are compute
nodes N = {n1, n2,…..nj} that process the requests. Each node is configured with its maximum
storage capacity Si and load capacity Lj, which indicates the maximum number of sessions that
a node can serve simultaneously. There are requests R = {r1, r2,…..ri} at time quantum ti. Each
request ri seeks a particular data item ij. The goal is to assign the requests to nodes with the
objective of maximizing the total value earned by the nodes subject to the capacity constraints.

RAS supplements the model proposed in Cloud Analyst, a cloud test bed that has attracted
the attention of many academicians and researchers in recent times. In our model, we used the
parameters as they are meant to be in Cloud Analyst or with some alterations, ensuring that
both the simulators yield the same result for a given scenario. The output metrics mainly focus
on the request’s response time and resource utilization factors [19].

3.4 Need for simulator
The described scenario in Section 3.2 has been a common and challenging issue for many
mid-ranged companies in recent times. There are easy methods to measure the yielding of a
system, but it is difficult to estimate which will yield favoring results. Setting up a distributed
environment on the Internet and then performing experiments to test a research and
development problem is a costly affair.

We implemented the proposed model described in Section 3.3 and a simulation tool,
namely, Request Assignment Simulator (RAS), evolved. RAS is a customizable, user-friendly
tool capable of simulating the process of request assignment on a large-scale distributed
computing environment. RAS is modeled to fit into any cloud architecture, particularly the
IaaS cloud model. This simulator can be a test bed tool for any web service provider planning
to subscribe for IaaS. Assuming that the objective of the web service provider is to achieve
maximization of resources, these kinds of simulators can help to derive a rough estimation of
the performance in terms of resource utilization and response time.

3.5 Components of RAS
The following are the constituting components of RAS, which simulate cloud-based

architectures:
User Base: Region classification and user profile maintenance are the two major objectives

of this module. User base simulates the creation of the user, region, and their requesting
service with time stamp. RAS categorizes the world into six zones with each continent
representing a zone. Each request is generated along with the zone identification, using which
the user is grouped. A single user can make any number of requests, but each request is
considered as a separate job. The user base module derives consolidation of the requests with
time quantum, averages the requests, enumerates requests’ peak time, requests’ peak region,
ranking the services, and traffic pattern.

Cloudlet: Users’ requests are grouped together, and this is termed as a Cloudlet [20]. Each
cloudlet is consolidated for a time quantum. A Cloudlet maintains the details of the requesting
service, arrival time of the request, size of the requested service, and user identification. Each
request is generated with random process time. Requests are queued based on a first-come,
first-served principle.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 6, June 2015 2041

Cloud Dashboard (CD): This is the main configuration setup panel that simulates the
distributed resource management controller in cloud architectures. It models the resources
spread across data centers, networks, virtual machines, and physical hardware components in
the cloud. CD includes the following structural elements:

(a) Data center profile: Each data center is characterized by its identification number,
name, and bandwidth.

(b) Services: This component models the services available in the data store. Each service
is configured with its size and unique identification. The data store is modeled as an
object repository, and each object is instantiated whenever there is a request. A service
is ranked based on the demand pattern. Demands for services are randomly generated,
which automatically reconfigures its ranking.

(c) Virtual machine (VM) profile: This profile maintains virtual machines configuration
summary mounted on each physical machine. It includes a number of VMs, VM ids,
image sizes, memory capacities, architectures, operating systems, as well as a number
of connections that it can handle in parallel.

(d) Network metric: This is modeled as a matrix representing connection costs between
different zones.

CD serves as a master configuration panel. RAS lists the parameters that are pertinent to
assess the performance of the system. The user has to assign the values for the parameters and
set up the configuration. Load balancing principles are influenced by some of the impacting
parameters arising from different aspects of cloud systems [21]. Table 1 shows the list of the
identified parameters and their description that are used in RAS. We have chosen only a few
parameters that have a high impact on the system and that also suitably fit our proposed model.

Table 1. List of parameters used in RAS

Domain Parameters Description

User
UB_Prox Geographical grouping of users with a data center
Node_Policy Neglecting a request by a data center
User_Prefer User’s selection for a specific data center

Network

NW_Traffic Rate of data transfer per time unit that changes from time to time
NW_Conn_Cost Transmission latency and data transfer delay between the nodes
NW_BW A hypothetical measure of the rate at which the data is transferred

from one point to another in a given unit of time

Node

Load_Cap Maximum number of sessions a node can accept
Mem_Cap Maximum memory size of a node
Proc_Arc Processor type
Fail_Node Event of failure of a node
Suit_Proc A service suitable for a processor to process
Suit_OS A service suitable for an OS to process

Requests

No_Reqs Demand for a service at time ti
Size Size of a requested service
Process_Time Amount of time the node spends on a request
Queue_Size Number of requests waiting for the resource assignment

Strategy Assembly (SA): SA lists a set of load balancing principles, each favoring

different objective functions. An objective function intends to achieve the goal in terms of
performance metrics, whereas load balancing is the key principle that determines the

2042 Rajan et al.: RAS: Request Assignment Simulator for Cloud-Based Applications

performance. In RAS, the user has to choose his preferred principles for an experiment.
 RAS supplements the load balancing principles of Cloud Analyst and also accommodates

other principles. Apart from the conventional load balancing principles listed in the strategy
assembly, we included a new strategy, namely, the capacity proportioned load balancing
principle. In essence, this principle assigns requests to each computing node based on its
capacity. By selecting different principles for the same set of input and configuration, users
can visualize how the performance varies.

The following list gives the category of load balancing principles experimented in RAS:
a. Random assignment:

1. Random nodes with random requests
2. Pre-ordered nodes with random requests
3. Randomly pre-ordered nodes

b. Round robin:
4. Ordered circular with max load capacity
5. Ordered circular with min load capacity
6. Ordered circular with max storage capacity
7. Ordered circular with min storage capacity

c. Throttled load balancing:
8. Max load capacity with random requests
9. Max storage capacity with random requests
10. Max requests with max load capacity
11. Max requests with min load capacity
12. Max requests with max storage capacity
13. Max requests with min storage capacity
14. Max load capacity
15. Min load capacity
16. Max storage capacity
17. Min storage capacity

d. Equal requests split load balancing:
18. Equal requests with pre-ordered nodes
19. Equal requests with max load capacity
20. Equal requests with min load capacity
21. Equal requests with max storage capacity
22. Equal requests with min storage capacity

e. Capacity proportioned load balancing:
23. Equal load with pre-ordered nodes
24. Equal load with max load capacity
25. Equal load with min load capacity
26. Equal load with max storage capacity
27. Equal load with min storage capacity

Request Assignment Table (RAT): Once the cloud dashboard is configured with

appropriate values, RAS executes the chosen load balancing principles. Successful execution
results in the generation of the Request Assignment Table. This table assigns the job pool to
VM pool subjective to capacity constraints.

RAT is not a job schedule for the compute nodes, but it keeps track of the assignment of
compute node as soon a request has been allotted. The cloud resource manager is responsible

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 6, June 2015 2043

for resource allocation and actual execution of tasks. Task tracker, a component of CRM,
monitors the execution of the tasks by the computing environment [22]. Whenever there is a
change in the cloud infrastructure, CRM updates the Cloud Dashboard.

Performance Evaluator: Some of the objective functions of load balancing principles are
to maximize resource utilization, minimize response time, and minimize cost. The RAS model
strives to attain maximized resource utilization with a minimized response for prioritized
services. The performance evaluator in RAS computes various metrics to assess the
performance of the system for a given configuration setup. We consider each VM as a
compute node and the current rank of the service as the value. Experiments were conducted
repeatedly with the same setup and then the results were consolidated. Table 2 shows the list
of performance metrics calculated for each experiment. Fig. 2 presents the sequence diagram
that depicts the interaction of the components of RAS organized according to time.

Table 2. Parameters used for assessing the performance

Calculated parameter Calculation
Response time Request’s service start time
Wait time Request’s service start time – Arrival time
Average wait time ∑ Wait time / Total number of requests
Turnaround time Process time + Waiting time
Average turnaround time ∑ Turnaround time / Number of requests
Total value earned by a node Service * value / Number of services
% of total value earned by a node ∑ Item * value * 100 / Number of requests
Total value earned by a node against Itemn Itemn * value / Number of requests
% of Total value earned by a node against Itemn ∑ Itemn * value * 100 / Number of requests

Executes

Users Cloudlet Cloud
Dashboard

Strategy Assembly Performance
Evaluator

Cloud Resource
Manager

Resources

modifies

configures

creates

chooses

schedules

parameters

allots
Health monitor

updates

reconfigures

Fig. 2. Architecture of RAS components

2044 Rajan et al.: RAS: Request Assignment Simulator for Cloud-Based Applications

3.6 Method of performance evaluation
The performance evaluation is carried out in two phases. Phase 1 quantifies the capacity of

a node using the z-score method. The z-score is a statistical measurement of an observation’s
relationship to the mean in a group of observations [23]. Using this value, we calculate
requests proportion for each compute node. For the performance comparison, we keep
capacity proportioned principle as the scale to assess the relative performances achieved by
other principles. Phase 1 calculation is shown below:

Step I: Find Mean (µ) & Standard deviation (σ)

 (1)

 (2)
where Xi is each value of observed parameter and n is the number of values.
Step II: Calculate z-score (Z)

 (3)
Step III: Find the z-score from the standard normal table.
A standard normal table or Z-table is a mathematical table for the values of Φ, which are the

values of the cumulative distribution function of the normal distribution. We map Z-value in
the Z-table to get a numeric value.

Step IV: Convert Z-score into a percentage ()

 (4)
Step V: Calculate requests’ split percentage (Si)

 (5)
Let R be the total requests for a service A:

 (6)
Step VI: Compute the performance by consolidating the handling capacity factor and

average response time as follows:

 (7)

 (8)

where A is the handling capacity factor, B is the average response time for the total requests, E
is the number of requests expected to be served by a compute node that is computed by phase
1, n is the number of computing nodes, R is the total number of requests, and S is the number of

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 6, June 2015 2045

requests actually served by a compute node.
Thus, we calculated the resource utilization factor and average response time. The goal is to

identify the principle that maximizes the resource utilization and minimizes the response time
of the requests.

Performance comparison: Since handling capacity factor and response time are inversely
proportional to the system’s performance, we conclude that the principle that yields the
minimum value for the above-said parameters are the most efficient ones. The user has to
make a trade-off between the objective functions to choose the suitable load balancing
principle.

3.7 Features of RAS
Dedicated scheduler tool: Even though there are many contributions on load balancing

principles in the cloud, only a few works are focused on scheduler simulators. From the
literature review, the authors are confident that RAS is one among the pioneer works in RAS
tools.

Graphical User Interface: The front end of RAS is designed in a user-friendly manner
facilitating the user to execute experiments in a comfortable manner. After setting up the
initial configurations in the dashboard, the RAS wizard assists the user to execute the
experiment in a step-by-step method making the process transparent and clear.

Easy configurability: Setting up the configurations for an experiment is made easy
because the tool is essentially interactive. Default value setup and metrics for the parameters
gives better clarity for the user to input. Before execution of the scheduling strategies, the user
is presented with a consolidation of configuration setup. Therefore, a user can concentrate on
the system’s performance instead of worrying on how to make it perform. Fig. 3 presents a
configuration panel of RAS.

Random generation of inputs: Automatic generation of user base and cloudlet emulates
how the requests are originated in the cloud. The user also has the provision to set the value
range for the parameters.

Repeatability of experiments: Each experiment is saved with a unique identification,
which enables the user to open a particular experiment at any time. The configuration setup
can also be changed, and the experiment can be executed once again. This feature allows the
user to evaluate the impact of the changes that he made with the system. Fig. 4 presents the
strategy assembly of RAS for an experiment.

Support of different formats of input and output: Cloudlets can be created either by
random generation or by importing the input data file in .txt, .xls, and .arff formats. Similarly,
the output of the experiment is exportable in .txt, .doc, and .xls formats.

Consolidation of results: If the experiment is repeated for different cloudlets but with the
same configuration setup, RAS cumulates the results in a single sleeve. When the experiment
is executed repeatedly with varying request sizes, the performance evaluator computes various
performance metrics to identify the order of favoring principles.

Graphical output: Wait time of the request, average wait time, response time, average
response, turnaround time, average turnaround time, total value earned by a node, average
value earned for a unit time, and percentage of resource utilization of the nodes are some of the
metrics calculated by the Performance Evaluator. The comparison between these parameters is
plotted graphically and presented in Fig. 5.

RAS wizard plots the chart as the final step of the experiment which helps the user to export
data and plot it on a spreadsheet. RAS supports 53 different types of charts. Users can also
export these charts.

2046 Rajan et al.: RAS: Request Assignment Simulator for Cloud-Based Applications

Fig. 3. Setting up the configuration in RAS

Fig. 4. Requests assignment with nodes

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 6, June 2015 2047

4. Conclusion and Future Directions

Although there has been significant progress in developing simulation tools in recent years,
which demonstrates how cloud can be modeled and tested in its different thrust areas, RAS is
the forerunner in the direction of dedicated simulation tools for the request assignment process,
which evaluates the performance changes with respect to load balancing principles. To
hypothetically study the nature of load balancing principles in a large-scale distributed
computing environment, we modeled a simulator with an objective policy, impacting
parameters and its principal constraints. We observed that the change in the load balancing
principle and its influencing parameters has a significant impact on the system’s performance.
Experimental results identify the most fitting load balancing principle for the problem scenario,
and the performances of other load balancing strategies are also compared. Therefore, the
authors are confident that this tool will be a test bed for the academia and cloud designers who
are focused on service broker policies.

The model presented in this paper focused on the server’s perspective of achieving a higher
rate of utilization with available resources. Achieving minimum response time or reducing the
computing costs can also be the objectives. Identification and inclusion of new objective
policies, parameters, and constraints will give more space and dimension to extend the
existing model in future.

Fig. 5. Performance comparison of different principles

2048 Rajan et al.: RAS: Request Assignment Simulator for Cloud-Based Applications

References

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson,
A. Rabkin, I. Stoica, M. Zaharia, “Above the Clouds: A Berkeley View of Cloud Computing,”
Communications of the ACM Magazine, vol. 53, issue 4, pp. 50-58, 2010. Article (CrossRef Link)

[2] A. Velte, T. Velte, R. Elsenpeter, Cloud Computing, A Practical Approach, McGraw-Hill
Education, 2009.

[3] Jinesh Varia, “Amazon Web Services - Architecting for The Cloud: Best Practices,”
http://media.amazonwebservices.com/ AWS_Cloud_Best_Practices.pdf, 2011.

[4] K. Purdy, “How Google Apps works when actual people use it,”
http://www.techrepublic.com/blog/google-in-the-enterprise/how-google-apps-works-when-actual
-people-use-it/, 2011

[5] Rackspace Open Cloud Reference Architecture, http://www.rackspace.com/knowledge_center/
article/rackspace-open-cloud-reference-architecture, 2013.

[6] R. Buyya, J. Broberg, A. Goscinski, Cloud Computing: Principles and Paradigms, Wiley Press,
New York, USA, 2011.

[7] K. A. Nuaimi, N. Mohamed, M. A. Nuaimi, J. Al-Jaroodi, “A Survey of Load Balancing in Cloud
Computing: Challenges and Algorithms,” Second Symposium on Network Cloud Computing and
Applications (NCCA), pp. 137-142, 2012. Article (CrossRef Link)

[8] R. Buyya, M. Murshed, “GridSim: A Toolkit for the Modeling and Simulation of Distributed
Resource Management and Scheduling for Grid Computing, Concurrency and Computation:
Practice and Experience (CCPE),” vol. 14, no. 13-15, pp. 1175-1220, USA, 2002.

[9] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, R. Buyya, “CloudSim: A Toolkit for
Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource
Provisioning Algorithms,” Software: Practice and Experience, vol. 41, no.1, pp. 23-50, Wiley
Press, 2011. Article (CrossRef Link)

[10] G. Ramos, Martins, “ClusterSim: a Java-based parallel discrete-event simulation tool for cluster
computing,” in Proc. of IEEE International Conference on Cluster Computing, pp. 401-410, 2004.
Article (CrossRef Link)

[11] A. Núñez, L. Jose, Vázquez-Poletti, Agustin C. Caminero, Gabriel G. Castañé, Jesus Carretero and
Ignacio M. Llorente, “iCanCloud: A Flexible and Scalable Cloud Infrastructure Simulator,”
Springer, Journal of Grid Computing, vol. 10, issue 1 , pp. 185-209, 2012.
Article (CrossRef Link)

[12] S. Ostermann, K. Plankensteiner, R. Prodan, T. Fahringer, “GroudSim: An Event-Based
Simulation Framework for Computational Grids and Clouds,” in Proc. of Euro-Par 2010 Parallel
Processing Workshops, pp, 305-313, 2010. Article (CrossRef Link)

[13] Y. Jararweh, Z. Alshara, M. Jarrah, M. Kharbutli, M. Alsaleh, “TeachCloud: A Cloud Computing
Educational Toolkit,” International Journal of Cloud Computing (IJCC), vol. 2, no. 2-3, pp.
237-257, 2013. Article (CrossRef Link)

[14] B. Wickremasinghe, R. N. Calheiros, R. Buyya, “CloudAnalyst: A CloudSim-Based Visual
Modeller for Analysing Cloud Computing Environments and Applications,” in Proc. of 24th IEEE
International Conference on Advanced Information Networking and Applications (AINA), pp.
446-452, 2010. Article (CrossRef Link)

[15] Brucker, Peter, Scheduling Algorithms, Operations Research & Decision Theory, Springer, 5th
Edition, 2007.

[16] K. A. Nuaimi, N. Mohamed, M. A. Nuaimi, J. Al-Jaroodi, “A Survey of Load Balancing in Cloud
Computing: Challenges and Algorithms,” in Proc. of Second Symposium on Network Cloud
Computing and Applications (NCCA), pp. 137 - 142, 2012. Article (CrossRef Link)

[17] Reverso web services, http://www.reverso.net/text_translation.aspx?lang=EN.
[18] Amazon EC2 services, docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/concepts.html.
[19] V. Vineetha, “Performance Monitoring in Cloud: Building Tomorrow's Enterprise,”

http://www.infosys.com/engineering-services/features-opinions/Documents/cloud-performance-m
onitoring.pdf, 2012.

http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1145/1721654.1721672
http://www.reverso.net/text_translation.aspx?lang=EN

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 6, June 2015 2049

[20] F. Lin, X. Zhou, D. Huang, W. Song, D. Han, “Service Scheduling in Cloud Computing based on
Queuing Game Model,” KSII Transactions on Internet and Information Systems, vol. 8, no. 5, pp.
1554-1566, 2014. Article (CrossRef Link)

[21] R. Arokia Paul Rajan, F. Sagayaraj Francis, “Dynamic Scheduling of Requests Based on
Impacting Parameters in Cloud Based Architectures,” in Proc. of the 48th Annual Convention of
Computer Society of India, Advances in Intelligent Systems and Computing, Springer
International Publishing, vol. I, series 248, pp. 513-521, 2014. Article (CrossRef Link)

[22] A. Gulati, G. Shanmuganathan, A. Holler and A. Irfan, “Cloud scale resource management:
Challenges and techniques,” in Proc. of 3rd USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 2011), 2011.

[23] S. C. Gupta and V. K. Kapoor, Fundamentals of Mathematical Statistics, 14th Edition, Sultan
Chand & Sons, India, 2014.

F. Sagayaraj Francis is working as Professor in the Department of Computer Science &
Engineering at Pondicherry Engineering College, Pondicherry, India. He holds Ph.D in Data
Management from Pondicherry University, India. He published research papers in 15
journals and 13 conference proceedings at international level. His areas of interest includes
Database Management Systems, Data Mining and Knowledge Discovery, Data Structures
and Algorithms, Knowledge and Intelligent Systems and Automata Theory and Applications.

R. Arokia Paul Rajan is a research scholar in the Department of Computer Science and
Engineering at Pondicherry Engineering College, Pondicherry, India. His research area is
data management in distributed systems. He published 9 research papers in international
journals and conference proceedings.

