
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, Apr. 2015 1302
Copyright ⓒ 2015 KSII

Deadline Constrained Adaptive Multilevel
Scheduling System in Cloud Environment

Dinesh Komarasamy1, Vijayalakshmi Muthuswamy2

1 Department of Information Science and Technology, CEG Campus, Anna University
Chennai- 600025, India

[e-mail: dinesh.nova@gmail.com]
2 Department of Information Science and Technology, CEG Campus, Anna University

Chennai- 6000025, India
[e-mail: vijim@annauniv.edu]

*Corresponding author: Dinesh Komarasamy

Received November 15, 2014; revised February 22, 2015; accepted March 7, 2015;
 published April 30, 2015

Abstract

In cloud, everything can be provided as a service wherein a large number of users submit their
jobs and wait for their services. Thus, scheduling plays major role for providing the resources
efficiently to the submitted jobs. The brainwave of the proposed work is to improve user
satisfaction, to balance the load efficiently and to bolster the resource utilization. Hence, this
paper proposes an Adaptive Multilevel Scheduling System (AMSS) which will process the
jobs in a multileveled fashion. The first level contains Preprocessing Jobs with Multi-Criteria
(PJMC) which will preprocess the jobs to elevate the user satisfaction and to mitigate the jobs
violation. In the second level, a Deadline Based Dynamic Priority Scheduler (DBDPS) is
proposed which will dynamically prioritize the jobs for evading starvation. At the third level,
Contest Mapping Jobs with Virtual Machine (CMJVM) is proposed that will map the job to
suitable Virtual Machine (VM). In the last level, VM Scheduler is introduced in the two-tier
VM architecture that will efficiently schedule the jobs and increase the resource utilization.
These contributions will mitigate job violations, avoid starvation, increase throughput and
maximize resource utilization. Experimental results show that the performance of AMSS is
better than other algorithms.

Keywords: Cloud Computing, Job Scheduling, Priority Scheduler, Load Balancing,
Resource Utilization.

http://dx.doi.org/10.3837/tiis.2015.04.002 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015 1303

1. Introduction

Today, Internet is more than just a communication medium. It has been moved into the era of
e-commerce and e-governance. The number of users accessing Internet is increasing
exponentially that raises the demand for developing advanced network technologies like cloud
computing, big data and mobile cloud computing. Every day, the Internet’s infrastructure is
dramatically changing and adapting itself to the heterogeneous networks with the help of
cloud for providing high end services like Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS) as elucidated by M. D. Dikaiakos et al., and K.
Dinesh et al. [1, 2]. Internet acts as a bridge between service providers and users for providing
service. The general characteristics of cloud computing are to provide on-demand service,
broad network access, resource pooling, rapid elasticity and measured service to the user as
explained by P. Mell and T. Grance [3]. Cloud computing is usually called as pay per usage
model as explained by Md. Sabbir Hasan and Eui-Nam Huh [4]. It reduces user expenditures
on hardware, software and maintenance cost. It also provides reliable, highly available and
time critical service to the users as explored by Daeyong Jung [5].

In cloud computing, large numbers of user submit their jobs to the cloud broker who
transfers the request to the Cloud Service Providers (CSP) as explained by Kwang Mong Sim
[6]. CSP provides the services transparently to the users independent of host infrastructure
through virtualization. Virtualization is a technique that logically separates the physical
resource. Each logical unit of physical resource acts as a VM. The necessity of virtualization is
to provide hardware independence, software isolation, reduce energy consumption and
security with increased resource utilization as explained by Li. Chunxiao et al. [7]. The jobs, if
not properly scheduled in the cloud environment lead to network congestion. Therefore, more
numbers of jobs are discarded due to network congestion. A good scheduling algorithm should
speed up the job execution to reduce network traffic. Consequently, the user satisfaction and
the number of jobs accepted for execution increases that will boost the revenue of the CSP and
also reduce the local network traffic.

Various scheduling algorithms [8-24] were developed for scheduling the jobs in the cloud
environment. Among these algorithms, lots of heuristic algorithms alter their scheduling
policies depending on the type of jobs or nature of resources. Hence, these algorithms may not
be suitable for scheduling in the dynamic cloud environment. Many scheduling algorithms
have been developed and demonstrated for efficient scheduling of deadline based jobs in a
dynamic environment. Though these algorithms only focus on downright the job execution
within its deadline constraint for improving user satisfaction, they do not concentrate on
resource utilization and load balancing.

To schedule the jobs and to balance the load effectively, this paper proposes an Adaptive
Multilevel Scheduling System (AMSS). The AMSS processes the jobs in multileveled manner,
which composed of four major components as Preprocessing Jobs with Multi-Criteria (PJMC),
Deadline Based Dynamic Priority Scheduler (DBDPS), Contest Mapping Jobs with Virtual
Machine (CMJVM) and VM Scheduler (VMS). The jobs are initially preprocessed in PJMC
by deeming multiple criteria. The priorities are dynamically assigned to the jobs in the next
phase (i.e. DBDPS) after preprocessing. The prioritized jobs are dynamically mapped to the
appropriate VM using CMJVM. The VM Scheduler dynamically schedules the jobs between
FVM and BVM. The proposed work reduces the average number of job violations and also
increases resource utilization.

1304 Dinesh et al.: Deadline Constrained Adaptive Multilevel Scheduling System in Cloud Environment

The rest of the paper is organized as follows. Section 2 discusses about the related work.
Section 3 describes about the characteristics of the system model. Section 4 illustrates about
the design of an Adaptive Multilevel Scheduling System for scheduling the jobs efficiently.
Section 5 explains the simulation and results analysis of the proposed work. Section 6 gives
conclusion remarks and future enhancements.

2. Related Work
This section reviews various multifarious scheduling algorithms developed to schedule the
jobs depending on the type of job or resource in a cloud environment. The jobs are classified as
batch jobs, transactional jobs and interactive jobs based on their characteristics as explained by
Y. Zhang, et al. and D. Carrera, et al. [8, 9]. The proposed work spotlights on batch job
scheduling and hence the literatures have been restricted to batch job scheduling. The batch
job scheduling is categorized into two types as static and dynamic scheduling depending upon
the characteristics of scheduling. In static scheduling, the jobs, which are executed in certain
resources, are also non-preemptive. In static scheduling, jobs are mostly processed using First
Come First Serve (FCFS) model. In FCFS, long running jobs affect small running jobs during
their execution as elucidated by A. Silberschatz, et al. [10]. Static scheduling is not much
suitable for cloud computing because the jobs are aperiodic. Unlike static scheduling, the jobs
are scheduled at the run time in dynamic scheduling that supports migration and preemption.

An advanced reservation technique was developed for executing jobs where the scheduler
in this technique does an advanced reservation by considering additional information on jobs
such as the starting time, execution time and processing speed requested by the job as
explicated by D. Nurmi et al. [11]. The resources are underutilized due to the effect of
advanced reservation technique. Therefore, Backfilling algorithm was used to improve
resource utilization. Backfilling algorithm is generally called as an optimized technique of
FCFS that improves the performance of the system. In backfilling algorithm, the small jobs
were run without affecting the waiting job, due to the non-availability of sufficient resources,
in the head of the queue as modeled by Y. Zhang, et al. and A. W. Mu'alem, et al. [8, 12].

The jobs are generally classified into two types such as deadline based and non-deadline
based jobs depending upon the user input. Deadline based jobs are scheduled using Earliest
Deadline First (EDF) algorithm to complete earliest deadline jobs within their deadline as
developed by V. Gamini Abhaya, et al. [13]. EDF is a type of priority scheduling. In order to
complete the jobs within the deadline, a sub-deadline is assigned and distributed to all nodes
using a Partial Critical Path algorithm (PCP). PCP contains two phases like deadline
distribution and planning phase for completing the jobs within the deadline as explained by S.
Abrishami, et al.[14]. The jobs are prioritized based on not only deadline, but also the arrival
time, waiting time and so on. The jobs are dynamically prioritized and mapped to the VMs
with limited support of migration in dynamic scheduling. The job preemption and job
migration can fritter away execution time and network bandwidth as developed by M. Stillwell,
et al. [15].

Various heuristic algorithms have been introduced for job scheduling with different
problem constraints. Heuristic algorithms were also exploited for finding out the degree of
matching between the jobs and resources as elucidated by R. Baraglia, et al. [16]. For mapping
jobs to the resources, the Berger model stated a set of definition like task justice or injustice,
system justice and integrated justice function. Berger model was developed based on
commodity economic model and market mechanism as developed by Baomin Xu, et al. [17].

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015 1305

Here, the jobs are scheduled and mapped with the VMs present in the resource pool. The VMs
may exist either in a homogeneous or heterogeneous environment as explained by Ehsan Ullah
Munir, et al. [18].

A Hierarchical Load balanced algorithm (HLBA) was developed for scheduling the jobs in
a hierarchical framework. It schedules the incoming jobs to the cluster having the fastest idle
computing power without worrying about the average load of the system. In HLBA, the
incoming jobs are scheduled based on their weighted value. The weighted value has been
determined using network utilization, memory utilization and idle CPU processing power as
explained by Yun-Han Lee, et al. [19]. The resource utilization was further increased using
Resource Attribute Selection (RAS) algorithm. In RAS algorithm, the jobs are allocated to the
resource computing capacity, storage space and network utilization of the node [20].

The arrival rate and service rate are not easy to predict and maintain for large scale cloud,
various scheduling algorithms were developed to schedule the jobs. But, a few algorithms like
blind online scheduling algorithm (BOSA) were proposed to schedule the request without
knowing the arrival rate and service rate. These requests were forwarded to the server having
the large free time slot service to minimize the waiting time and load balancing using FCFS
model as explicated by Liang Zhou, et al. [21, 22].

However, the processing speed of VM cannot be fully utilized by a job during its execution
due to the communication delay. Therefore, the two-tier VM architecture was proposed to
utilize the idle processing speed of the VM and hence improving the resource utilization. The
two-tier VM architecture contains Foreground VM (FVM) and Background VM (BVM) that
are pinned to single processing element as illuminated by Xiaocheng Liu, et al. [23]. The
incoming jobs are allocated using an EASY backfilling algorithm. The incoming jobs may
request either a single processor VM or a multiple processor VM. The incoming job request
for a single processor so that the utilization rate of the VM varies between the range of 80% to
92% during the execution of jobs as explained by Xiaocheng Liu, et al. [24]. Otherwise, the
utilization of the VM is decreased due to their communication delay and synchronization time
interval. Here, the utilization of resource varies between 19.8% and 76.6% [11, 24]. From the
review of existing job scheduling, we observed that communication and computation
overhead of the resource reduce the performance of the system, user satisfaction and resource
utilization. The proposed Adaptive Multilevel Scheduling System (AMSS) effectively
schedules the jobs to increase the user satisfaction, resource utilization and mitigates the jobs
violating their deadline.

3. Characteristics of System model

3.1 Characteristic of Jobs
The incoming jobs are assumed as batch jobs in this work. The properties of batch jobs are
aperiodic (i.e. the arrival time of the job is not known in advance) and independent of each
other (i.e. the input of one job does not depend on the output of other jobs) as modeled by
Chenhong Zhao, et al. [25]. The incoming jobs are estimated as non-preemptive (i.e. even if a
high priority job arrives, the job in execution is not preempted). The jobs ()ij are defined as

{ }NjjjJ ,...,, 21= and their relation is described in equation (1).
Jjjj jN ∈∀⊥⊥⊥ ;...21 where N represents the number of jobs (1)

1306 Dinesh et al.: Deadline Constrained Adaptive Multilevel Scheduling System in Cloud Environment

Let, ⊥ represents the independent relation between jobs. It is assumed that the user must
specify the length ()l and the corresponding deadline ()d of the job during
submission { } ()Nidlsj iii ,1;, ∈= . The length of the job or the size of the job is expressed as
the number of instructions required for processing the job. It is generally defined as number of
Million Instructions (MI) required for processing the submitted job [26]. The jobs may
request either computational resources or storage resources. In this work, it is assumed that the
job request for only computational resources for their execution.

3.2 Characteristics of Resources
The resources (i.e. VMs) are independent of each other. VMs may exist either in homogeneous
or in heterogeneous environments. The processing speed of the VMs in a homogeneous
environment is defined as { }αSSSSe ,...,, 21= . Here, all VMs have equal processing speed
such that jiiji SSS +− == . Similarly, the processing speed of the VMs in a heterogeneous

environment is defined as { }βPPPSu ,...,, 21= so that all VMs have different processing

capacity jiiji PPP +− ≠≠ . The processing speeds of the VMs are not shared among them as
defined below [14].
() ()
() () VM

tenvironmenousheterogenePPPPPP
tenvironmenogeneousSSSSSS

=∩∩∩≠≠≠
=∩∩∩===

;...&...
hom;...&...

2121

2121

φ
φ

ββ

αα (2)

3.3 Problem Statement

In the above scenario, a large number of users submit their jobs in the cloud. Among them,
some may request more processing speed than the available processing speed of the VM that
may affect the subsequent jobs. These jobs are filtered to reduce the number of jobs violating
their deadline and also to increase the performance of the system. Every job contains two
attributes namely length and deadline during its submission. The scheduler can effectively
schedule and complete the large scale of jobs within their deadline by prioritizing the jobs. The
priority scheduler can calculate the priority value based on different parameters like waiting
time of the job, length of the job and deadline of the submitted jobs. It does not focus on
resource utilization and previous workload. The priority scheduler can efficiently schedule the
jobs to the underlying VM so that it can reduce the waiting time ()tW of the jobs. Thus, it also
increases the throughput ()pT of the system. The relationship between waiting time,

throughput and resource utilization ()uR are described in equation (3).

t

p
opertyTransitive

up W
TRT 1Pr ∝ →∝ (3)

The jobs are non-preemptive in nature, so it would execute only once in a particular VM.
The processing speed of the VM is generally given as { }ue SSPS ,= . Large numbers of VMs

[]()βα SSy ∨= are available for processing the jobs. The job is dynamically mapped to a
suitable VM based on different parameters like Expected Processing Speed of the submitted
job (EPS), previous workload of the VM and the processing speed of the VM. After mapping,
the job will be executed in the corresponding VM. During the execution, the job cannot utilize

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015 1307

the full processing speed of the VM due to its communication, synchronization and some other
external delay. Therefore, the two-tier VM architecture (i.e. FVM and BVM) has been
implemented to utilize the remaining idle processing speed of the VM only if the job does not
utilize the full processing speed of the VM. Therefore, a new scheduler is required for
scheduling the job between FVM and BVM. Hence, this work proposes an Adaptive
Multilevel Scheduling System (AMSS) that will filter, prioritize and map the job to a suitable
VM. The proposed work will improve system performance and resource utilization.

4. Design of Adaptive Multilevel Scheduling System
The jobs are submitted from various users with different demand and the jobs are assumed to
be demanding only computing resources for their execution. The submitted jobs are
congregated to the Cloud User Interface (i.e. Portal). The minimum processing speed required
by the job is dynamically estimated depending on the user input. Sometimes, the job may
require more processing speed than the available processing speed of the resource. In this
work, the jobs are accepted only if it can adapt and complete within deadline using the
available processing speed of the VM and eliminate the job that require more processing speed
than the available processing speed of the resource. By taking this into account, this paper
proposes an Adaptive Multilevel Scheduling System (AMSS) as depicted in Fig. 1. The jobs
are passed to the AMSS components.

Fig. 1. System Architecture

1308 Dinesh et al.: Deadline Constrained Adaptive Multilevel Scheduling System in Cloud Environment

The AMSS comprises of four components for scheduling the jobs in multilevel manner. In
PJMC, preprocessing and filtering are done on the jobs that require more processing speed
than the available processing speed of the VM. These jobs are handed over to the deadline
reassignment. In the deadline reassignment, the deadline of the job is reassigned only after
receiving further requests from the user. The jobs are passed to the second level of AMSS only
if the processing speed required by the jobs is within the available processing speed of the VM.
In the second level, DBDPS assigns priority dynamically to the jobs. The prioritized jobs are
then passed to the next level of AMSS. In the next level, CMJVM dynamically maps the job to
suitable resource for completing its execution within deadline. Moreover, CMJVM also
balances the system load. After resource allocation, the license is provided to the job for
executing in a particular VM for a certain time period. After license assignment, the CMJVM
updates the current information of the VM to the VM Supervisor. The VM supervisor
maintains the current status and availability of the VM. Finally, the jobs are passed to the VM
scheduler. In VM scheduler, the jobs are efficiently scheduled between the FVM and BVM in
two-tier VM architecture.

4.1 Preprocessing Jobs with Multi-Criteria (PJMC)
The VM exists either in homogeneous or heterogeneous environment depending on the data
center policy { } { }()ue SSVM ∨= . Since two functions such as either accepted or rejected are
carried out, the jobs processed in the PJMC are considered as a Bernoulli distribution (i.e.
acceptance is treated as success and rejection is treated as a failure) as each job has two
possible outcomes and independent of each other. The minimum processing speed or
computation speed required for the submitted job can be represented as rS and can be
calculated as shown in equation (4).

()NjJ
d
ls

S j
j

jj
r ,1;| ∈∈∀= (4)

‘ls’ and ‘d’ stand for the length and deadline of the job. The processing speed of the VM is
expressed in MIPS (Million Instructions Per Second). The maximum processing speed of
existing VM is represented as sMax and is manipulated as depicted in equation (5).

()

∈∀
∈

=
tenvironmenousheterogeneSP

tenvironmenogeneousSSS
Max

uVMi

e
s ;|max

hom;| 11 (5)

The jobs that are accepted in PJMC by comparing rS and sMax are represented as

PJMCfJ − and is expressed in equation (6).

()N
otherwise

MaxSif
J j

sr
PJMCf ,1|

;0
;1

∈∀

 ≤
=− (6)

The number of jobs processed in PJMC is considered as a binomial distribution as ‘N’
trails (i.e. ‘N’ jobs). Among these trails, '' N successes (i.e. '' N jobs) are accepted and stored

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015 1309

in the queue ()fqJ . Otherwise, the jobs are rejected and passed to deadline reassignment. The

total processing speed of the VM is denoted as tS and is calculated as shown in equation (7).

() ()uiiieii it SPPSSSS ∈∨∈= ∑∑ ==
||

11

βα
 (7)

The jobs are preprocessed based on the Time Required for Processing already accepted
jobs (TRP) in a queue and it is computed as given in equation (8).

dbdps
t

x

j j Jinjobsofnox
S

ls
TRP ∈=

∑ = ;1 (8)

After computing TRP, the jobs are passed to the second level of the PJMC. At this level,
the job that is accepted by comparing the TRP of the job and deadline on the job, is represented
as PJMCsJ − and is expressed as shown in equation (9).

() fqj
j

PJMCs JinN
otherwise

dTRPif
J ,1|

;0

;1
∈∀

 ≤

=− (9)

The accepted jobs ()N are stored in the queue ()sqJ . The jobs are accepted based on the
current workload of the system. The accepted jobs are submitted to the third level of PJMC.
At this stage, the jobs are considered as a stochastic process. The accepted jobs ()N follow a
Poisson process for a particular time interval for processing the batch jobs. The total number of
accepted jobs is calculated as shown in equation (10).

() ()
,...2,1;

!
==

−

Nwhere
N

eNP
Ntt

x

λλ

 (10)

‘λ’ and ‘t’ stand for the arrival rate of the jobs and time interval respectively. N represents
number of times an event occurs (i.e. jobs). The mean arrival rate of jobs is represented as 'λ
and calculated as shown in equation (11).

t

lsN

j j∑ == 1'λ

(11)

The jobs are accepted only if tS≤'λ , otherwise the arrival rate of the jobs will be slowed
down. The utilization of the data center is represented as ρ and is carried out as shown in
equation (12).

1310 Dinesh et al.: Deadline Constrained Adaptive Multilevel Scheduling System in Cloud Environment

sq
t

N

i
i

i

Jj
S

d
ls

∈=
∑ =

;
1

ρ (12)

ρ denotes a ratio between mean arrival rate and service rate of jobs. It is used for avoiding
traffic congestion, delay of job execution, overloading of VM and providing an efficient
service for jobs submitted by users. In order to avoid overloading, the jobs are accepted only if
ρ≤1 otherwise the jobs are forwarded to another service provider as long as ρ＞1. The quality

and efficiency of the system are evaluated based on ρ. The ‘x’ jobs approved from N are
stored in dJ that is forwarded to DBDPS.

4.2 Deadline Based Dynamic Priority Scheduler (DBDPS)
The jobs that satisfy the multiple criteria of PJMC are approved and passed to DBDPS. In
DBDPS, the priority value of the jobs stored in the dJ queue is calculated based on different
parameters like length of the submitted job, deadline of the job, waiting time of already
accepted job and the maximum computational speed of VM. Some jobs may already exist in
the dbdpsJ before submitting a new job. The minimum waiting time for processing the current

job is represented as tW . It is computed based on different parameters like length of the job,
TRP and processing speed of the VM as shown in equation (13).

dj
t

j jt
j J

S

ls
TRPW ∈∀+=

∑ − |1 (13)

In the above equation, tW is calculated by adding the time required for processing the
accepted jobs in the queue (i.e. dbdpsJ) along with the processing time for accepted jobs in the

queue (i.e. dJ). The jobs in dJ are processed based on their priority value. The priority value
is denoted as dP and is calculated as shown in equation (14).

dj
s

t
jj

j

j
d J

Max
Wd

ls

P ∈∀

−
=

−

;

1

 (14)

The VM with maximum processing speed is taken into the account instead of checking
with every VM because, if the VM with maximum processing speed cannot complete the job
within deadline, then no other VM is capable to complete the jobs within deadline. The jobs
()x are sorted and stored in a queue ()dbdpsJ based on their priority value. The job with the
lowest priority value is given the highest preference and it remains in the head of the queue.
The priority of the submitted jobs is dynamically varied in order to evade starvation (i.e. a user

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015 1311

request remains waiting for a long time to obtain resources). The prioritized jobs are passed to
the CMJVM.

4.3 Contest Mapping of Jobs with Virtual Machine (CMJVM)
The prioritized jobs are dynamically mapped with the VM based on their normalized value
()nv . The normalized value is computed based on different parameters like length of
submitted job, deadline of the job, waiting time of the job and communication time. There is a
job in job queue (i.e. dbdpsJ) which can utilize the processing speed of any VM as shown in
equation (15).

() ()[]VMPSQPSjTPSVMj ,,: ∧∃∀∃ (15)

():, PSjT job utilizes the processing speed and ():,VMPSQ processing speed of the
every VM. The waiting time is calculated for all existing VM present in VM supervisor The
waiting time for already accepted jobs in the VM queue is represented as tW and calculated as
shown in the equation (16).

() ()

∈
∈

∈∈∀

∨

∀⊆=

∑∑ ==

yi
Jj

wherekS
P

ls
SS

S

ls
W dbdps

uP
k

m

j j
VMe

m

j ji
t k ,1

,1;|&| 1
1

1

1 β (16)

where m represents the number of jobs in the corresponding VM queue. VM supervisor
contains all the relevant information about the VM like the total number of jobs present in
queue, number of VM, processing speed of VM and the bandwidth of VM. The total number
of VM is represented as y . tW is computed and stored in the matrix as y×1 as given in
equation (17).

[] ()yiVMVMVMW y
i

t ,1;,...,, 21 ∈= (17)

The waiting time is computed for the VM existing in either homogeneous or heterogeneous
environment. In the proposed work, all the VMs are connected with high bandwidth. The
notation ‘BW’ denotes bandwidth of the VM. The job can execute in any VM as given in
equation (18).

() VMinexecutejobVMjobPVMjob :,,∀ (18)

The time taken for communicating a job to underlying VM is represented as cC and it is
calculated as shown in equation (19).

()yiJ
VMBW

ls
C dbdpsj

i

jij
c ,1,|

_
∈∈∀

= (19)

1312 Dinesh et al.: Deadline Constrained Adaptive Multilevel Scheduling System in Cloud Environment

where BW_VM represents the processing speed of the VM. cC is required for
transferring a job from the queue to the VM. It is computed for each job with all VM. It varies
dynamically depending on the job length and VM bandwidth. The computed results are stored
in the matrix xy× . The total waiting time of the job is represented as WT. It is computed by
comparing the elements of tW with each column of cC as shown in equation (20).

() VMjob
ij
c

i
t

ij CWWT ,;,max ∀= (20)

[]

=

xy
c

y
c

y
c

x
ccc

x
ccc

y

x

y
ttt

y

xyyy

x

x

y

x

CCC

CCC
CCC

VM

VM
VM

jjj

WWW
VMVMVM

WTWTWT

WTWTWT
WTWTWT

VM

VM
VM

jjj

21

22221

11211

2

1

21

21
21

21

22221

11211

2

1

21

,max

The jobs are assigned to the VMs depend on the EPS and hence it completes within its
corresponding deadline. The minimum processing speed necessary for the submitted jobs is
represented as epsE as shown in equation (21).

VMjobij
j

jij
eps WTd

ls
E ,;∀

−
= (21)

The VMs may exist either in a homogeneous or heterogeneous environment depending on
the data center allocation policy. The jobs are scheduled based on the normalized value for
completing their execution within deadline and also balancing the system load. The job is
apportioned to the VM having the potential to complete within its deadline based on the
normalized value. MIPS_VM represents the processing speed of the VM. The normalized
value in a homogeneous environment is represented as env and it is calculated as shown in
equation (22).

ij
env ↤ () ()xjyiwhere

VMMIPS
E

VMMIPS
d
ls

ji
i

ij
eps

i

m

k
k

k

,1&,1;
__

min
1

∈∈

∀

∀

+
∑ =

 (22)

Initially, the accessible processing speed of VM in a heterogeneous environment is
represented as uenv and is calculated for each job with all VM as shown in equation (23).

Among these VMs, the non-capable VMs are neglected ()1.. >ij
uenvifei . The potential VMs

are filtered and stored in mn as shown in equation (23).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015 1313

()
()

1 1,
max 1 ;

1,_ _ ij
ue

m k
ijk
epsfilter ij k

m ue i jnv
i i

ls
E i ydn nv if where

j xMIPS VM MIPS VM

=

 ∈ ← = + ∀ ∀ ≤ ∀ ∈

∑
 (23)

Among mn , the job is mapped to the VM having large normalized value for increasing the
efficiency of the system. The jobs are assigned to the VM under the heterogeneous
environment. The job is mapped to execute in a particular VM. The normalized value in a
heterogeneous environment is represented as unv as shown in equation (24).

ij
unv ↤

()
()

 ≠

otherwisenv
nifn

ij
ue

mm

;min

;max φ
 (24)

The normalized value is recalculated for already allocated VM to check whether it is
capable of completing the successive job within its deadline. The job assigned to the VM
depends on the three different attribute like the required processing speed of accepted job,
required processing speed of incoming job and inter-arrival time between jobs. The
normalized value of already allocated job in VM is denoted as VMnn and it is illustrated in
equation (25).

()
dbdps

j
ueVM JjifTnvnn ∈−= + ;1 (25)

where T represents the inter arrival time between the job ‘j’ and ‘j+1’. The consecutive jobs
are assigned to the VM as given below

ij
unv ↤ () () ()

()

∈∀≠<
<

otherwisenv

Jnnnifn
nnifnn

ij
ue

dbdpsjmVMm

VMVM

;min

;&1;max
1;

φ (26)

After the completion of job, the status of the VM is updated in VM supervisor. Hence, the
normalized value is recalculated for the particular VM. The recalculated normalized value for
the particular VM is represented as rn and is calculated as shown below.

1

| ;
_ _

m j
ijj

j eps th
r dbdps

i i

ls
d E

n a job completes in i VM j J
MIPS VM MIPS VM

=

= + ∈
∑

 (27)

After computing the rn , the VM supervisor will check whether the VM is capable of
executing the job within its deadline ()1.. <rnifei . Therefore, the VM will append to the

1314 Dinesh et al.: Deadline Constrained Adaptive Multilevel Scheduling System in Cloud Environment

mn (mn contains the eligible VM). The jobs are licensed to execute in a particular VM (i.e. specific
time period) are passed to the VM Scheduler.

4.4 Virtual Machine Scheduler
 The VM scheduler will define the policies during the creation of the VM. The VMs are treated
as a Foreground VM (FVM) and Background VM (BVM) in the two-tier architecture. The
FVM and BVM are treated as high and low priority respectively. The FVM and BVM belong
to the same processing element. Hence, the full processing speed is initially allotted to the
FVM. The processing speed of BVM fully depends on the processing speed of FVM. The
FVM and BVM are complements of each other with respect to their processing speed. The
processing speed of the VM is denoted as PS. The relation between FVM and BVM is given in
the equation (28).

BVM
FVM PS

PS 1
∝ (28)

The VM scheduler contains utilization manager and VM switcher components. The
utilization manager monitors the utilization rate of both FVM and BVM. Based on the
utilization rate, the VM switcher schedules the successive jobs between FVM and BVM by
issuing licenses. The jobs are stored in the particular VM queue ()qVM after issuing the

license. Initially, the jobs from the qVM are allotted to the FVM for their execution. Due to
external delay, communication delay and synchronization delay, the job may not utilize the
full processing speed of the VM. The processing speed allocated for FVM is represented as

FVMPS and it is defined in equation (29).

()()
100

* MIPSFVMutilPSFVM = (29)

The job in VM queue ()qVM is allocated to the FVM. The job does not utilize the full
processing speed of the VM during its execution. Therefore, the utilization of FVM decreases
below the threshold value (96%). So, the remaining processing power of FVM can be
allocated to the BVM dynamically. The VM switcher will schedule the subsequent job to
BVM to increase the resource utilization. The processing speed of the BVM is represented as

BVMPS and it is calculated dynamically as shown in equation (30).

()()()
100

*1 MIPSFVMutilPSBVM
−

= (30)

The jobs in corresponding qVM are concurrently executed in the VM. The jobs in each

qVM are allocated between FVM and BVM using VM switching algorithm. In the VM
switching algorithm, the jobs are scheduled between FVM and BVM depending on the
utilization rate. After the completion of FVM job, the job running in BVM migrates to FVM
for maintaining the preference for higher priority jobs. During migration, the status of running
job in BVM is handed over to the FVM.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015 1315

VM Switching Algorithm

(1) Get a job ‘j’ from the dbdpsJ

(2) for each j in dbdpsJ mapped with VM do

(3) ǁly compute VM∀ , j in qVM

(4) if jVMj VMthenVM /*;∀=φ represents job execute in VM */

(5) FVMVMj assign
q →∈

(6) else if 0.96 / * * /FVM iPS and j process in FVM then to improve utilization<

 dynamically allocate BVMjPS assign
iBVM →+1;

(7) if ij complete in FVM then

(8) BVMjFVMj migrate
i

migrate
i → → ++ 21 ;

 /* move the job from BVM to FVM to maintain priority*/
(9) else BVMj assign

i →+2
(10) end if
(11) end if
(12) FVMj assign

i →+1
(13) end if
(14) end for
(15) Goto (1) for scheduling subsequent jobs;

The VM switching algorithm will effective schedule the jobs between the foreground and
background VM for effective processing speed utilization of the VM.

4. Simulation and Results Analysis
CloudSim, used as a simulation tool, provides basic classes that describe data center, virtual
machine, computational resources and policies for scheduling and provisioning of resources
explained by R. Buyya [27]. The utilization of the cloud has been enhanced with the
development of new strategies with different policies, scheduling algorithms, mapping and
load balancing. Hence, an Adaptive Multilevel Scheduling System (AMSS) was developed for
increasing the system performance and the resource utilization. The performance of the AMSS
and existing algorithms are evaluated using CloudSim. The computational power of the data
center is considered as 5750 MIPS given by Zhuge Bin, et al. [28]. The number of jobs,
number of VMs and the simulation parameters is shown in Table 1.

Table 1. Simulation parameters
Parameter Range

Job Size (MI) 5,000-25,000
Number of jobs 8-100
Computing Power on Data Center (MIPS) 5750
Computing Power of VM in homogeneous environment (MIPS) 500
Computing Power of VM in heterogeneous environment (MIPS) 1000-2500
Number of VM 10-15
Deadline (ms) 10-100

1316 Dinesh et al.: Deadline Constrained Adaptive Multilevel Scheduling System in Cloud Environment

5.1 Experimental environment and result analysis
In this simulation, CloudSim creates a VM in either homogeneous or heterogeneous
environment. The jobs are submitted to the VM for their execution. The incoming jobs are
considered as a Poisson process because the jobs are submitted in a specific time interval. The
jobs are submitted and tested in both homogeneous and heterogeneous environment of the
CloudSim simulation toolkit. The bandwidth of the VMs varies with respect to the system
architecture.

5.2 Performance analysis
In the proposed system, job submitted at the time t=0 become zero, so the waiting time of
already accepted jobs and dbdpsJj∈ are considered as zero. The number of jobs is linearly
increased up to 1≤ρ . The arrival jobs are slowed down only if 1≥ρ . The efficiency of the
system is achieved using PJMCsJ − and the jobs will be completed within their specified
deadline having minimum variance. The jobs are preprocessed with different constraints to
improve the user satisfaction. The jobs are prioritized with different parameters. This system
will effectively schedule the jobs based on their priority value and also balance the load using
CMJVM. The proposed work can efficiently schedule the jobs in the underlying resources.
Moreover, the delay of currently running job does not affect the subsequent jobs due to the
introduction of VM Scheduler in the two-tier architecture. The scalability can be achieved by
comparing the total processing speed of the VM and arrival rate of the jobs. The proposed
work dynamically balances the load among the available VMs.

5.2.1 Job Violations
The proposed work focuses to reduce the average number of job violating its deadline and
thereby increase user satisfaction through the completion of job within its deadline. Initially at
t=5, the submitted jobs (n=8) are less than available VM so dbdpsJj∈ becomes φ and waiting
time of the job becomes zero. Number of jobs submitted to the VM will increase linearly up to

1≤ρ . At t=40, 1≥ρ will slowed down the arrival rate of jobs.

Fig. 2. Impact Job Violations using AMSS

Fig. 2 shows the impact of job violating using AMSS. In Fig. 2, (a) and (b) represent the
number of jobs violating their deadline in the homogeneous and heterogeneous environment
respectively. The jobs are filtered in AMSS only if the job requires more processing speed than

(a). Job Violation in Homogeneous
Environment

(b). Job Violation in Homogeneous
Environment

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015 1317

the available processing speed of the VM. Because, those jobs would degrade the system
performance. Among the accepted jobs, the delay of current running job may affect the
subsequent jobs. But, by the deployment of VM scheduler in the two-tier VM architecture will
effectively schedule and complete the jobs within their deadline. Fig. 2 shows only a small
number of jobs violating their deadline in AMSS compared with other algorithms like FCFS,
EDF and RAS since the jobs are preprocessed in AMSS. Among the accepted jobs, some of
them may violate their policy with minimum deviation from their deadline compared to other
algorithms. The minimum deviation is due to the communication delay and previous workload
of the VM. The job is assigned to the VM that exist in either homogeneous or heterogeneous
environment.

5.2.2 Waiting time
The waiting time of the job decreases in AMSS compared with other algorithms (i.e. FCFS,
EDF, HLBA and RAS) due to the introduction of VM scheduler in the two-tier VM
architecture. Here, the processing speed of the VM has been shared among the foreground and
background VM. The delay of currently running job does not affect the remaining jobs present
in the queue because the consecutive job in the qVM will effectively utilize the remaining
processing speed of the VM using the background VM.

Fig. 3. Impact of Jobs Waiting Time using AMSS

Fig. 3 shows that the waiting time of jobs is reduced using AMSS. In Fig. 3, (a) and (b)
represents the waiting time in a homogeneous and heterogeneous environment respectively.
The AMSS minimizes the user waiting time and achieves certain fairness among the resources
in the homogeneous environment. The jobs are mapped with the appropriate VM to minimize
waiting time in a heterogeneous environment. Moreover, the processing speed of VMs is fully
utilized in AMSS due to the deployment of VM scheduler in the two-tier VM architecture
compared with other algorithms and thereby decrease the waiting time of the job. The VM
scheduler is introduced for effectively scheduling the jobs between FVM and BVM. Hence,
the waiting time of the job is decreased comparing to other algorithms.

5.2.3 Resource Utilization
The VM switching algorithm in the proposed AMSS decreases the resource utilization initially
compared with other algorithms like FCFS, EDF, HLBA and RAS if VMsjobs ≤ because
the jobs are preprocessed and filtered. The resource utilization is increased gradually when the
number of incoming jobs increases linearly. In HLBA, the jobs are scheduled to the VM

(a). Waiting time of Jobs in
Homogeneous Environment

(b). Waiting time of Jobs in
Homogeneous Environment

1318 Dinesh et al.: Deadline Constrained Adaptive Multilevel Scheduling System in Cloud Environment

having high computational power. Therefore, VM having low computational power remains
idle. Fig. 4 shows the impact of resource utilization using AMSS. In Fig. 4, (a) and (b)
represents the resource utilization in homogeneous and heterogeneous environment
respectively. Since the VM exist in the homogeneous having idle computational speed and
their resource utilization is upto 86% (i.e. processing speed of VM is 1000 MIPS so that 750
MIPS remains idle). But, the resource utilization of VM is up to 90% in a heterogeneous
environment due to the characteristics of job. Moreover, the processing speed of VMs is fully
utilized in AMSS due to the deployment of VM scheduler in the two-tier VM architecture
compared with other algorithms and thereby increases the VM throughput. The VM scheduler
is introduced for scheduling the jobs effectively between FVM and BVM. Hence, the resource
utilization is increased to the range of 4% to 6% compared with other algorithms.

Fig. 4. Impact of Resource Utilization using AMSS

5. Conclusion and Future Works
The proposed research work examined the difficulties of dynamic batch job scheduling. The
objectives of this work were to bolster the user satisfaction, to mitigate job violating its policy
and to maximize resource utilization. To achieve these objectives, AMSS has been proposed
for scheduling the batch jobs. The user satisfaction was achieved by neglecting the job that
doesn’t satisfy the criteria of PJMC. The number of jobs violating their deadline was reduced
by filtering the jobs using multiple criteria. The priority was dynamically assigned to the
accepted jobs in DBDPS in order to avoid starvation. The prioritized jobs were efficiently
mapped with VM either in homogeneous or in the heterogeneous environment using CMJVM
and thereby efficiently balanced the load. The VM Scheduler has been deployed in the two-tier
VM for effectively scheduling the jobs between FVM and BVM. Hence, utilization of
resources was increased to the ranges of 4% to 6%.

AMSS outperforms the existing scheduling algorithms by reducing the number of jobs
violating their deadline that improves the user satisfaction. It also focused on load balancing
that increases throughput and also resource utilization. In future, the work can be extended to
develop an efficient cost and energy aware scheduler for processing both dependent and
independent jobs.

(a). Resource Utilization in
homogeneous environment

(b). Resource Utilization in
heterogeneous environment

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015 1319

References
[1] M. D. Dikaiakos, D. Katsaros, et al., “Cloud Computing: Distributed Internet Computing for IT

and Scientific Research,” IEEE Internet Computing, vol. 1, no. 5, pp. 10-13, 2009.
Article (CrossRef Link)

[2] K. Dinesh, G. Poornima and K. Kiruthika, “Efficient Resources Allocation for different Jobs,”
International Journal of Computer Application, vol. 56, no. 10, pp. 30-35, 2012.
Article (CrossRef Link)

[3] P. Mell, T. Grance, “The NIST Definition of Cloud Computing,” NIST Special
publication, pp. 800-145, 2011.

[4] Md. Sabbir Hasan, E. N. Huh, “Heuristic based Energy-aware Resource Allocation by Dynamic
Consolidation of Virtual Machines in Cloud Data Center,” KSII Transactions on Internet and
Information Systems, vol. 7, no. 8, pp. 1825-1842, 2013. Article (CrossRef Link)

[5] D. Jung, T. Suh, H. Yu and J. M. Gil, “A Workflow Scheduling Technique Using Genetic
Algorithm in Spot Instance-Based Cloud,” KSII Transactions on Internet and Information Systems,
vol. 8, no. 9, pp. 3126-3145, 2014. Article (CrossRef Link)

[6] K. M. Sim, “Agent-Based Cloud Computing,” IEEE Transactions on Services Computing, vol. 5,
no.4, pp.564-577, 2012. Article (CrossRef Link)

[7] Li. Chunxiao, A. Raghunathan and Niraj K. Jha, “A Trusted Virtual Machine in an Untrusted
Management Environment”, IEEE Transactions on Services Computing, vol. 5, no. 4, pp. 472-483,
2012. Article (CrossRef Link)

[8] Y. Zhang, H. Franke, et al., “An integrated approach to parallel scheduling using gang-scheduling,
backfilling, and migration,” IEEE Transactions on Parallel and Distributed Systems, vol. 14, no. 3,
pp. 236-247, 2003. Article (CrossRef Link)

[9] D. Carrera, M. Steinder, et al., “Autonomic Placement of Mixed Batch and Transactional
Workloads,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 2, pp. 219-231,
2012. Article (CrossRef Link)

[10] A. Silberschatz, P. B. Galvin and G. Gagne, “Operating System Concepts,” ISSN-
978-1-118-06333-0, 9th edition, 2011.

[11] D. Nurmi, R. Wolski and J. Bervik, “Probabilistic Reservation Services for Large-Scale
Batch-Scheduled Systems," IEEE Systems Journal, vol. 3, no. 1, pp. 6-24, 2009.
Article (CrossRef Link)

[12] A. W. Mu'alem and D.G. Feitelson, “Utilization, predictability, workloads, and user runtime
estimates in scheduling the IBM SP2 with backfilling,” IEEE Transactions on Parallel and
Distributed Systems, vol. 12, no. 6, pp. 529-543, 2001. Article (CrossRef Link)

[13] V. Gamini Abhaya, Z. Tari, et al., “Performance Analysis of EDF Scheduling in a Multi-Priority
Preemptive M/G/1 Queue,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 8,
pp. 2149-2158, 2014. Article (CrossRef Link)

[14] S. Abrishami, M. Naghibzadeh, et al., “Deadline-constrained workflow scheduling algorithms for
Infrastructure as a Service Clouds,” Future Generation Computer Systems, vol. 28, no. 1, pp.
158-169, 2013. Article (CrossRef Link)

[15] M. Stillwell, F. Vivien and H. casanova, “Dynamic Fractional Resource Scheduling versus Batch
Scheduling,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 3, pp. 521-529,
2012. Article (CrossRef Link)

[16] R. Baraglia, G. Capannini, et al., “A multi-criteria job scheduling framework for large computing
farms,” Journal of Computer and System Sciences, vol. 79, no. 22, pp. 230-244, 2013.
Article (CrossRef Link)

[17] B. Xu, C. Zhao, et al., “Job Scheduling algorithm based on Berger model in cloud environment,”
Advances in Engineering Software, vol. 42, no. 7, pp. 419-425, 2011. Article (CrossRef Link)

[18] E. U. Munir, J. Z. Li, et al., “A new heuristic for task scheduling in heterogeneous computing
environment,” Journal of Zhejiang University SCIENCE A, vol. 9, no. 12, pp. 1715-1723, 2008.
Article (CrossRef Link)

http://dx.doi.org/doi:10.1109/MIC.2009.103
http://dx.doi.org/doi:10.5120/8928-3005
http://dx.doi.org/doi:10.3837/tiis.2013.08.005
http://dx.doi.org/doi:10.3837/tiis.2014.09.010
http://dx.doi.org/doi:10.1109/TSC.2011.52
http://dx.doi.org/doi:10.1109/TSC.2011.30
http://dx.doi.org/doi:10.1109/TPDS.2003.1189582
http://dx.doi.org/doi:10.1109/TPDS.2011.129
http://dx.doi.org/doi:10.1109/JSYST.2008.2011303
http://dx.doi.org/doi:10.1109/71.932708
http://dx.doi.org/doi:10.1109/TPDS.2013.171
http://dx.doi.org/doi:10.1016/j.future.2012.05.004
http://dx.doi.org/doi:10.1109/TPDS.2011.183
http://dx.doi.org/doi:10.1016/j.jcss.2012.05.005
http://dx.doi.org/doi:10.1016/j.advengsoft.2011.03.007
http://dx.doi.org/doi:10.1631/jzus.A0820007

1320 Dinesh et al.: Deadline Constrained Adaptive Multilevel Scheduling System in Cloud Environment

[19] Y. H. Lee, S. Leu, et al., “Improving job Scheduling algorithm in a grid environment,” Future
Generation Computer Systems, vol. 27, no. 8, pp. 991-998, 2011. Article (CrossRef Link)

[20] Y. Zhao, L. Chen, et al., “Efficient task scheduling for Many Task Computing with resource
attribute selection,” China Communications, vol. 11, no. 12, pp. 125-140, 2014.
Article (CrossRef Link)

[21] L. Zhou and H. Wang, “Toward Blind Scheduling in Mobile Media Cloud: Fairness, Simplicity,
and Asymptotic Optimality,” IEEE Transaction on Multimedia, vol. 15, no. 4, pp. 735-746, 2013.
Article (CrossRef Link)

[22] L. Zhou, Z. Yang, et al., “Exploring blind online scheduling for mobile cloud multimedia
services,” IEEE Wireless Communications, vol. 20, no. 3, pp. 54-61, 2013. Article (CrossRef Link)

[23] X. Liu, C. Wang, et al., “Backfilling under Two-tier Virtual Machines,” IEEE International
Conference on Cluster Computing (CLUSTER), pp. 514-522, 2012. Article (CrossRef Link)

[24] X. Liu, C. Wang, et al., “Priority-Based Consolidation of Parallel Workloads in the Cloud,” IEEE
Transaction on Parallel and Distributed Systems, vol. 24, no. 9, pp. 1874-1883, 2013.
Article (CrossRef Link)

[25] C. Zhao, S. Zhang, et al., “Independent Tasks Scheduling Based on Genetic Algorithm in Cloud
Computing,” International Conference on Wireless Communications, Networking and Mobile
Computing, pp. 1-4, 2009. Article (CrossRef Link)

[26] M. Kuanr, P. Mohanty, S. C. Moharana, “Grouping-Based Job Scheduling in Cloud computing
using Ant Colony Framework,” International Journal of Engineering Research and Applications,
2013.

[27] R. Buyya, R. Ranjan and R. N. Calheiros, “Modeling and simulation of scalable Cloud computing
environments and the CloudSim toolkit: Challenges and opportunities,” International Conference
on High Performance Computing & Simulation, HPCS '09, pp. 1-11, 2009.
Article (CrossRef Link)

[28] Z. Bin, D. Li, et al., "Resource scheduling algorithm and ecnomic model in ForCES networks,"
China Communications,vol. 11, no. 3, pp. 91-103, 2014. Article (CrossRef Link)

Dinesh Komarasamy received the Bachelor of Engineering and Master of Engineering in
Computer Science and Engineering from Anna University, Chennai, India in 2010 and 2012
respectively. He is currently pursuing Ph.D. at College of Engineering, Anna University,
Chennai, India. His research area is focused on job scheduling in cloud computing.

Muthuswamy Vijayalakshmi is an Assistant Professor in the Department of
Information Science and Technology, College of Engineering, Anna University, Chennai,
India. She has 12 years of teaching experience. She received the Bachelor of Engineering in
Instrumentation and Control Engineering from National Institute of Technology, Trichy in
1998 and Master of Engineering in Computer Science and Engineering from College of
Engineering, Anna University, Chennai, India in 2002. She completed her Ph.D in Mobile
Databases from Anna University, Chennai, India in 2009. Her research areas include mobile
databases and mobile cloud computing.

http://dx.doi.org/doi:10.1016/j.future.2011.05.014
http://dx.doi.org/doi:10.1109/CC.2014.7019847
http://dx.doi.org/doi:10.1109/TMM.2013.2241044
http://dx.doi.org/doi:10.1109/MWC.2013.6549283
http://dx.doi.org/doi:10.1109/CLUSTER.2012.36
http://dx.doi.org/10.1109/TPDS.2012.262
http://dx.doi.org/doi:10.1109/WICOM.2009.5301850
http://dx.doi.org/doi:10.1109/HPCSIM.2009.5192685
http://dx.doi.org/doi:10.1109/CC.2014.6825262

