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Abstract 
 

As a kind of personal lifelog data, activity data have been considered as one of the most 
compelling information to understand the user's habits and to calibrate diagnoses. In this paper, 
we proposed a robust algorithm to sampling rates for human activity recognition, which 
identifies a user’s activity using accelerations from a triaxial accelerometer in a smartphone. 
Although a high sampling rate is required for high accuracy, it is not desirable for actual 
smartphone usage, battery consumption, or storage occupancy. Activity recognitions with 
well-known algorithms, including MLP, C4.5, or SVM, suffer from a loss of accuracy when a 
sampling rate of accelerometers decreases. Thus, we start from particle swarm optimization 
(PSO), which has relatively better tolerance to declines in sampling rates, and we propose PSO 
with an adaptive boundary correction (ABC) approach. PSO with ABC is tolerant of various 
sampling rate in that it identifies all data by adjusting the classification boundaries of each 
activity. The experimental results show that PSO with ABC has better tolerance to changes of 
sampling rates of an accelerometer than PSO without ABC and other methods. In particular, 
PSO with ABC is 6%, 25%, and 35% better than PSO without ABC for sitting, standing, and 
walking, respectively, at a sampling period of 32 seconds. PSO with ABC is the only algo-
rithm that guarantees at least 80% accuracy for every activity at a sampling period of smaller 
than or equal to 8 seconds. 
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1. Introduction 

Personal life information is currently being treated as an important resource for more 
accurate diagnoses. Practitioners need routine data, as well as vital data, to see patient’s life 
patterns for precise, predictive, and personalized treatments. For this reason, there have been 
many studies on using routine data to help practitioners. Ito et al. [1] tried to overcome the 
limitation of medical information by gathering voluminuous and varied lifelog data for 
medical purposes. Heo et al. [2] developed an Android-based smartphone application to 
encourage breast self-examination in daily life to find breast cancer at an early stage. Kwon et 
al. [3] built a lifelog agent based on Health Avatar Platform [4] to summarize human activity 
patterns using smartphone sensors in order to incorporate lifelog data into a medical record.  
 

 

Fig. 1. System dialog for medical diagnosis and treatment with lifelog in NTT [1] 
 
A lifelog is all information that can be collected from a person, such as sleep information, 

exercise information, and eating habits. A lifelog can be collected from a variety of devices 
such as smartphones or wearable sensors, and exploited for various purposes, including human 
activity recognition. For instance, a digital health screening form [5-6] requires lifestyle in-
formation such as activity, sleeping, exercising, and eating habits, as well as entries in a pa-
per-based health screening form. If questions such as “how long do you walk per day,” “how 
long do you sit at a desk each day,” or “how often do you exercise” can be filled in with ac-
tivities automatically derived from the lifelog data, it is then possible to obtain the objective 
lifestyle information. Hence, practitioners can easily achieve a more accurate diagnosis using 
a digital health screening form.  

In particular, activity data are one of the most fascinating information retrieved from the 
lifelogs. Activity is actually something that is done at some time (e.g. sitting, walking). Ac-
tivity data in daily routines have been used to understand the user’s habits or lifestyle, and 
have been used in some applications. For instance, Zwartjes et al. [7] developed an ambulatory 
monitoring system that analyzes current activity of the patient to monitor motor symptoms in 
Parkinson’s disease. Another example is using activity data collected from smartphone sen-
sors to measure the amount of calories burned [3]. 
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In this paper, we choose lifelog data as the sensor values of a triaxial accelerometer in a 
smartphone, and propose a robust method to sampling rates that recognizes the user’s activi-
ties. Since lifelog data are collected over a long period of time, it is necessary to pay attention 
to actual smartphone usage, battery consumption, or storage use of a smartphone, which 
highly depends on a sampling rate of the accelerometer, because a high sampling rate leads to 
high accuracy in activity recognition. Activity recognition methods with well-known classi-
fication algorithms, including MLP [8], C4.5 [9], or SVM [10], suffer from a loss of accuracy 
when the sampling rate decreases. Thus it is not suitable to implement activity recognition by 
direct adaptions of typical classification algorithms. 

We therefore introduce particle swarm optimization (PSO) [11-12] using adaptive boundary 
correction (ABC). PSO is a stochastic method that tries to repeatedly enhance a particle 
(candidate solution) of a given problem. One of the greatest advantages is that in PSO, each 
particle’s movement is affected by the best known position of the entire group as well as by the 
best known position of the particle, which makes the particle move to the more optimal posi-
tion. We start from PSO for classification, described in [13], that has better tolerance to de-
creases in sampling rates. Using PSO for classification, however, may fail to classify some 
input data for a low sampling rate. The ABC method helps recognize the unclassified points by 
adjusting the classification boundary based on the shape of the input data. 

The rest of this paper is organized as follows. In section 2, the related work on human ac-
tivity recognition and particle swarm optimization is summarized. Section 3 describes the 
ABC technique for activity classification. Section 4 provides an analysis of accelerations to 
see the properties of each activity. The experimental results are then shown in section 5, and 
we offer some concluding remarks in section 6. 

2. Related Work 

2.1 Human activity recognition 
Human activity recognition detects the person’s activities with an analysis of the acceleration 
data. It has been studied in computer vision, wearable computing, data mining, and their 
applications. Although there are some studies [14-16] to detect micro activities with vision 
systems, we concentrated on accelerometers that are small, light-weight, and embedded in a 
large number of portable devices. Since accelerometers measure the change in a person’s body, 
they play a significant role in activity recognition. To determine the human activities properly, 
at least one accelerometer must be attached to the body so that acceleration data of the person 
are recorded during certain activities. The acceleration data are converted into statistic data 
after feature extraction, and are then applied to algorithms for activity recognition. 

Some applications apply human activity recognition for several purposes. Jafari et al. [17] 
used accelerometers to perceive the urgent states of elderly users. These allow others to be 
alerted when such users face a potentially dangerous situation. The authors in [18-20] ex-
ploited activity recognition for activity monitoring, and transform exercise information into 
user-friendly information after classification. Kwon et al. [3] incorporated the activity recog-
nition with healthcare service platform to provide an application to show the user’s activity 
patterns in a graph. 

Several studies have introduced algorithms and models for activity recognition. Stikic et al. 
[21] used RFIDs attached to objects used at home, along with accelerometers, to record what 
the person is doing and what object is used each time. Some studies [22-23] have developed 
algorithms for human activity recognition, each of which is concentrated on a distinct col-
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lecting method or different target activities. Uddin et al. [24] used body joint-angle features 
and a hidden Markov model for activity recognition with a single camera. 

2.2 Particle swarm optimization 
Particle swarm optimization (PSO) is one of the best algorithms among swarm-based 
approaches that are reasonable ways to solve a number of difficult problems in nature. PSO, 
inspired by flocks of birds and schools of fishes, is a stochastic method that iteratively 
improves a candidate solution of a given problem to find the optimal solution [11-12]. In PSO, 
every particle shares its social experience derived from traveling. Depending on the collective 
experience, the entire group moves to the optimal position. 

In PSO, each particle computes its next velocity using the states of the other particles, and 
then computes its next position. After the particle changes its position, it shares its position 
with the others, helping them determine their next positions. The process is repeated until an 
optimal position is found. 
 

𝑣𝑡+1 = 𝑤 × 𝑣𝑡 + 𝑐1 × 𝑟𝑎𝑛𝑑() × (𝑝𝐵𝑒𝑠𝑡 − 𝑥𝑡) + 𝑐2 × 𝑟𝑎𝑛𝑑() × (𝑔𝐵𝑒𝑠𝑡 − 𝑥𝑡) (1) 
𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑡+1 (2) 

 
The velocity and next position of a particle can be computed through equations (1) and (2), 

where 𝑣𝑡 and 𝑥𝑡 indicate the velocity and position of the particle at time 𝑡, respectively. In this 
paper, constants 𝑤, 𝑐1, and 𝑐2 are chosen to be 1, 2, and 2, respectively. In addition, 𝑟𝑎𝑛𝑑() 
generates a real number within [0, 2], 𝑝𝐵𝑒𝑠𝑡 is the best-known position of a particle, and 
𝑔𝐵𝑒𝑠𝑡 is the best-known position of the entire group. PSO moves the particles by iterating 
equations (1) and (2) to find the optimal position of the group. PSO is finished when the 
termination criterion is met, for instance, PSO is repeated for a given number of times, or until 
the next velocity is zero. 

3. Adaptive Boundary Correction 

3.1 Data classification using a boundary 
In classification, the input data can be assigned to a class using a set of representative positions 
of each class, which can be determined by PSO. To perform classification quickly and accu-
rately, we first create the classification boundaries of each class, as described in [13]. For each 
feature, the boundary of a class is computed using the equations (3) and (4). 
 

𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 = 𝑥𝑖 − 𝑟𝑎𝑛𝑑() × (𝑀𝑎𝑥𝑖 − 𝑀𝑖𝑛𝑖) (3) 
𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 = 𝑥𝑖 + 𝑟𝑎𝑛𝑑() × (𝑀𝑎𝑥𝑖 − 𝑀𝑖𝑛𝑖) (4) 

 
where 𝑥𝑖 is the i-th feature value of a representative position, 𝑟𝑎𝑛𝑑() generates any number 
within [0,1], 𝑀𝑎𝑥𝑖  is the maximum value among the i-th feature values, and 𝑀𝑖𝑛𝑖  is the 
minimum value among the i-th feature values. After creating the boundary, one can determine 
whether a given point is a member of the class using the boundary, as shown in Fig. 2. 

Fig. 3 describes a pseudo code of data classification using a boundary. For each feature 
value of a given point, if it is not included in the boundary, we then neglect the point because  
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Fig. 2. Flowchart of particle swarm optimization 
 
it is not a member of the class. If all of the feature values are included in the boundaries, we 
can conclude that the point is a member of the class. 
 
for 𝑖 ← 0 to 𝑛 

if 𝐿𝑜𝑤𝑒𝑟𝑖  ≤  𝑥𝑖 and 𝑈𝑝𝑝𝑒𝑟𝑖  ≥  𝑥𝑖 then 
continue 

else 
return false 

end if 
end for 
return true 

Fig. 3. The pseudo code of data classification using a boundary 

3.2 Challenges of classification using a boundary 
Classification using a boundary has the advantage of being executed quickly and accurately. 
However, the method has some drawbacks. Since the feature values are likely to vary when a 
sampling rate becomes lower, the test points may not be fit in the boundary of the class 
generated by the training data, even though they are actually members of the class. For 
instance, consider that a class is distributed within [1, 10] and its representative point is 5. 
From equations (3) and (4), the boundary of the class can be computed as 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 = −4 
and 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 = 14 (if 𝑟𝑎𝑛𝑑() = 1). If the test data are positioned within [−5, 15], a 
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point out of [1, 10] should be determined as not being a member of the class. Since the point is 
the actual member, this situation causes a classification error. Another example is shown in 
Fig. 4. Although point F should be a member of class B, the algorithm does not assign F to 
class B because it is located outside the boundary of class B. 
 

 

Fig. 4. Example of a point outside the boundary of a class 

Points outside the boundary are sometimes found during activity classification. In general, 
the training data are collected intentionally under noiseless conditions. The test data, however, 
are recorded under diverse and noisy conditions. In particular, the sampling rate of the ac-
celerometer plays a significant role in activity recognition [25]. Since these points are not able 
to be classified, they cause a decrease in the classification accuracy. A method to cope with 
such points to reduce the classification errors should be derived. 

3.3 Adaptive boundary correction (ABC) approach 
A naïve approach to solve the out-of-boundary problem is used to expand the boundary of 
each class. As shown in Fig. 5, however, the extension of the boundaries may cause an 
intersection of the regions of two classes. The intersection may cause another problem, i.e., 
which cluster the point in the overwrapped region is assigned to. 

 

Fig. 5. Problem of a naive approach 
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We propose an Adaptive Boundary Correction (ABC) approach to solve the 
out-of-boundary problem without overwrapped regions. The ABC approach copes with sin-
gular points outside the boundaries of every class by applying another method to increase the 
classification accuracy. In this paper, we used the distance from each representative point to 
the singular point. Since the representative points are known after the PSO phase, we can 
compute the distance from each representative point, and can find which representative point 
is the closest one. The singular point can then be determined as a member of the corresponding 
class that has the closest representative point. Fig. 6 shows the flow of the ABC approach.  

For instance, assume that there is a point 𝐹 that is assigned to no group, as 𝐹 is not within 
the boundary of any class, as shown in Fig. 7. According to the ABC approach, to assign 𝐹 to 
one of the three classes, we first need to compute the distances 𝐴𝐹����, 𝐵𝐹����, and 𝐶𝐹���� as follows: 
 

𝐴𝐹���� = �(𝑎1 − 𝑓1)2 + (𝑎2 − 𝑓2)2 + ⋯+ (𝑎𝑖 − 𝑓𝑖)2 (5) 

𝐵𝐹���� = �(𝑏1 − 𝑓1)2 + (𝑏2 − 𝑓2)2 + ⋯+ (𝑏𝑖 − 𝑓𝑖)2 (6) 

𝐶𝐹���� = �(𝑐1 − 𝑓1)2 + (𝑐2 − 𝑓2)2 + ⋯+ (𝑐𝑖 − 𝑓𝑖)2 (7) 
 
where 𝑖 is the number of features, 𝐹 = (𝑓1,𝑓2,⋯ ,𝑓𝑖), and the representative points of each 
class are given as 𝐴 = (𝑎1,𝑎2,⋯ ,𝑎𝑖), 𝐵 = (𝑏1,𝑏2,⋯ , 𝑏𝑖), and 𝐶 = (𝑐1, 𝑐2,⋯ , 𝑐𝑖). Compar-
ing these distances, we can find the closest class, 𝐵. Hence, we determine that 𝐹 is a member 
of the class 𝐵. 
 

 

Fig. 6. Flowchart of the ABC approach 
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Fig. 7. Example of ABC approach 

4. Analysis of Activity Data 

4.1 Data collection 
To evaluate the PSO using ABC for activity recognition, we collect the activity data in real life. 
Since a smartphone has a built-in triaxial accelerometer, this experiment exploits a smartphone 
by implementing an application that handles the sensor. A smartphone was kept in a pants 
pocket to collect triaxial acceleration during a series of activities. The sensor data were rec-
orded in a database and used to verify the effectiveness of the proposed algorithm. 
Fig. 8 shows the position of the smartphone and axes of the accelerometer relative to the user. 
The 𝑥  axis implies the horizontal movement of the user, the 𝑦  axis implies the vertical 
movement, and the 𝑧 axis implies the movement of the leg. The unit of acceleration is 𝑚/𝑠2. 
 

 
Fig. 8. Direction of the accelerometer 

4.2 Properties of the activities 
Before analyzing the sensor data of a user, we need to determine activities to be recognized. In 
general, the basic human activities during a daily routine are walking, sitting, and standing. To 
describe the formal description of each activity, we referred to the definitions in [26]. The 
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formal definition of the three activities are presented as follows: 
 

 Sitting : Sitting down inactively. Does not include working on computer or reading 
while sitting 

 Standing : Standing without moving of legs 
 Walking : Walking without carrying any items in your hand or on your back heavier 

than a pound 
 
These activities are mutually exclusive, and are considered to be the most basic activities in 
many studies. To identify these activities, it is necessary to know the properties of each 
activity that are exploited during the activity recognition processes. In this subsection, we 
analyze the real sensor data and compute the statistics of the activities. 

4.2.1 Sitting 
Fig. 9 shows a plot of the acceleration signal for sitting. The signal demonstrates that the 𝑥, 𝑦, 
and 𝑧 values are almost constant, and the 𝑧 values have larger accelerations than any other 
values. The statistics of each axis are as follows: 
 

𝜇𝑥 = −1.04,𝜎𝑥 = 0.28  
𝜇𝑦 = 1.89,𝜎𝑦 = 0.21 (8) 
𝜇𝑧 = 9.5,𝜎𝑧 = 0.08  

 

 

Fig. 9. Acceleration signal for sitting 

4.2.2 Standing 
Fig. 10 shows an acceleration signal for standing. Similar to sitting, the 𝑥, 𝑦, and 𝑧 values are 
almost constant. Since the axes of the accelerometer are changed, the 𝑦 values, instead of the 
𝑧 values, have larger accelerations than any other values. The statistics of each axis are as 
follows: 
 

𝜇𝑥 = −1.79,𝜎𝑥 = 0.14  
𝜇𝑦 = 9.55,𝜎𝑦 = 0.04 (9) 
𝜇𝑧 = −0.21,𝜎𝑧 = 0.24  
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Fig. 10. Acceleration signal for standing 

4.2.3 Walking 
Fig. 11 shows a graph of the acceleration signal for walking. While the values of sitting and 
standing are very stable, the values of walking are relatively varied. The 𝑦 values have larger 
accelerations than any other values. The statistics of each axis are as follows: 
 

𝜇𝑥 = −1.45,𝜎𝑥 = 0.82  
𝜇𝑦 = 9.52,𝜎𝑦 = 1.35 (10) 
𝜇𝑧 = 0.82,𝜎𝑧 = 1.18  

 

 
Fig. 11. Acceleration signal for walking 

4.3 Feature extraction 
According to the properties of each activity and previous work [27-28], we chose the features 
to be extracted. For a window of accelerations 𝑤 = �(𝑥1,𝑦1, 𝑧1),⋯ , (𝑥𝑛,𝑦𝑛, 𝑧𝑛)� where 𝑥𝑖, 𝑦𝑖, 
and 𝑧𝑖 are the i-th acceleration of 𝑥, 𝑦, and 𝑧 directions, the average and standard deviation of 
accelerations are used. Three average �𝜇𝑥 ,𝜇𝑦, 𝜇𝑧� and three standard deviations �𝜎𝑥,𝜎𝑦,𝜎𝑧� 
are computed as follows 
 

𝜇𝑥 =
∑ 𝑥𝑖𝑛
𝑖=1
𝑛

, 𝜇𝑦 =
∑ 𝑦𝑖𝑛
𝑖=1
𝑛

, 𝜇𝑧 =
∑ 𝑧𝑖𝑛
𝑖=1
𝑛

 (11) 

  

𝜎𝑥 = �∑ (𝑥𝑖 − 𝜇𝑥)2𝑛
𝑖=1

𝑛
,𝜎𝑦 = �∑ �𝑦𝑖 − 𝜇𝑦�

2𝑛
𝑖=1

𝑛
,𝜎𝑧 = �∑ (𝑧𝑖 − 𝜇𝑧)2𝑛

𝑖=1
𝑛

 

 

(12) 
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In addition, we used three features that consisted of the energy of a signal that the Discrete 
Fourier Transform generates from the original signal. If 𝑋𝑗 is the Discrete Fourier Transform 
of 𝑥𝑖, the energy of each direction is computed as follows: 
 

𝐸𝑥 =
∑ �𝑋𝑗�

2𝑛
𝑗=1

𝑛
,𝐸𝑦 =

∑ �𝑌𝑗�
2𝑛

𝑗=1

𝑛
,𝐸𝑧 =

∑ �𝑍𝑗�
2𝑛

𝑗=1

𝑛
 (13) 

 
Thus, nine features, consisting of the average, standard deviation, and energy of three di-

rections, are used for PSO using ABC. Table 1 shows an example of the feature vectors for 
each activity. 

Table 1. Example of feature extraction 
 Sitting Standing Walking 
𝜇𝑥 -0.142 -2.281 -1.656 
𝜇𝑦 0.149 9.347 9.597 
𝜇𝑧 10.113 -0.600 0.531 
𝜎𝑥 0.005 0.008 0.188 
𝜎𝑦 0.022 0.009 0.602 
𝜎𝑧 0.000318 0.006 0.441 

𝐸𝑛𝑒𝑟𝑔𝑦𝑥 0.16355 41.64 22.208 
𝐸𝑛𝑒𝑟𝑔𝑦𝑦 0.30679 698.951 739.81 
𝐸𝑛𝑒𝑟𝑔𝑦𝑧 818.296 2.886 3.6265 

5. Experiments 
In this section, we evaluate the activity recognition algorithm using the ABC technique, and 
compare our approach to PSO without ABC, as well as other algorithms such as MLP [8], 
C4.5 [9], and SVM [10]. To alleviate the computational complexity of PSO, we adopted 
intelligent dynamic swarm [29] that was shown to be 30% faster than traditional PSO. For 
training dataset, we intentionally collected the accelerations from a triaxial accelerometer, 
which is embedded in the smartphone during three activities, each of which was performed for 
five minutes, at a sampling rate of 16 Hz. For test dataset, we collected accelerations in real life 
for two hours, with sampling periods (= (sampling rate)−1)  of 2-4, 2-2, 1, 4, 8, 16, and 32 
seconds. To compute the accuracy, the intervals of accelerations were manually labeled as one 
of the three activities. We used an Android-powered smartphone with an application 
implemented to collect accelerations, as shown in Fig. 12. 

5.1 Evaluation for sitting 
Fig. 13 shows the experiment results for sitting. Since the acceleration signal is very stable for 
sitting, the experiment shows that all methods recognize sitting with high accuracy. When the 
sampling period is shorter than or equal to 4 seconds, the accuracy of each algorithm is larger 
than 98%. If a sampling period increases, then the accuracies drop significantly. For instance, 
PSO without ABC, MLP, C4.5, and SVM show 97.7%, 94.8%, 94.0%, and 96.8% accuracies 
at the sampling period of 16 seconds, and 92.6%, 89.4%, 87.6%, and 92.9% accuracies at 32 
seconds. PSO with ABC, however, shows the best performance; its accuracy is 98.0% even at 
a sampling period of 32 seconds. 
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Fig. 12. Application for data collection 

 

Fig. 13. Experiment results for sitting 

5.2 Evaluation for standing 
Fig. 14 shows the experiment results for standing. Since the number of accelerations for 
standing is much smaller than that for sitting, the results looks unstable. Still it verifies that 
PSO with ABC is better than the other methods. At the sampling period of 4 seconds, most of 
algorithms are comparable in accuracy. When the sampling period increases, the accuracy of 
PSO with ABC slightly increases at a sampling period of 8 seconds while the accuracy of PSO 
decreases. Especially, PSO with ABC and PSO without ABC show 80.9% and 79.2% 
accuracy at the sampling period of 4 seconds, respectively. When the sampling period is 8 
seconds, PSO with ABC shows a robust accuracy of 83.6% while PSO without ABC shows a 
declined accuracy of 74.1%. This is because ABC catches unclassified data that are generated 
due to lower sampling rates. Therefore, this experiment shows the effectiveness of the ABC 
approach. 

5.3 Evaluation for walking 
Fig. 15 shows the experiment results for walking. The walking results are relatively unstable 
because walking is a dynamic activity. Nonetheless, the accuracies of all the algorithms are  
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Fig. 14. Experiment results for standing 

larger than 85% when a sampling period is smaller than or equal to one second. If a sampling 
period increases, then the accuracies drop significantly. For instance, PSO without ABC, MLP, 
C4.5, and SVM show 89.2%, 98%, 97.2%, and 96.4% accuracies, respectively, when the 
sampling period is one second. The accuracies, however, become 69.8%, 90.9%, 87.9%, and 
72.7% at the sampling period of 8 seconds, and become 50.0%, 66.7%, 77.8%, and 44.4% at 
32 seconds. The accuracy of PSO with ABC, however, is less reduced than that of the others. 
The accuracy is 89.2% at one second, 86.5% at 8 seconds, and 85.0% at 32 seconds. Especially 
PSO with ABC outperforms the other algorithms when a sampling period is 32 seconds; its 
accuracy is at least 7% better than the others’. 

 

Fig. 15. Experiment results for walking 

5.4 Discussion 
The experimental results show that the accuracy of the PSO with the ABC approach is better 
than that of PSO without ABC and the others when a sampling period is relatively large. The 
ABC approach improves the overall performance by dealing with the outliers that are not in 
the boundary of the class. For instance, PSO with ABC shows 6%, 25%, and 35% better 
results than PSO without ABC for sitting, standing, and walking, respectively, with a sampling 
period of 32 seconds. Especially PSO with ABC is the only algorithm that guarantees at least 
80% accuracy for every activity at a sampling period of smaller than or equal to 8 seconds. 
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Table 2 shows the average activity recognition results of all sampling periods for each al-
gorithm with respect to each activity. Since sitting data are relatively simple, every algorithm 
accurately identify “sitting” for every sample period. For standing, PSO with ABC outper-
forms the others because PSO with ABC recognizes “standing” consistently even when a 
sampling period is large. For walking, PSO with ABC is comparable to MLP and C4.5 and 
outperforms PSO without ABC and SVM.  

Table 2. Overall average activity recognition results for each algorithm 
 Sitting Standing Walking 

PSO (ABC) 99.39% 84.84% 86.34% 
PSO 98.35% 77.72% 75.11% 
MLP 97.15% 67.39% 88.24% 
C4.5 96.65% 73.50% 88.52% 
SVM 98.18% 38.95% 78.09% 

 
Table 3 shows the average accuracy differences between the successive sampling periods 

for each algorithm. The values indicate the tolerance to changes in the sampling periods 
without a steep decrease in the activity recognition accuracy. The results show that PSO with 
ABC is the most tolerant algorithm that can recognize activities without losing too much 
accuracy. 

Table 3. Average accuracy differences between the successive periods for each algorithm 
 Sitting Standing Walking 

PSO (ABC) 0.28% 4.48% 0.61% 
PSO 1.06% 7.97% 5.42% 
MLP 1.51% 11.55% 3.23% 
C4.5 1.75% 8.97% 1.80% 
SVM 1.01% 9.40% 7.64% 

6. Conclusions 
This paper proposed PSO with ABC to solve the difficulty of human activity recognition due 
to the fact that the accuracies of activity recognition algorithms, such as MLP, C4.5, and SVM, 
become lower as a sampling rate decreases. Although a high sampling rate is neccesary for 
high accuracy, it is not desirable for actual smartphone usage, battery consumption, or storage 
occupancy. To maintain recognition accuracies, we started from PSO, which is a relatively 
consistent algorithm in sampling rates, and we proposed PSO with an ABC approach. ABC is 
tolerant of small sampling rates in that it identifies all data by adjusting the classification 
boundary of each activity. We evaluated PSO with ABC and other algorithms with lifelog data  
from a triaxial accelerometer in a smartphone, with sampling periods of 2-4, 2-2, 1, 4, 8, 16, and 
32 seconds. The experimental results show that PSO with ABC has better tolerance to declines 
of sampling rates than PSO without ABC and other classification methods. In particular, PSO 
with ABC is 6%, 25%, and 35% better than PSO without ABC for sitting, standing, and 
walking, respectively, with a sampling period of 32 seconds. PSO with ABC is the only 
algorithm that guarantees at least 80% accuracy for every activity at a sampling period of 
smaller than or equal to 8 seconds. 

As future work, we are planning to examine our method to detect more activities, such as 
walking up and down, or running, as well as sitting, standing, and walking, while preserving a 
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high precision. We are also considering a way of coping with exceptional cases, for instance, 
calling or charging, or keeping the device in places other than a pocket, while recording the 
lifelog data. 
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